医学统计学总结
医学统计学知识点总结

医学统计学1. 对定量资料进行统计描述时,如何选择适宜的指标定量资料统计描述常用的统计指标及其适用场合描述内容指标意义适用场合平均水平;均数个体的平均值·对称分布几何均数平均倍数取对数后对称分布中位数[位次居中的观察值①非对称分布;②半定量资料;③末端开口资料;④分布不明众数频数最多的观察值不拘分布形式,概略分析?调和均数基于倒数变换的平均值正偏峰分布资料变异度全距观察值取值范围不拘分布形式,概略分析标准差(方差)观察值平均离开均数的程度对称分布,特别是正态分布资料四分位数间距?居中半数观察值的全距①非对称分布;②半定量资料;③末端开口资料;④分布不明变异系数标准差与均数的相对比①不同量纲的变量间比较;②量纲相同但数量级相差悬殊的变量间比较定性资料:阳性事件的概率,概率分布,强度和相对比。
¥2. 应用相对数时应注意哪些问题答:(1)防止概念混淆相对数的计算是两部分观察结果的比值,根据这两部分观察结果的特点,就可以判断所计算的相对数属于前述何种指标。
(2)计算相对数时分母不宜过小样本量较小时以直接报告绝对数为宜。
(3)观察单位数不等的几个相对数,不能直接相加求其平均水平。
(4)相对数间的比较须注意可比性,有时需分组讨论或计算标准化率。
3. 常用统计图有哪些分别适用于什么分析目的常用统计图的适用资料及实施方法<图形适用资料实施方法条图组间数量对比用直条高度表示数量大小直方图用直条的面积表示各组段的频数或频率(定量资料的分布百分条图构成比用直条分段的长度表示全体中各部分的构成比饼图构成比用圆饼的扇形面积表示全体中各部分的构成比定量资料数值变动线条位于横、纵坐标均为算术尺度的坐标系、线图半对数线图定量资料发展速度线条位于算术尺度为横坐标和对数尺度为纵坐标的坐标系散点图}双变量间的关联点的密集程度和形成的趋势,表示两现象间的相关关系箱式图定量资料取值范围用箱体、线条标志四分位数间距及中位数、全距的位置茎叶图定量资料的分布'用茎表示组段的设置情形,叶片为个体值,叶长为频数第3章概率分布(连续随机变量的正态分布;离散随机变量的二项分布及Poisson分布)1. 服从二项分布及Poisson分布的条件分别是什么二项分布成立的条件:①每次试验只能是互斥的两个结果之一;②每次试验的条件不变;③各次试验独立。
医学统计学总结

医学统计学总结医学统计学总结1、随机现象:在同一条件下进行试验,一次试验结果不能确定,而在一定数量的重复试验之后呈现统计规律的现象。
2、同质:统计学中对研究指标影响较大的,可以控制的主要因素。
3、变异:同质基础上各观察单位某变量值的差异。
数值变量:变量值是定量的,由此而构成的资料称为数值变量资料或计量资料,其数值是连续性的,称之为连续型变量。
变量无序分类变量:所分类别或属性之间无顺序和程度上的差异分类变量:定性变量有序分类变量:有顺序和程度上的差异4总体和无限总体。
5、样本:是按随机化原则从同质总体中随机抽取的部分观察单位某变量值的集合。
样本代表性的前提:同质总体,足够的观察单位数,随机抽样。
统计学中,描述样本特征的指标称为统计量,描述总体特征的指标称为参数。
6、概率:描述随机事件发生的可能性大小的一个度量。
若P(A)=1,则称A为必然事件;若P(A)=0,则称A为不可能事件;随机事件A的概率为0<P<1.小概率事件:若随机事件A的概率P≤α,则称随机事件A为小概率事件,其统计学意义为:小概率事件在一次随机试验中认为是不可能发生的。
统计描述1、频数分布有两个重要的特征:集中趋势和离散程度。
频数分布有对称分布和偏态分布之分。
后者是指频数分布不对称,集中趋势偏向一侧,如偏向数值小的一侧为正偏态分布,如偏向数值大的一侧为负偏态分布。
2、常用的集中趋势的描述指标有:均数,几何均数,中位数等。
均数:适用于正态或近似正态的分布的数值变量资料。
样本均数用_表示,总体均数用μ几何均数:适用于等比级数资料和对数呈正态分布的资料。
注意观察值中不能有零,一组观察值中不能同时有正值和负值。
中位数:适用于偏态分布资料以及频数分布的一端或两端无确切数据的资料。
3、常用的离散程度的描述指标有:全距,四分位数间距,方差,标准差,变异系数。
全距:任何资料,一组中最大值与最小值的差。
四分位数间距:适用于偏态分布以及分布的一端或两端无确切数据资料。
医学统计学知识点汇总(精华)

