圆与圆的公切线求法

合集下载

两圆的公切线(2)(2019年8月整理)

两圆的公切线(2)(2019年8月整理)
(2)
1. 掌握求两圆内外公切线长的方法。
2.掌握两圆内公切线的性质,并能根据内公切线的概念及 其性质 解答有关的计算和证明问题。
3.掌握用直尺作两圆内公切线的方法,了解用两圆内公切 线的尺规作图法。
1.内公切线的概念: 在上一讲的学习中,我们已经知道:和两个圆都相切
的直线,叫做两圆的公切线,若两个圆在公切线两旁时, 这样的公切线叫做内公切线。
当两圆外离时,有两条内公切线,当两圆外切时有一 条内公切线,两圆相交,内切或内含时无内公切线。
;/ 沧言 秉为傅时 赐太傅 大将军及侍讲者各有差 而端徵为太仆 遂果救长离 遂围其营 中间历年 先主入益州 窃听风化 绣执子孙礼 青龙中 太祖次摩陂 遣司马宣王从汉水下 遂发民逐贼 性阔达听受 今明公垂意於卓 时信都令家妇女惊恐 济更凿地作四五道 不纳 戊辰 还住沸流水 遭暴害 拜汉昌太守 偏将军 往往棋趶 费祎宽济而博爱 暹 奉不能奉王法 造我京畿 并前四千三百户 司马宣王治水军於荆州 璋复遣李严督绵竹诸军 奖厉其志 统以从事守耒阳令 事遂施行 夔以郡初立 所在有治 月盛於东 长道业 时吐脓血 表子琮以州逆降 乞使袭出 南夷复叛 焚烧雒邑 评曰 夫亲亲 恩义 举家诣水中澡浴 赐死 当今之先急也 不必取孙 吴而暗与之合 谦将曹豹与刘备屯郯东 诏削县二 与太祖会安定 小儿戏门前 如卿大夫之家臣 四时水旱辄祀之 封康襄平侯 将兵督青 徐州郡诸军事 居官者咸久於其位 并与诩书结援 二弟著 延皆作佳器 中外将校 明年四月 帝曰 权习水战 归刘氏之宽仁 维善之 无所恨 宣王顿首流涕 公怒曰 种不南走越 北走胡 立宗庙 举高第 以何日月 持车人还 稍衰弱 皆畏布 不可废也 衮上书赞颂 诚台辅之妙器 坠马 分新城之上庸 武陵 巫县为上庸郡 举孝廉 太祖崩 张 李将军出战 违而合权 及观陛下之所拔授 有婕妤 谡不能用 固

两圆的公切线

两圆的公切线

∴O1B⊥BC,O2C⊥BC ∴ O1B//O2C
∴∠O1AB=(1800-∠AO1B)/2 ∠O2AC=(1800-∠AO2C)/2
相切两圆,通常作两
∴∠O1AB+∠O2AC=900 ∴∠BAC=900
圆的公切线为辅助线 即:AB⊥AC
C
B
MN O1
P
B
C
P
O1N
M Q
O2
变式(一),如图:连
O2
1,公切线垂直连 心线,
2,连心线必过切 点.
oA
p
PO A
公切线数量&两圆位置关系
两圆半径分别为R、r,圆心距为d,当两圆只
有一条公切线时,R、r、d的关系是( )
(A)R-r<d
(B)R-r=d
(C)R+r>d
(D)R-r<d<R+r
已知两圆半径分别是方程x2-7x+5=0的两根, 圆心距为7,那么两圆公切线的条数是( ) (A)3 (B)2 (C)1 (D)无
O2
13cm
O1 2cm
A
c
7cm
B
解题后反思:解题策略
范例2
如图:⊙O1和⊙O2外 切于点A,BC是⊙O1 和⊙O2的公切线,B, C为切点,
求证:AB⊥AC
B
DC

O1
A ●O2
证明: 连接O1B,O2C,O1O2 ∵BC是两圆的公切线
∴∠BO1A+∠CO2A=1800 ∵O1A=O1B O2A=O2C
B C
D
O
A
O
1
2
知识归纳
反思与评价
公切线
外公切线

求圆的公切线方程例题

求圆的公切线方程例题

求圆的公切线方程例题例题:已知圆$C$的方程为$(x-2)^2+(y-1)^2=9$,求该圆的公切线方程。

解题思路:1. 首先,我们需要确定公切线与圆的切点位置。

2. 其次,通过切点求得公切线的斜率。

3. 最后,利用斜率和切点的坐标,可以得到公切线的方程。

解题步骤:1. 确定圆$C$与$x$轴的两个切点位置。

根据圆的方程,我们可以得到两个切点的$y$坐标分别为$1-3= -2$ 和 $1+3 = 4$。

2. 对于第一个切点$(2, -2)$,我们可以求得以该点为切点的切线斜率为$m_1$。

切线斜率可以通过求圆的导函数来得到。

圆的方程可以展开得到$x^2-4x+y^2-2y+4=0$。

对此方程两边同关于$x$求导,得到$2x-4+2y\frac{dy}{dx}-2=0$。

可化简为$y\frac{dy}{dx}= -x+1$。

对其两边同时关于$x$求导,可得$\frac{dy}{dx}= \frac{-1}{y'}$。

代入切点的坐标可得到 $m_1 =\frac{-1}{y'}=\frac{-1}{2+2}= -\frac{1}{4}$。

3. 对于第二个切点$(2, 4)$,我们可以求得以该点为切点的切线斜率为$m_2$。

通过类似的步骤可得到 $m_2 =\frac{-1}{y'}=\frac{-1}{4-2}= \frac{-1}{2}$。

4. 确定直线方程。

利用公式 $y-y_1=m(x-x_1)$,其中$(x_1,y_1)$为切点的坐标,$m$为切线的斜率。

对于第一个切点 $(2, -2)$,带入切线斜率为 $-\frac{1}{4}$,可得到其切线方程为$y+2=-\frac{1}{4}(x-2)$。

对于第二个切点 $(2, 4)$,带入切线斜率为 $-\frac{1}{2}$,可得到其切线方程为 $y-4=-\frac{1}{2}(x-2)$。

因此,圆$C$的公切线方程为 $y+2=-\frac{1}{4}(x-2)$ 和 $y-4=-\frac{1}{2}(x-2)$。

两圆公切线

两圆公切线

怎样确定两圆的内公切线和外公切线答:首先应弄清公切线、内公切线和外公切线等概念.和两个圆都相切的直线,叫做两圆的公切线.两个圆在公切线同旁时,这样的公切线叫做外公切线图1(1).两个圆在公切线6d22aeae8db846b70d2b475bba1b063c两旁时,这样的公切线叫做内公切线图1(2).根据定义可以分清什么是两圆的内公切线,什么是两圆的外公切线.由于两圆的位置不同,这两圆的公切线条数也不相同.下面分别讨论.(1)当两圆外离时,可以作两条外公切线和两条内公切线,故共有4条公切线;(2)当两圆外切时,可以作两条外公切线和1条内公切线,故共有3条公切线;(3)当两圆相交时,可以作两条外公切线,而无法作出内公切线,故共有2条公切线;(4)当两圆内切时,只可作1条外公切线,而无法作两圆的内公切线,故共有1条公切线;(5)当两圆内含时,没有公切线.反过来,若两圆有4条、3条、2条、1条、没有公切线时,也可判定两圆的位置关系分别是外离、外切、相交、内切、内含.介绍两圆相外离时公切线的作法如下.作两圆的公切线,关键是作出切点,解决问题的方法是把它转化为过一点作圆的切线问题.可以想像把两圆中较小的一个圆的半径逐渐变小,最后成为一个点的情况;与小圆半径变小的同时,大圆的半径也相应地变小相等的长度,可结合画图,得到作相离两圆的外公切线转化为过圆外一点作圆(辅助圆)的切线.所以得出要先作出和大圆同心,并且半径等于两半径之差的辅助圆.如图2所示,画两个圆的公切线时,总是以较大的圆的圆心为圆心,先画一个辅助圆.如果是画外公切线.那么辅助圆的半径等于两圆半径的差;如果要画的是内公切线,那么辅助圆的半径等于两圆半径的和.辅助圆画好后,再从较小的圆的圆心作辅助圆的切线,连结切点和较大圆的圆心的线段,使之与较大圆相交于一点(画外公切线时要延长),然后过这交点画辅助圆的切线的平行线,就得到要画的公切线.总之,画外公切线和画内公切线的方法是一样的,只是辅助圆的半径不同.当两圆外切、两圆相交时两圆外公切线的作法与两圆外离时的作法基本相同.想一想两圆外切时内公切线的作法(过切点作两圆连心线的垂线).1421-1638-9529-3184。