医学统计学知识点汇总(精华)一.概论1,医学统计学:运用概率论和数理统计学的原理和方法,研究医学领域中随机现象有关数据的搜集、整理、分析和推断,进而阐明其客观规律性的一门应用科学。
2,医学统计学的主要内容:1)统计研究设计调查研究设计和实验研究设计2)医学统计学的基本原理和方法研究设计和数据处理中的基本统计理论和方法。
A:资料的搜集与整理 B:常用统计描述,集中趋势和离散趋势,相对数,相关系数,回归系数,统计表,统计图 C:统计推断,如参数估计和假设检验。
3)医学多元统计方法多元线性回归和逐步回归分析、判别分析、聚类分析、主成分分析、因子分析、logistic回归与Cox回归分析。
3,统计工作步骤:1)设计明确研究目的和研究假说,确定观察对象与观察单位,样本含量和抽样方法,拟定研究方案,预期分析指标,误差控制措施,进度与费用。
2)搜集材料A,搜集材料的原则及时、准确、完整B,统计资料的来源医学领域的统计资料的来源主要有三个方面。
一是统计报表,二是经常性工作记录,三是专题调查或专题实验。
C,资料贮存3)整理资料 a检查核对b设计分组c拟定整理表d归表4)分析资料统计分析包括统计描述和统计推断4,同质(homogeneity):指被研究指标的影响因素相同。
变异(variation):同质基础上的各观察单位间的差异。
变量(variable):收集资料过程中,根据研究目的确定同质观察单位,再对每个观察单位的某项特征进行测量或观察,这种特征称为变量变量值:变量的观察结果或测量值。
变量类型变量值表现实例资料类型数值变量离散型定量测量值,有计量单位产前检查次数计量资料连续型身高分类变量无序二分类对立的两类属性性别(男女)计数资料多分类不相容的多类属性血型(A,B,O,AB)有序多分类类间有程度差异的属性受教育程度(小学,中学,高中,大学…)等级资料5,总体(population)根据研究目的所确定的同质研究对象中所有观察单位某变量值的集合。
医学统计学重点总结

(1) 单个样本均数 H0:μ=μ0t= ν=n-1 (小样本)
(已知样本——均数) H1:μ≠μ0
α=u= 或u= (大样本)(2)配对:H0:μ=μ0
H1:μ≠μ0t= ν=对子数-1
α=
(3) 两独立样本均数H0:μ=μ0t= ν=n1+n2-2
(4)(已知样本——样本) H1:μ≠μ0
9.对任何参数μ和σ的正态分布,都可以通过一个简单的变量变换成标准正态分布,即μ=X-μ
σ
9
标准正态分布
正态分布
面积或概率
-1~1
μ σ
%
~
μ σ
%
·
μ σ
%
10.医学参考值范围(reference value range)传统上称作正常值范围,指正常人的解剖、生理、生化、免疫及组织代谢产物的含量等各种数据的波动范围。习惯上是包含95%的参照总体的范围。
实际工作中标准差 σ往往未知,因而通常用样本标准差S代替σ,求得样本均数 准误估计值S ,计算公式为 S = (当n→无穷,S→σ,S →0)
3 95%的可信区间的计算:x (μ,σ ) 1) σ已知,可信区间= σ
2)σ未知,n为小样本: t 3)σ未知,n为大样本:
T变换
μ变换
N (0,1)
3、t分布曲线的形态变化与自由度v=n-1有关。
2.四格表专用公式(
3对于四格表资料,通常规定为:(1)当n≥40且所有的T ≥ 5时,用检验的基本公式或四格表的专用公式;(2)当n ≥ 40 但有1≤T<5时,用四格表资料的校正公式;(3)当n<40,或T<1时,用四格表资料的Fisher确切 概率法。
4 行×列表资料的χ 检验: 自由度:ν=(行数-1)(列数-1)
医科大学医学统计学重点知识总结

第一章绪论1、统计学的定义:统计学研究数据的收集、整理、分析的一门学科。
医学统计学:医学统计学是以医学理论为指导,应用概率论与数理统计的有关原理、方法,研究医学资料的搜集、整理、分析和推断的一门科学。
2、医学统计研究三个步骤:研究设计、资料分析、结论3、(必考的)几个概念:(1)同质:性质相同异质:性质不同观察单位间的同质性是进行研究的前提同质是相对的(不同研究中或同一研究中不同观察指标对观察对象的同质性的要求不同)(2)个体变异:同质个体间的差异。
变异的两个方面:不同观察单位(个体)间的差别;同一个体在不同阶段的差别(重复测量)个体变异是普遍存在的;个体变异是有规律的。
注意:由于个体变异的存在,同质个体指标的取值会存在差异!(例:体温波动)(3)总体:按研究目的所确定的同质研究对象的全体。
有限总体:有时间、空间的概念,观察单位有限无限总体:无时间、空间的概念(例:某种治疗措施的效果,就包括接受这种治疗措施的所有病人过去、现在、未来,因而观察单位无限)(4)个体:组成总体的基本单位。
样本:从研究总体中随机抽取具有代表性的部分观察单位随机性的三个体现:抽样随机、分组随机、试验顺序随机(5)随机变量:观察对象个体的特征或测量的结果观察结果在一定范围内以一定的概率分布随机取值的变量,表示随机现象。
在一定条件下,并不总是出现相同结果变量值:个体观察指标具体取值(6)总体参数:总体的统计指标或特征值固有的、不变的,但往往是未知的(7)样本统计量:由样本所算出的统计指标或特征值已知的,且随着试验的不同而不同,但分布是有规律的(8)样本含量:样本中包含个体的数量(9)频率f=m/n,f的值随n的增大接近常数p,概率P(A)=p即:频率为一变量,是样本统计量;概率为常数,是一总体参数小概率事件:概率小于等于0.05小概率原理:小概率事件在一次试验中是不会发生的(10)抽样误差:两个表现:样本统计量与总体参数间的差别;不同样本统计量间的差别两个原因:个体变异;抽样过程抽样误差不可避免,但是有规律。
新版医学统计学知识点归纳总结

新版医学统计学知识点归纳总结医学统计学是医学研究中不可或缺的一部分,它涉及到数据的收集、分析和解释,帮助医学工作者从大量数据中提取有价值的信息。
以下是新版医学统计学的知识点归纳总结:1. 研究设计:研究设计是统计分析的前提,包括观察性研究和实验性研究。
观察性研究如队列研究、病例对照研究,而实验性研究如随机对照试验(RCT)。
2. 数据类型:医学统计学中的数据可分为定性数据和定量数据。
定性数据如性别、血型,定量数据如血压、体重。
3. 描述性统计:描述性统计用于描述数据集的特征,包括集中趋势(均值、中位数、众数)和离散程度(方差、标准差、极差)。
4. 概率分布:在统计学中,概率分布描述了随机变量取值的概率。
常见的分布有正态分布、二项分布和泊松分布。
5. 假设检验:假设检验是统计推断的核心,用于判断样本数据是否支持某个假设。
常见的检验方法有t检验、卡方检验和F检验。
6. 置信区间:置信区间提供了一个范围,用以估计总体参数的可能值。
95%的置信区间意味着有95%的把握认为总体参数落在这个区间内。
7. 回归分析:回归分析用于研究一个或多个自变量对因变量的影响。
简单线性回归和多元线性回归是常见的回归分析方法。
8. 生存分析:生存分析关注个体生存时间的分布和相关因素,常用于肿瘤学和流行病学研究。
Kaplan-Meier估计和Cox比例风险模型是生存分析中的重要工具。
9. 诊断试验评价:诊断试验评价涉及敏感性、特异性、阳性预测值和阴性预测值等指标,用于评估诊断方法的准确性。
10. 样本量计算:样本量计算是研究设计的重要环节,它决定了研究的可行性和结果的可靠性。
样本量计算需要考虑效应大小、显著性水平和检验力。
11. 多变量分析:多变量分析用于同时考虑多个变量对结果的影响,如多元回归分析和判别分析。
12. 统计软件的应用:统计软件如SPSS、SAS和R在医学统计分析中扮演着重要角色,它们提供了数据处理和统计分析的功能。
(完整版)医学统计学重点总结