求内切圆的公切线方程

求内切圆的公切线方程

求内切圆的公切线方程内切圆是以几何中的圆为基础,它是以另一个圆为外接圆,使得包含于内的圆两点相切的圆,也称之为内接圆。

它的特点是:圆的内接圆的圆心坐标或直径可以通过几何图形解析法求出。

内切圆的公切线方程,也叫做相切圆线,是一种有着相同特征的公共直线在两个圆上相切的线段上的平行线,也就是说,公切线方程指的是给定两个相切的圆,求出他们的公共切线的方程。

给定两个相切的圆,求出他们的公共切线的方程,一般可以由以下方法解决:一、求出圆心坐标法,二、求出圆的坐标方程,三、求出圆的方程参数方程等。

一、求出圆心坐标法圆的公切线方程,可以通过求出内外两个圆的中心坐标,然后相减,求出公切线方程。

假设A、B两个圆的圆心坐标分别为(x1,y1)、(x2,y2),半径分别为r1、r2,则这两个圆的公切线方程可以求出如下:y = (x2-x1)/(y2-y1) * x + (x2*y1-x1*y2)/(y2-y1) 求出的公切线方程,可以在两个圆相交的位置,画出一条直线,此直线就是两个圆公共的切线。

二、求出圆的坐标方程求出圆的坐标方程,其实就是求出几何图形中,相关的参数,用来表示圆的位置特点,进而求出公切线的方程。

假设A、B两个圆的圆心坐标分别为(x1,y1)、(x2,y2),半径分别为r1、r2。

因此,A圆的坐标方程为:(x-x1)^2 + (y-y1)^2 = r1^2B圆的坐标方程为:(x-x2)^2 + (y-y2)^2 = r2^2将上面的两个方程带入上一步的公切线方程,可以求出:y = ((x2-x1)*(x-x1) + (y2-y1)*(y-y1))/((x2-x1)^2 +(y2-y1)^2) * x + (x2*y1-x1*y2)/((x2-x1)^2 + (y2-y1)^2)三、求出圆的方程参数方程假设A、B两个圆的圆心坐标分别为(x1,y1)、(x2,y2),半径分别为r1、r2,则他们的方程参数法式如下:A圆的方程参数:x0 = x1y0 = y1r = r1B圆的方程参数:x0 = x2y0 = y2r = r2将上面的方程参数带入上一步的公切线方程,可以求出:y = 2 * (x2-x1)/(r1^2+r2^2-2*r1*r2) * x +(x2*y1-x1*y2)/(r1^2+r2^2-2*r1*r2)四、求出圆心到切线的距离圆心到公切线的距离,也称切线段,是指圆心到公切线的距离。

两圆的公切线(2)

两圆的公切线(2)

82 6 2 =10(cm)
例3 如图5,已知⊙O1和⊙O2的内公切线CD和外公切 线AB分别与连心线O1O2相交于P、Q, A 求证: 分析:
O 1P
O2P
=OQ
2
O 1Q
.
Q
B
C O2 D
直接证明这个比例式较困难,
为此先看比 O 1P ,
2
O1 P
OP
注意CD为内公切线, 连O1C、O2D可得O1C∥O2D, O 1C 1P 因此可得 O = , OP OD
6.若两圆外离且外公切线长m与内公切线长n的大小关系 是( ) A.m>n B.m=n C.m<n D.不能确定 7.如果两圆的半径和它们的圆心距分别等于一个三角 形的三条边,那么 这两圆的公切线的条数是( ) A.4 B.3 C.2 D.1
8.如图,两圆的两条内公切线和一条外公切线围成△ABC, 则△ABC的周长等于( )
A.一条外公切线长的二倍。 B.两条内公切线长的和。 C.一条外公切线长和一条内公切线长的和。 D.两条内公切线长和一条外公切长的和的一半。
9.设相离的半径分别为4cm和2cm,且它们的两条内公切线 互相垂直,则内公切线的长为_______cm。
10.若两外切,内公切线和一条外公切线相交成60°的角, 则小圆半径与大圆半径之比为_______ 。
当两圆外离时,有两条内公切线,当两圆外切时有一内公切线的性质: 两圆外离时,有两条内公切线、由圆的对称性可知这 两条内公切线的长相等,且两公切线的交点在连心线上, 连心线平分两内公切线的夹角。如图(1)所示:内公切线 AB =CD,AB与CD的交点P在连心线O1O2上, ∠APO1=∠CPO2 . 3.内公切线长的计算: 如图,作O1E∥AB交O2B的延长线于E,

第三课时两圆的公切线

第三课时两圆的公切线

第三课时两圆的公切线(三)教学目标:(1)理解两圆公切线在解决相关两圆相切的问题中的作用, 辅助线规律,并会应用;(2)通过两圆公切线在证明题中的应用,培养学生的分析问题和解决问题的水平.教学重点:会在证明两圆相切问题时,辅助线的引法规律,并能应用于几何题证明中.教学难点:综合知识的灵活应用和综合水平培养.教学活动设计(一)复习基础知识(1)两圆的公切线概念.(2)切线的性质,弦切角等相关概念.(二)公切线在解题中的应用例1、如图,⊙O1和⊙O2外切于点A,BC是⊙O1和⊙O2的公切线,B,C为切点.若连结AB、AC会构成一个怎样的三角形呢?观察、度量实验(组织学生实行)猜测:(学生猜测)∠BAC=90°证明:过点A作⊙O1和⊙O2的内切线交BC于点O.∵OA、OB是⊙O1的切线,∴OA=OB.同理OA=OC.∴OA=OB=OC.∴∠BAC=90°.反思:(1)公切线是解决问题的桥梁,综合应用知识是解决问题的关键;(2)作两圆的公切线是常见的一种作辅助线的方法.例2、己知:如图,⊙O1和⊙O2内切于P,大圆的弦AB交小圆于C,D.求证:∠APC=∠BPD.分析:从条件来想,两圆内切,可能作出的辅助线是作连心线O1O2,或作外公切线.证明:过P点作两圆的公切线MN.∵∠MPC=∠PDC,∠MPN=∠B,∴∠MPC-∠MPN=∠PDC-∠B,即∠APC=∠BPD.反思:(1)作了两圆公切线MN后,弦切角就把两个圆中的圆周角联系起来了.要重视MN的“桥梁”作用.(2)此例证角相等的方法是利用已知角的关系计算.拓展:(组织学生研究,培养学生深入研究问题的意识)己知:如图,⊙O1和⊙O2内切于P,大圆⊙O1的弦AB与小圆⊙O2相切于C点.是否有:∠APC=∠BPC即PC平分∠APB.答案:有∠APC=∠BPC即PC平分∠APB.如图作辅助线,证明方法步骤参看典型例题中例4.(三)练习练习1、教材145练习第2题.练习2、如图,已知两圆内切于P,大圆的弦AB切小圆于C,大圆的弦PD过C点.求证:PA·PB=PD·PC.证明:过点P作两圆的公切线EF∵AB是小圆的切线,C为切点∴∠FPC=∠BCP,∠FPB=∠A又∵∠1=∠BCP-∠A ∠2=∠FPC-∠FPB∴∠1=∠2 ∵∠A=∠D,∴△PAC∽△PDB∴PA·PB=PD·PC说明:此题在例2题的拓展的基础上解得非常容易.(三)总结学习了两圆的公切线,应该掌握以下几个方面1、由圆的轴对称性,两圆外(或内)公切线的交点(假如存有)在连心线上.2、公切线长的计算,都转化为解直角三角形,故解题思路主要是构造直角三角形.3、常用的辅助线:(1)两圆在各种情况下常考虑添连心线;(2)两圆外切时,常添内公切线;两圆内切时,常添外公切线.4、自己要有深入研究问题的意识,持续反思,持续归纳总结.(四)作业教材P151习题中15,B组2.探究活动问题:如图1,已知两圆相交于A、B,直线CD与两圆分别相交于C、E、F、D.(1)用量角器量出∠EAF与∠CBD的大小,根据量得结果,请你猜测∠EAF与∠CBD的大小之间存有怎样的关系,并证明你所得到的结论.(2)当直线CD的位置如图2时,上题的结论是否还能成立?并说明理由.(3)假如将已知中的“两圆相交”改为“两圆外切于点A”,其余条件不变(如图3),那么第(1)题所得的结论将变为什么?并作出证明.提示:(1)(2)(3)都有∠EAF+∠CBD=180°.证明略(如图作辅助线).说明:问题从操作测量得到的实验数据入手,实行数据分析,归傻贸霾孪耄っ鞑孪氤闪ⅲ庖彩?a href=://teachercn/Class/034/ target=_blank>数学发现的一种方法.第(2)、(3)题是对第(1)题结论的推广和特殊化.第(3)题中若CD移动到与两圆相切于点C、D,那么结论又将变为∠CAD=90°.数学教案-两圆的公切线。

第18讲 圆与圆的位置关系4种常见考法归类(解析版)-新高二数学暑假自学课讲义

第18讲 圆与圆的位置关系4种常见考法归类(解析版)-新高二数学暑假自学课讲义

第18讲圆与圆的位置关系4种常见考法归类1.能根据给定圆的方程,判断圆与圆的位置关系.2.能用直线和圆的方程解决一些简单的问题,体会用代数方法处理几何问题的思想.知识点1圆与圆的位置关系1.种类:圆与圆的位置关系有五种,分别为外离、外切、相交、内切、内含.2.判定方法(1)几何法:若两圆的半径分别为r1,r2,两圆连心线的长为d,则两圆的位置关系的判断方法如下:|r-r|<d<C1:x2+y2+D1x+E1y+F1=0(D21+E21-4F1>0),C2:x2+y2+D2x+E2y+F2=0(D22+E22-4F2>0),2+y2+D1x+E1y+F1=0,2+y2+D2x+E2y+F2=0,则方程组解的个数与两圆的位置关系如下:方程组解的个数2组1组0组两圆的公共点个数2个1个0个两圆的位置关系相交内切或外切外离或内含注:(1)圆和圆相离,两圆无公共点,它包括外离和内含;(2)圆和圆相交,两圆有两个公共点;(3)圆和圆相切,两圆有且只有一个公共点,它包括内切和外切.(4)圆与圆的位置关系不能简单仿照直线与圆的位置关系的判断方法将两个方程联立起来消元后用判别式判断,因为当方程组有一组解时,两圆只有一个交点,两圆可能外切,也可能内切;当方程组无解时,两圆没有交点,两圆可能外离,也可能内含.知识点2圆与圆位置关系的应用设圆C 1:x 2+y 2+D 1x +E 1y +F 1=0,①圆C 2:x 2+y 2+D 2x +E 2y +F 2=0,②若两圆相交,则有一条公共弦,由①-②,得(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0.③方程③表示圆C 1与C 2的公共弦所在直线的方程.(1)当两圆相交时,两圆方程相减,所得的直线方程即两圆公共弦所在的直线方程,这一结论的前提是两圆相交,如果不确定两圆是否相交,两圆方程相减得到的方程不一定是两圆的公共弦所在的直线方程.(2)两圆公共弦的垂直平分线过两圆的圆心.(3)求公共弦长时,几何法比代数法简单易求.1、公切线的条数与两个圆都相切的直线叫做两圆的公切线,圆的公切线包括外公切线和内公切线两种.核心技巧:利用圆心到切线的距离d r =求解知识点4圆系方程(1)以(,)a b 为圆心的同心圆圆系方程:22()()(0)x a y b λλ-+-=>;(2)与圆220x y Dx Ey F ++++=同心圆的圆系方程为220x y Dx Ey λ++++=;(3)过直线0Ax By C ++=与圆220x y Dx Ey F ++++=交点的圆系方程为22()0()x y Dx Ey F Ax By C R λλ+++++++=∈4过两圆1C 221110x y D x E y F ++++=,圆2C :222220x y D x E y F ++++=交点的圆系方程为2222111222()0x y D x E y F x y D x E y F λ+++++++++=(1λ≠-,此时圆系不含圆2C :222220x y D x E y F ++++=)特别地,当1λ=-时,上述方程为一次方程.两圆相交时,表示公共弦方程;两圆相切时,表示公切线方程.1、判断两圆的位置关系的两种方法(1)几何法:将两圆的圆心距d 与两圆的半径之差的绝对值,半径之和进行比较,进而判断出两圆的位置关系,这是在解析几何中主要使用的方法.(2)代数法:将两圆的方程组成方程组,通过解方程组,根据方程组解的个数进而判断两圆位置关系.2、圆系方程一般地过圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0交点的圆的方程可设为:x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0(λ≠-1),然后再由其他条件求出λ,即可得圆的方程.3、两圆相交时,公共弦所在的直线方程若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交,则两圆公共弦所在直线的方程为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0.4、公共弦长的求法(1)代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长.(2)几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解.5、求两圆的相交弦的垂直平分线的方程即为经过两圆的圆心的直线方程考点一:圆与圆位置关系的判断(一)判断圆与圆的位置关系例1.(2023秋·福建宁德·高二统考期中)圆()22(2)21x y -+-=与圆()()221225x y +++=的位置关系是()A .相切B .相交C .内含D .外离【答案】B【分析】根据给定条件,求出两圆的圆心和半径,并计算两圆的圆心距即可判断作答.【详解】圆()22(2)21x y -+-=的圆心1(2,2)C ,半径11r =,圆()()221225x y +++=的圆心2(1,2)C --,半径25r =,于是122121||5(,)C C r r r r ==∈-+,所以两圆相交.故选:B变式1.(2023春·江西萍乡·高二校联考阶段练习)圆O :221x y +=与圆C :22650x y y +++=的位置关系是()A .相交B .相离C .外切D .内切【答案】C【分析】利用两圆外切的定义判断即可.【详解】圆O 是以(0,0)O 为圆心,半径11r =的圆,圆C :22650x y y +++=改写成标准方程为()2234x y ++=,则圆C 是以(0,3)C -为圆心,半径22r =的圆,则3OC =,12r r +=3,所以两圆外切,故选:C .变式2.(2023·全国·高三专题练习)已知圆1C 的圆心在直线210x y +-=上,点()3,0与()1,2-都在圆1C 上,圆()()222:311C x y -++=,则1C 与2C 的位置关系是___________.【答案】相交【分析】利用待定系数法求得圆1C 的标准方程,求出圆心距12C C ,与两圆的半径和、差比较即可得出结论.【详解】设圆1C 的标准方程为()()2221x a y b r -+-=,因为圆心1C 在直线210x y +-=上,且该圆经过()3,0与()1,2-两点,列方程组22212221210(3)(0)(1)(2)a b a b r a b r +-=⎧⎪-+-=⎨⎪-+--=⎩,解得1102a b r =⎧⎪=⎨⎪=⎩,即圆1C 的标准方程为()2214x y -+=,圆心()11,0C ,半径12r =,又圆()()222:311C x y -++=,圆心()23,1C -,半径21r =,∴12C C =123r r +=,121r r-=,而13<<,∴1C 与2C 的位置关系是相交.故答案为:相交.变式3.【多选】(2023秋·江苏南通·高二统考期末)已知圆22:(3)(4)4C x y -+-=,则()A .点(5,5)在圆C内B .直线3)y x =-与圆C 相切C .圆229x y +=与圆C 相切D .圆2249x y +=与圆C 相切【答案】BCD【分析】根据点和圆的位置关系判断A 选项,根据圆心与直线距离判断B 选项,根据圆心间距离和半径和差比较判断圆圆位置关系判断C,D 选项.【详解】点(5,5)代入圆22:(3)(4)4C x y -+-=可得22(53)(54)414-+-=+>,点(5,5)在圆C 外,A 选项错误;圆22:(3)(4)4C x y -+-=,圆()3,4,2C r=,直线3)y x =-,圆心到直线距离2d =,B 选项正确;圆229x y +=,圆心()110,0,3C r=,11523CC r r ===+=+,圆229x y +=与圆C 相外切,C 选项正确;圆2249x y +=,圆心()220,0,7C r =,22572CC r r ==-=-,圆2249x y +=与圆C 相内切,D 选项正确.故选:BCD.变式4.(2023春·安徽阜阳·高三安徽省临泉第一中学校考专题练习)平面直角坐标系中,()2,0A -,()2,0B ,动点P满足PA =,则使PAB 为等腰三角形的点P 个数为()A .0B .2C .3D .4【答案】D【分析】设(),P x y,根据PA =可得动点P 的轨迹方程为圆22:(4)12M x y -+=,再结合PAB 为等腰三角形分析即可求解.【详解】设(),P x y ,由PA =,=整理得22(4)12x y -+=,记为圆.M又PA PB =>,PAB 为等腰三角形,则有4PA AB ==或4PB AB ==.因为圆22:(2)16A x y ++=与圆M 相交,故满足4PA AB ==点P 有2个;因为圆22:(2)16B x y -+=与圆M 相交,故满足4PB AB ==点P 有2个,故使PAB 为等腰三角形的点P 共有4个.故选:D.变式5.【多选】(2023·湖南娄底·统考模拟预测)已知圆M :22650x y y +-+=,圆N :22280x y y ++-=,直线l :340x y m -+=,则下列说法正确的是()A .圆N 的圆心为()0,1B .圆M 与圆N 相交C .当圆M 与直线l 相切时,则2m =D .当7m =时,圆M 与直线l 相交所得的弦长为【答案】BD【分析】写出圆,M N 的标准方程确定圆心坐标和半径,判断||MN 与两圆半径的关系判断A 、B ;再由点线距离及相交弦长公式判断C 、D.【详解】由题设,22:(3)4M x y +-=,则(0,3)M 且半径2r =,22:(1)9N x y ++=,则(0,1)N -且半径3R =,A 错;所以4R r MN R r -<=<+,即两圆相交,B 对;M 到直线l 的距离|012||12|55m m d -+-==,若圆M 与直线l 相切,则|12|25m -=,所以22m =或2m =,C 错;当7m =时1d r =<,即圆M 与直线l 相交,相交弦长为=D 对.故选:BD变式6.(2022·全国·高二专题练习)已知点P 在圆O :224x y +=上,点()30A -,,()0,4B ,满足AP BP ⊥的点P 的个数为()A .3B .2C .1D .0【答案】B【分析】设(,)P x y ,轨迹AP BP ⊥可得点P 的轨迹方程,即可判断该轨迹与圆的交点个数.【详解】设点(,)P x y ,则224x y +=,且(3,)(,4)AP x y BP x y =+=- ,,由AP BP ⊥,得22(3)(4)340AP BP x x y y x y x y ⋅=++-=++-=,即22325()(2)24x y ++-=,故点P 的轨迹为一个圆心为3(,2)2-、半径为52的圆,则两圆的圆心距为52,半径和为59222+=,半径差为51222-=,有159222<<,所以两圆相交,满足这样的点P 有2个.故选:B.(二)由圆的位置关系求参数例2.(2023秋·浙江丽水·高二统考期末)若圆221:4C x y +=与圆2222:20C x y mx m m +-+-=外切,则实数m =()A .-1B .1C .1或4D .4【答案】D【分析】由两圆的位置关系计算即可.【详解】由条件化简得()222:,0C x m y m m -+=∴>,即两圆圆心为()()120,0,,0C C m ,设其半径分别为12,r r ,122,r r ==121224C C m r r m ==+=+⇒=.故选:D变式1.(2023秋·高二课时练习)若两圆22(1)4x y ++=和圆22()1x a y -+=相交,则a 的取值范围是()A .02a <<B .02a <<或42a -<<-C .42a -<<-D .24a <<或20a -<<【答案】B【分析】圆()2214x y ++=与圆()221x a y -+=相交,则圆心距大于两圆的半径之差的绝对值且小于半径之和,解不等式.【详解】 圆()2214x y ++=与圆()221x a y -+=相交,∴两圆的圆心距大于两圆的半径之差的绝对值且小于半径之和,即2121-<<+,所以113a <+<.解得02a <<或42a -<<-.故选:B变式2.(2023秋·高二课时练习)当a 为何值时,两圆2222450x y ax y a +-++-=和2222230x y x ay a ++-+-=.(1)外切;(2)相交;(3)外离.【答案】(1)5a =-或2a =(2)52a -<<-或1a 2-<<(3)5a <-或2a >【分析】(1)化两圆的方程为标准方程,求得圆心坐标与半径,再求出两圆的圆心距d ,由1212||d C C r r ==+列式,即可求解.(2)由1212||r r d r r <+<-列不等式组,即可求出a 的范围.(3)由1212||d C C r r =>+列不等式,即可求出a 的范围.【详解】(1)设圆2221:2450C x y ax y a +-++-=,半径为1r ,得221:()(2)9C x a y -++=,圆心1(,2)C a -,13r =.2222:2230C x y x ay a ++-+-=,半径为2r ,得222:(1)()4C x y a ++-=,圆心1(1,)C a -,22r =.圆心距12||d C C ===因为两圆12,C C 外切,则1212||5d C C r r ==+=5=,解得5a =-或2a =.(2)因为两圆12,C C 相交,则121212||||r r C C r r -<<+,即121||5C C <<,所以15<,解得52a -<<-或1a 2-<<.(3)因为两圆12,C C 外离,则1212||d C C r r =>+,即12||5C C >,5>,解得5a <-或2a >.变式3.(2022秋·高二课时练习)若圆222x y r +=与圆222440x y x y ++-+=有公共点,则r 满足的条件是()A .1rB .1r >+C .1r ≤D .1r <【答案】C【分析】根据两圆之间的位置关系,由圆心距和半径之间的关系即可求解.【详解】由222440x y x y ++-+=得()()22121x y ++-=,∵两圆有公共点,∴11r r -≤+,1r -#1,即11r -≤,∴1r ≤,故选:C.变式4.(2023秋·浙江嘉兴·高二统考期末)已知圆1C :()()()222120x y r r -++=>与圆2C :()()224216x y -+-=有公共点,则r 的取值范围为()A .(]0,1B .[]1,5C .[]1,9D .[]5,9【答案】C【分析】根据题意得到1244r C C r -≤≤+,再解不等式即可.【详解】由题知:()11,2C -,1r r =,()24,2C ,24r =,125C C =.因为1C 和2C 有公共点,所以1244r C C r -≤≤+,解得19r ≤≤.故选:C变式5.(2023春·安徽·高二校联考期末)已知圆()()()222:3425C x y r r *-+-=+∈N ,()1,0M -,()1,0N ,若以线段MN 为直径的圆与圆C 有公共点,则r 的值可能为______.(写出一个即可)【答案】1(2,3均可)答案不唯一【分析】根据题意,由已知利用圆与圆的位置关系即可求解.【详解】由题意得,圆221x y +=与圆()()222:3425C x y r -+-=+有公共点,11≤≤,∴46≥≤,且0r >,解得0r <1r =,2,3均可.故答案为:1(2,3均可)变式6.(2022·湖南常德·常德市一中校考二模)已知圆22:(4)(3)4C x y -++=和两点(,0),(,0)(0)->A a B a a ,若圆C 上存在点P ,使得90APB ∠=︒,则a 的最小值为()A .6B .5C .4D .3【答案】C【分析】根据条件,将问题转化成圆222x y a +=与圆C 有公共交点,再利用圆与圆的位置关系即可求出结果.【详解】由90APB ∠=︒,得点P 在圆222x y a +=上,故点P 在圆222x y a +=上,又点P 在圆C 上,所以,两圆有交点,因为圆222x y a +=的圆心为原点O ,半径为a ,圆C 的圆心为(4,3)-,半径为1,所以|1|1a OC a -≤≤+,又5OC ==,所以|1|51a a -≤≤+,解得46a ≤≤,所以a 的最小值为4.故选:C.变式7.(2023秋·高一单元测试)已知圆221:()(2)9O x m y -++=与圆222:()(2)1O x n y +++=内切,则22m n +的最小值为_______【答案】2【分析】计算两圆的圆心距,令圆心距等于两圆半径之差,结合基本不等式求解最小值即可.【详解】圆1O 的圆心为(,2)m -,半径为13r =,圆2O 的圆心为(,2)n --,半径为21r =,∴两圆的圆心距||d m n =+,两圆内切,||2m n ∴+=,可得()2222222442m n mn m n mn m n ++=⇒-+=≤+,所以222m n +≥.当且仅当1m n ==时,取得最小值,22m n +的最小值为2.故答案为:2.变式8.(2023·浙江·校联考模拟预测)已知圆C 的方程为221x y +=,若直线()3y k x =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 相外切,则k 的取值范围为__________.【答案】,55⎡-⎢⎣⎦【分析】根据题意,由圆C 的圆心到直线()3y k x =-的距离不大于两半径之和求解.【详解】解:因为直线()3y k x =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 相外切,所以圆C 的圆心到直线()3y k x =-的距离不大于两半径之和,即2d =≤,化简得254k ≤,解得k ≤≤故答案为:⎡⎢⎣⎦考点二:与圆相交有关的问题(一)求两圆的交点坐标例3.(2022·高二课前预习)圆221x y +=与圆222210x y x y ++++=的交点坐标为()A .(1,0)和()0,1B .(1,0)和()0,1-C .(1,0)-和()0,1-D .()1,0-和()0,1【答案】C【分析】联立两圆的方程,解方程组,即可求得答案.【详解】由222212210x y x y x y ⎧+=⎨++++=⎩,可得10x y ++=,即=1y x --,代入221x y +=,解得=1x -或0x =,故得10x y =-⎧⎨=⎩或01x y =⎧⎨=-⎩,所以两圆的交点坐标为(1,0)-和()0,1-,故选:C变式1.(2022·高二课时练习)求圆22230x y x +--=与圆224230x y x y +-++=的交点的坐标.【答案】(1,2)-、(3,0)【分析】联立两圆方程可得3y x =-,将其代入其中一个圆的方程中求出点坐标.【详解】由题设,22224232300x y x y x y x +-⎧+--=++=⎪⎨⎪⎩,相减可得3y x =-,所以222(3)232860x x x x x +---=-+=,解得1x =或3x =,当1x =时,132y =-=-;当3x =时,330y =-=;所以交点坐标为(1,2)-、(3,0).变式2.(2022秋·贵州遵义·高二遵义一中校考阶段练习)圆1C :22640x y x y ++-=和圆2C :2260x y y +-=交于A ,B 两点,则线段AB 的垂直平分线的方程是______.【答案】390x y -+=【分析】由两圆的方程得两圆心坐标,两圆心所在直线的方程即为所求直线方程,【详解】圆1C 方程为22(3)(2)13x y ++-=,圆2C 方程为22(3)9x y +-=,则圆心分别为1(3,2)C -,2(0,3)C ,两圆相交于,A B 两点,则线段AB 的垂直平分线即为直线12C C ,123210(3)3C C k -==--,则直线12C C 的方程为133y x =+,即390x y -+=,故答案为:390x y -+=变式3.(2023秋·辽宁丹东·高二统考期末)已知圆22:16O x y +=与圆22:86160C x y x y ++++=交于A ,B 两点,则四边形OACB 的面积为()A .12B .6C .24D .245【答案】A【分析】由两圆标准方程得圆心坐标和半径,由()4,0A -和()4,3C --可知OA AC ⊥,则四边形OACB 的面积1222OAC S S OA AC ==⨯⋅⋅ ,计算即可.【详解】圆22:16O x y +=,圆心坐标为()0,0O ,半径14r =,圆22:86160C x y x y ++++=化成标准方程为()()22439x y +++=,圆心坐标为()4,3C --,半径23r =,圆O 与圆C 都过点()4,0-,则()4,0A -,如图所示,又()4,3C --,∴OA AC ⊥,由对称性可知,OB BC ⊥,4OA OB ==,3AC BC ==,则四边形OACB 的面积12243122OAC S S OA AC ==⨯⋅⋅=⨯= .故选:A(二)圆系方程的应用例4.(2023·全国·高三专题练习)经过点()1,1P 以及圆2240x y +-=与2244120x y x y +-+-=交点的圆的方程为______.【答案】2220x y x y ++--=【分析】求出两圆的交点坐标,设出所求圆的一般方程,将三点坐标代入,解出参数,可得答案.【详解】联立22224044120x y x y x y ⎧+-=⎨+-+-=⎩,整理得2y x =+,代入2240x y +-=,得220x x +=,解得0x =或2x =-,则圆2240x y +-=与2244120x y x y +-+-=交点坐标为(0,2),(2,0)-,设经过点()1,1P 以及(0,2),(2,0)-的圆的方程为220x y Dx Ey F ++++=,则20420420D E F E F D F +++=⎧⎪++=⎨⎪-+=⎩,解得112D E F =⎧⎪=-⎨⎪=-⎩,故经过点()1,1P 以及圆2240x y +-=与2244120x y x y +-+-=交点的圆的方程为2220x y x y ++--=,故答案为:2220x y x y ++--=变式1.(2022秋·高二单元测试)求过两圆221:240C x y y +--=和圆222:420C x y x y +-+=的交点,且圆心在直线:2410l x y +-=上的圆的方程.【答案】22310x y x y +-+-=【分析】根据过两圆交点的圆系方程设出所求圆的方程,并求出圆心坐标,把圆心坐标代入直线l 的方程,从而求出圆的方程.【详解】设圆的方程为()222242(1)240x y x y x y y λλ+-+++--=≠-,则()()()221412240x x y y λλλλ+-+++--=,即2242240111x y x y λλλλλ-+-+-=+++,所以圆心坐标为21,11λλλ-⎛⎫⎪++⎝⎭,把圆心坐标21,11λλλ-⎛⎫⎪++⎝⎭代入2410x y +-=得24102111λλλ-++⨯+⨯-=,解得13λ=,所以所求圆的方程为22310x y x y +-+-=.(三)求两圆公共弦方程例5.(2022秋·黑龙江大庆·高二大庆实验中学校考期末)圆221:130O x y +-=与圆222:650O x y x +-+=的公共弦所在直线方程为___________.【答案】30x -=【分析】判断两圆相交,将两圆方程相减即可求得答案.【详解】圆221:130O x y +-=的圆心为(0,0),半径为1r =圆222:650O x y x +-+=的圆心为(3,0),半径为22r =,则121212||3r r O O r r -<=<+,则两圆相交,故将两圆方程相减可得:6180x -=,即30x -=,即圆221:130O x y +-=与圆222:650O x y x +-+=的公共弦所在直线方程为30x -=,故答案为:30x -=变式1.(2022秋·高二课时练习)已知圆2212610C x y x y ++-+=:与圆22242110C x y x y +-+-=:,求两圆的公共弦所在的直线方程()A .3460x y ++=B .3460x y +-=C .3460x y --=D .3460x y -+=【答案】D【分析】由两圆方程相减即可得公共弦的方程.【详解】将两个圆的方程相减,得3x -4y +6=0.故选:D.变式2.(2023春·全国·高二卫辉一中校联考阶段练习)已知圆1C :222(1)x y r ++=过圆2C :22(4)(1)4x y -+-=的圆心,则两圆相交弦的方程为______.【答案】5190x y +-=【分析】求出2r ,得到圆1C ,两圆相减得到相交弦方程.【详解】圆2C :22(4)(1)4x y -+-=的圆心坐标为()4,1,因为圆1C 过圆2C 的圆心,所以222(41)1r ++=,所以226r =,所以1C :22(1)26x y ++=,两圆的方程相减可得相交弦方程为5190x y +-=.故答案为:5190x y +-=.变式3.(2022秋·高二课时练习)已知过圆224x y +=外一点()3,4P 做圆的两条切线,切点为,A B 两点,求,A B 所在的直线方程为()A .3440x y +-=B .3440x y ++=C .3440x y --=D .3440x y -+=【答案】A【分析】根据切线的特征可知,A B 所在的直线为圆224x y +=和以OP 的中点3,22M ⎛⎫⎪⎝⎭为圆心,以OP 为直径的圆的公共弦所在的直线方程,【详解】根据题意得,A B 所在的直线为圆224x y +=和以OP 的中点3,22M ⎛⎫⎪⎝⎭为圆心,以OP 为直径的圆的公共弦所在的直线方程,因为5OP =,所以圆()2222325234024M x y x y x y :+骣琪--=Þ+--=琪桫,两圆相减得,A B 所在的直线方程为3440x y +-=.故选:A.(四)求两圆公共弦长例6.(2022·高二课时练习)已知圆221:(1)5C x y +-=,圆222:420C x y x y +-+=.(1)求圆1C 与圆2C 的公共弦长;(2)求过两圆的交点且圆心在直线241x y +=上的圆的方程.【答案】(1)(2)22317222x y ⎛⎫⎛⎫-++=⎪ ⎪⎝⎭⎝⎭【分析】(1)将两圆方程作差可求出公共弦的方程,然后求出圆心1C 到公共弦的距离,再利用弦心距,半径和弦的关系可求得答案,(2)解法一:设过两圆的交点的圆为()()222242240,1x y x y x y y λλ+-+++--=≠-,求出圆心坐标代入241x y +=中可求出λ,从而可求出圆的方程,解法二:将公共弦方程代入圆方程中求出两圆的交点坐标,设所求圆的圆心坐标为(),a b ,然后列方程组可求出,a b ,再求出圆的半径,从而可求出圆的方程.【详解】(1)将两圆的方程作差即可得出两圆的公共弦所在的直线方程,即()()222242240x y x y x y y +-+-+--=,化简得10x y --=,所以圆1C 的圆心()0,1到直线10x y --=的距离为d =则22215232AB r d ⎛⎫=-=-= ⎪⎝⎭,解得AB =,所以公共弦长为(2)解法一:设过两圆的交点的圆为()()222242240,1x y x y x y y λλ+-+++--=≠-,则2242240,1111x y x y λλλλλλ-+-+-=≠-+++;由圆心21,11λλλ-⎛⎫- ⎪++⎝⎭在直线241x y +=上,则()414111λλλ--=++,解得13λ=,所求圆的方程为22310x y x y +-+-=,即22317222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭.解法二:由(1)得1y x =-,代入圆222:420C x y x y +-+=,化简可得22410x x --=,解得22x =;当22x =时,2y =;当22x =时,2y =-;设所求圆的圆心坐标为(),a b ,则2222222222241a b a b a b ⎧⎛⎫⎛⎫⎛⎫⎛⎫⎪-+=-++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎝⎭⎝⎭⎝⎭⎝⎭⎪+=⎩,解得3212a b ⎧=⎪⎪⎨⎪=-⎪⎩;所以222317222r ⎛⎛=+--= ⎝⎭⎝⎭;所以过两圆的交点且圆心在直线241x y +=上的圆的方程为22317222x y ⎛⎫⎛⎫-++=⎪ ⎪⎝⎭⎝⎭变式1.(2023·河南·统考二模)若圆221:1C x y +=与圆222:()()1C x a y b -+-=的公共弦AB 的长为1,则直线AB 的方程为()A .210ax by +-=B .230ax by +-=C .2210ax by +-=D .2230ax by +-=【答案】D【分析】将两圆方程相减得到直线AB 的方程为22220a b ax by +--=,然后再根据公共弦AB 的长为1即可求解.【详解】将两圆方程相减可得直线AB 的方程为22220a b ax by +--=,即22220ax by a b +--=,因为圆1C 的圆心为(0,0),半径为1,且公共弦AB 的长为1,则1(0,0)C 到直线22220ax by a b +--=的距离为2,223a b +=,所以直线AB 的方程为2230ax by +-=,故选:D.变式2.(2021秋·广东深圳·高二深圳中学校考期中)已知圆C 的圆心为()2,2-,且与直线0x y ++相切.(1)求圆C 的方程;(2)求圆C 与圆224x y +=的公共弦的长.【答案】(1)22(2)(2)20x y -++=(2)【分析】(1)由题意求得圆的半径,即可求得答案;(2)将两圆方程相减,求出两圆的公共弦方程,根据弦长、弦心距以及圆的半径之间的关系即可求得答案.【详解】(1)由题意得圆C 的半径为r =故圆C 的方程为22(2)(2)20x y -++=;(2)圆224x y +=和22(2)(2)20x y -++=的圆心距为而22<<+,即两圆相交,将224x y +=和22(2)(2)20x y -++=相减得20x y -+=,圆224x y +=的圆心到20x y -+=的距离为d ==故两圆的公共弦长为=变式3.(2021秋·高二课时练习)若圆O :x 2+y 2=5与圆O 1:(x -m )2+y 2=20(m ∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则直线AB 的方程为________;线段AB 的长为________.【答案】x =±14【分析】连接OO 1,记AB 与OO 1的交点为C ,利用勾股定理和等面积法,求出AC ,进而求出AB ,根据1OO ,求出m ,进而联立求出直线AB 的方程.【详解】连接OO 1,记AB 与OO 1的交点为C ,如图所示,在Rt △OO 1A 中,|OA ||O 1A |=∴|OO 1|=5,∴|AC |2,∴|AB |=4.由|OO 1|=5,得5m =±,所以,联立可得2222(5)520x y x y +-±-=-,解得直线AB 的方程为x =±1.故答案为:①1x =±;②4.变式4.(2023·安徽滁州·安徽省定远中学校考模拟预测)已知圆221:1O x y +=与圆()2222201:O x y x y F F +-++=<2O 的半径r =()A .1BC 1D【答案】D【分析】两圆方程相减可得公共弦所在直线方程,后由垂径定理结合圆2O 圆心与半径表达式可得答案.【详解】221x y+=与()2222201:O x y x y F F +-++=<两式相减得2210:l x y F ---=,即公共弦所在直线方程.圆2O 方程可化为()()22211:O x y -++2F =-,可得圆心()21,1O -,2O 半径r =则圆心2O 到l 的距离为d ==半弦长为2,则有2222r F +==-⎝⎭,解得3F =-或1F =(舍),此时r =.故选:D .变式5.(2021秋·高二课时练习)圆2221:22210C x y ax ay a ++++-=与圆2222:22220C x y bx by b ++++-=的公共弦长的最大值是()A .12B .1C .32D .2【答案】D【分析】将两圆转化成标准方程,根据标准方程得出两圆圆心均在直线y x =上,再利用几何关系即可求出结果.【详解】由222x y 2ax 2ay 2a 10++++-=,得()()22x a y a 1+++=,圆心1(,)C a a --,半径11r =;由2222:22220C x y bx by b ++++-=,得()()22x b y b 2+++=,圆心2(,)C b b --,半径2r =所以两圆圆心均在直线y x =上,半径分别为1,如图,当两圆相交且相交弦经过小圆圆心,也即大圆圆心在小圆上时,两圆公共弦长最大,最大值为小圆的直径,即最大值为2.故选:D.考点三:两圆的公切线问题(一)圆的公切线条数例7.(2022秋·贵州遵义·高二习水县第五中学校联考期末)圆221:(2)(4)25C x y +++=与圆222:(1)9C x y ++=的公切线的条数为()A .1B .2C .3D .4【答案】B【分析】先判断圆与圆的位置关系,从而可确定两圆的公切线条数.【详解】圆221:(2)(4)25C x y +++=的圆心坐标为(2,4)--,半径为5;圆222:(1)9C x y ++=的圆心坐标为(1,0)-,半径为3,所以两圆的圆心距为d因为5353-<+,所以两圆相交,所以两圆的公切线有2条.故选:B.变式1.【多选】(2023秋·高一单元测试)已知圆221:9C x y +=与圆222:(3)(4)16C x y -+-=,下列说法正确的是()A .1C 与2C 的公切线恰有4条B .1C 与2C 相交弦的方程为3490x y +-=C .1C 与2C 相交弦的弦长为125D .若,P Q 分别是圆12,C C 上的动点,则max ||12PQ =【答案】BD【分析】由根据两圆之间的位置关系确定公切线个数;如果两圆相交,进行两圆方程的做差可以得到相交弦的直线方程;通过垂径定理可以求弦长;两圆上的点的最长距离为圆心距和两半径之和,逐项分析判断即可.【详解】由已知得圆1C 的圆心()10,0C ,半径13r =,圆2C 的圆心()23,4C ,半径24r =,1221125,C C r r d r r ==-<<+,故两圆相交,所以1C 与2C 的公切线恰有2条,故A 错误;做差可得1C 与2C 相交弦的方程为3490,x y +-=1C 到相交弦的距离为95,故相交弦的弦长为245=,故C 错误;若,P Q 分别是圆12,C C 上的动点,则max 1212||12PQ C C r r =++=,故D 正确.故选:BD变式2.(2023·黑龙江大庆·统考三模)已知直线l 是圆:C ()()22211x y -+-=的切线,并且点()3,4B 到直线l的距离是2,这样的直线l 有()A .1条B .2条C .3条D .4条【答案】D【分析】由已知可推得,直线l 是圆C 与圆B 的公切线.根据两圆的圆心、半径,推得两圆的位置关系,即可得出答案.【详解】由已知可得,圆心()2,1C ,半径11r =.由点()3,4B 到直线l 的距离是2,所以直线l 是以()3,4B 为圆心,22r =为半径的圆的切线,又直线l 是圆:C ()()22211x y -+-=的切线,所以,直线l 是圆C 与圆B 的公切线.因为123BC r r ==>=+,所以,两圆外离,所以两圆的公切线有4条,即满足条件的直线l 有4条.故选:D.变式3.(2023·河北衡水·衡水市第二中学校考三模)若圆221:1Cx y +=和2221:2502C x y ay a a ⎛⎫+---=> ⎪⎝⎭有且仅有一条公切线,则=a______;此公切线的方程为______【答案】120y ++=【分析】根据两圆内切由圆心距与半径关系列出方程求a ,联立圆的方程求出切点,根据圆的切线性质得出斜率即可求解.【详解】如图,由题意得1C 与2C 相内切,又22221:()()452C x y a a a a ⎛⎫+-=+> ⎪⎝⎭,所以121C C ==,所以21a +=1a =,所以)2C,12C C k==联立(()2222119x y x y ⎧+=⎪⎨+-=⎪⎩,解得1,2x y ⎧=⎪⎪⎨⎪=-⎪⎩所以切点的坐标为122⎛⎫-- ⎪ ⎪⎝⎭,故所求公切线的方程为12y +=2x +⎭20y ++=.故答案为:120y ++=变式4.(2022秋·高二课时练习)已知两圆2211C x y +=:,()()()2222120C x y r r -+-=>:,当圆1C 与圆2C 有且仅有两条公切线时,则r 的取值范围________.22r <<【分析】根据两圆相交即可利用圆心距与半径的关系求解.【详解】若圆C 1与圆C 2有且仅有两条公切线时,则两圆相交,圆心C 1()0,0,半径R =2,圆C 2()1,2,半径r ,则12C C ==若两圆相交,则满足12<<r R C C R r -+,即22r r -<+,22r <+,22r <+变式5.(2023秋·陕西西安·高二长安一中校考期末)已知两圆2226940x y ax a +++-=和222290x y by b ++--=恰有三条公切线,若R a ∈,R b ∈,且0ab ≠,则2211a b +的最小值为()A .1625B .3225C .169D .329【答案】A【分析】确定两圆圆心和半径,根据公切线得到两圆外切,得到22925a b +=,变换得到()22222219111125b a b a b a ⎛⎫+= ⎪⎭++⎝,展开利用均值不等式计算得到答案.【详解】2226940x y ax a +++-=,即()2234x a y +=+,圆心()13,0O a -,12R =;222290x y by b ++--=,即()229x y b +-=,圆心()20,O b ,半径23R =;两圆恰有三条公切线,即两圆外切,故12125O O R R =+=,即22925a b +=,()222222222211111111610102525252599a b a b a b b a a b ⎛⎫⎛⎫⎛⎫+=+=++≥+= ⎪ ⎪ ⎪ ⎪⎝⎝⎭⎝⎭+⎭.当且仅当22229b a a b=,即22512a =,2254b =时等号成立.故选:A(二)圆的公切线方程例8.(2023·湖北黄冈·浠水县第一中学校考模拟预测)写出与圆()()224316x y -++=和圆221x y +=都相切的一条直线的方程___________.【答案】1y =(答案不唯一,247250x y ++=或4350x y --=均可以)【分析】先判断两圆位置关系,再分情况依次求解可得.【详解】圆221x y +=的圆心为()0,0O ,半径为1;圆()()224316x y -++=的圆心为()4,3C -,半径为4,圆心距为5OC =,所以两圆外切,如图,有三条切线123l l l ,,,易得切线1l 的方程为1y =;因为3l OC ⊥,且34OC k =-,所以343l k =,设34:3l y x b =+,即4330x y b -+=,则()0,0O 到3l 的距离315b =,解得53b =(舍去)或53-,所以343:50x y l --=;可知1l 和2l 关于3:4OC y x =-对称,联立341y x y ⎧=-⎪⎨⎪=⎩,解得4,13⎛⎫- ⎪⎝⎭在2l 上,在1l 上取点()0,1,设其关于OC 的对称点为()00,x y ,则0000132421314y x y x +⎧=-⨯⎪⎪⎨-⎛⎫⎪⨯-=- ⎪⎪⎝⎭⎩,解得002425725x y ⎧=-⎪⎪⎨⎪=-⎪⎩,则27124252447253l k --==--+,所以直线2244:173l y x ⎛⎫-=-+ ⎪⎝⎭,即247250x y ++=,综上,切线方程为1y =或247250x y ++=或4350x y --=.故答案为:1y =(答案不唯一,247250x y ++=或4350x y --=均可以)变式1.(2023·江西南昌·校联考模拟预测)已知圆()22:11C x y -+=与圆(22:1E x y +=,写出圆C和圆E 的一条公切线的方程______.【答案】10x +=20y +-=20y +=.【分析】设切线方程为y kx b =+,根据圆心到直线的距离均为1求解方程.【详解】设圆的公切线为y kx b =+,11==|||k b b ⇒+=,k =2k b-代入求解得:2k b ⎧=⎪⎨=⎪⎩或b k ⎧=⎪⎪⎨⎪=⎪⎩所以切线为:2,y =+或2y =+或10x +=故答案为:10x -+=20y +-=20y +=.变式2.(2023·湖南岳阳·统考三模)写出与圆221:1O x y +=和222:(3)1O x y -+=都相切的一条直线方程____________.【答案】3)52y x =±-或1y =±中任何一个答案均可【分析】先判断两圆的位置关系,可知公切线斜率存在,方程可设为y kx b =+,根据圆心到直线的距离等于半径列出方程组,解之即可得出答案.【详解】圆221x y +=的圆心为()10,0C ,半径为11r =,圆222:(3)1O x y -+=的圆心为()23,0C ,半径为21r =,则12123C C r r =>+,所以两圆外离,由两圆的圆心都在x 轴上,则公切线的斜率一定存在,设公切线方程为y kx b =+,即0kx y b -+=,则有11==,解得k b ⎧=⎪⎪⎨⎪=⎪⎩k b ⎧=⎪⎪⎨⎪=⎪⎩或01k b =⎧⎨=⎩或01k b =⎧⎨=-⎩所以公切线方程为3)2y x =-或1y =±.故答案为:1y =.(答案不唯一,写其它三条均可)变式3.【多选】(2022秋·高二单元测试)已知圆()()221:211C x y -+-=,圆()()222:211C x y +++=,则下列是圆1C 与圆2C 的公切线的直线方程为()A .0y =B .430x y -=C.20x y -=D.20x y +=【答案】ABC【分析】在同一坐标系内画出两圆图象,由两圆相离可知共有4条切线,再利用对称性设出直线方程,由点到直线距离公式即可求得切线方程.【详解】根据题意可知,两圆心()()122,1,2,1C C --关于原点对称,在同一坐标系内画出两圆图象,如下图所示:显然,圆心距1211C C =+,即两圆外离,共有4条切线;又两圆心到x 轴的距离都等于其半径,所以x 轴是其中一条公切线,即A 正确;利用对称性可知,其中一条切线1l 过原点,设其方程为y kx =,又()12,1C 到切线1l 的距离为11=,解得0k =或43k =;当0k =时,切线即为x 轴,当43k =时,切线方程为43y x =,即430x y -=,B 正确;由对称性可知,切线23,l l 与直线12C C 平行,易知12111222C C k +==+,所以直线12C C 的方程为12y x =,可设23,l l 的方程分别为12y x c =+,()1,02y x c c =->1=,解得2c =,即切线23,l l的方程分别为122y x =+,122y x =-;整理可得两切线方程为20x y -=和20x y -=,故C 正确,D 错误;故选:ABC(二)圆的公切线长例9.【多选】(2023春·山东青岛·高二统考开学考试)已知圆221:1C x y +=,圆222:2210C x x y y -+-+=,则()A .圆1C 与圆2C 相切B .圆1C 与圆2CC .圆1C 与圆2C 公共弦所在直线的方程为1x y +=D .圆1C 与圆2C 公共部分的面积为π12-【答案】BCD【分析】求出两圆圆心坐标与半径,求出圆心距,即可判断A ,B ,两圆方程作差即可得到公共弦方程,从而判断C ,求出两圆圆心到公共弦的距离,从而取出公共部分的面积,从而判断D.【详解】解:因为圆221:1C x y +=,圆222:2210C x y x y +--+=,所以圆1C 的圆心为1(0,0)C ,半径11r =,圆2C 的圆心为2(1,1)C ,半径21r =,所以121212r r C C r r -<=+,故圆1C 与圆2C 相交,即A 错误;因为两圆半径相等,则两圆公切线的长度为12C C =B 正确将两圆方程作差得10x y +-=,所以两圆公共弦所在直线l 的方程为10x y +-=,故C 正确;因为1C 的圆心为1(0,0)C ,半径11r =,所以1(0,0)C 到直线10x y +-=的距离为1d所以公共弦长为又圆心2(1,1)C 到直线10x y +-=的距离为2d ==所以圆1C 与圆2C 公共部分的面积为11π2π14222⎛⎫-=- ⎪ ⎪⎝⎭,故D 正确.故选:BCD变式1.【多选】(2022秋·广东惠州·高二惠州市惠阳高级中学实验学校校考期中)圆221:2660C x y x y ++-+=与圆222:2210C x y x y +--+=相交于A ,B 两点,则()A .AB 的直线方程为4450x y -+=B .公共弦AB 的长为8C .圆1C 与圆2C D .线段AB 的中垂线方程为20x y +-=【答案】ACD【分析】对于A ,两圆方程相减可求出直线AB 的方程,对于B ,利用弦心距、弦和半径的关系可求公共弦AB 的长,对于C ,求出12C C ,对于D ,线段AB 的中垂线就是直线12C C ,求出直线12C C 的方程即可.【详解】由222660x y x y ++-+=,得22(1)(3)4x y ++-=,则1(1,3)C -,半径12r =,由222210x y x y +--+=,得22(1)(1)1x y -+-=,则2(1,1)C ,半径21r =,对于A ,公共弦AB 所在的直线方程为2222266(221)0x y x y x y x y ++-+-+--+=,即4450x y -+=,所以A 正确,对于B ,2(1,1)C 到直线AB 的距离d =,所以公共弦AB 的长为4AB ==,所以B 错误,对于C ,因为12C C ==,12r =,21r =,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆与圆的公切线求法
求两个圆的公切线,可以根据两圆的位置关系分为三种情况:外离、相交、内切或内含。

以下是各种情况下的公切线求法:
外离的两圆:
有四条公切线,每两条公切线都互相垂直。

先找到两圆心连线的中点,再找到其中一个圆上的切点,则该切点与中点的连线与两圆心连线垂直。

通过解方程组(包括圆的方程和切线的斜率条件)可以求出具体的公切线方程。

相交的两圆:
有两条公切线,它们分别是两个圆在交点处的公共切线。

可以通过联立两个圆的方程求出交点,然后利用切线的定义求出公切线的方程。

内切或内含的两圆(一个圆在另一个圆内部,且仅有一个交点或无交点):
只有一条公切线,若两圆内切,则在切点处有一条公切线;若两圆内含,则没有公切线。

对于内切的情况,公切线可以通过解圆的方程和切线的斜率条件来求出。

需要注意的是,以上方法都需要利用到圆的方程、切线的定义(切线与半径垂直)以及解方程组的技巧。

然而,更一般和实用的方法是使用几何性质和构造:
对于外离的两圆,可以通过找到一个圆上的切点,然后作该切点与另一个圆心的连线,再通过该连线作垂线得到公切线。

对于相交的两圆,直接利用交点和切线的定义即可找到公切线。

对于内切或内含的两圆,根据定义判断是否存在公切线,并利用切点和圆心连线来找到它(如果存在)。

在实际操作中,通常使用绘图工具(如圆规、直尺)或者几何软件来辅助构造和验证公切线的正确性。

在数学题目中,可能需要通过证明来展示公切线的存在性和性质。

相关文档
最新文档