1.简述总体和样本的定义,并且举例说明。
总体是研究目的确定的所有同质观察单位的全体。
样品是从研究总体中抽取部分有代表性的观察单位。
2.简述参数和统计量的定义,并且举例说明。
描述总体特征的指标称为参数,描述样本特征的指标称为统计量。
3.变量的类型有哪几种?举例说明各种类型变量有什么特点。
①定量数据:计量资料;定量的观测值是定量的,其特点是能够用数值的大小衡量其水平的高低。
②定性数据:计数资料;变量的观测值是定性的,表现为互不相容的类别或属性。
③有序数据:半定量数据/等级资料;变量的观测值是定性的,但各类别(属性)有程度或顺序上的差异。
4.请举例说明一种类型的变量如何变换为另一种类型的变量。
定量数据>有序数据>定性数据--------------->5.请简述什么是小概率事件?概率是描述事件发生可能性大小的度量,P 0.05事件称为小概率事件。
≤6.举例说明什么是配对设计。
配对设计是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。
①同源配对:同一受试对象或同一标本的两个部分,随机分配接受两种不同处理;②异源配对:为消除混杂因素的影响,将两个同质受试对象配对分别接受两种处理。
7.非参数假设检验适合什么类型数据进行分析?①总体分布类型未知或非正态分布数据;②定量或半定量数据;③数据两端无确定的数值。
8.简述P 25 P 50 P 75的统计学意义。
(条件:明显偏态且不能转化为正态或近似对称;一端或两端无确定数值;分布情况未知)用来描述资料的观测值序列在某百分位置的水平,四分位数间距可以作为说明个体差异的指标(说明个体在不同位置的变异情况)。
9.直条图、直方图、圆饼图的使用条件是什么?直条图:各自独立的统计指标的数值大小和他们之间的对比;直方图:连续变量频数分布情况;圆饼图:全体中各部分所占的比例。
10.统计分析包括哪两个方面的内容?为什么要进行统计推断?统计描述和统计分析;统计描述用来描述及总结一组数据的重要特征,其目的是使实验或观察得到的数据表达清楚并便于分析。
医学统计学护理知识点总结

医学统计学护理知识点总结一、基本统计学概念1.总体和样本总体是指某一特定性质的全部个体的集合,而样本则是从总体中选取的一部分个体。
在临床实践中,医护人员常常需要根据样本数据来对总体进行推断。
2.参数和统计量参数是总体的特征值,统计量是样本的特征值。
统计量通常用来估计参数,比如样本平均值用来估计总体均值。
3.变量和常量变量是指在研究对象中取值不同的特征,可以分为定量变量和定性变量。
定量变量是以数字表示的,比如身高、体重;定性变量是以类别表示的,比如性别、婚姻状况。
常量是指在研究对象中取值不变的特征。
4.测量水平测量水平分为名义尺度、顺序尺度、区间尺度和比率尺度。
名义尺度是指仅代表对象分类的变量,如性别;顺序尺度是指变量的数值表示有序的关系,但不能准确比较差异,如疼痛程度的分级;区间尺度是指能够比较大小和进行加减运算,但没有绝对零点的变量,如体温;比率尺度是指能进行所有数学运算并有绝对零点的变量,如年龄、收入。
5.描述统计和推断统计描述统计是根据样本数据对总体进行描述和概括,它使用一些常见的指标,如平均值、标准差、百分比等。
推断统计是根据样本数据对总体的特征进行推断,如参数估计和假设检验。
二、概率论基础1.随机事件和概率随机事件是指在一定条件下可以出现也可以不出现的事件,它的出现是偶然的。
概率是描述随机事件发生可能性大小的一个数,通常用P(A)表示事件A发生的概率,概率的取值范围是0≤P(A)≤1。
2.独立事件和相关事件独立事件是指两个事件的发生互不影响,事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率,P(A∩B)=P(A)×P(B)。
相关事件是指两个事件的发生互相影响,事件A和事件B同时发生的概率不等于事件A发生的概率乘以事件B发生的概率。
3.概率分布概率分布是随机变量取值和相应概率的对应关系,包括离散型随机变量的概率分布和连续型随机变量的概率分布。
常见的离散型随机变量有二项分布、泊松分布等;常见的连续型随机变量有正态分布、t分布、F分布等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
医学统计学总结第一篇:医学统计学总结医学统计学总结一、两组或多组计量资料的比较1.两组资料:1)大样本资料或服从正态分布的小样本资料(1)若方差齐性,则作成组t检验(2)若方差不齐,则作t’检验或用成组的Wilcoxon秩和检验 2)小样本偏态分布资料,则用成组的Wilcoxon秩和检验2.多组资料:1)若大样本资料或服从正态分布,并且方差齐性,则作完全随机的方差分析。
如果方差分析的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:LSD检验,Bonferroni检验等)进行两两比较。
2)如果小样本的偏态分布资料或方差不齐,则作Kruskal Wallis的统计检验。
如果Kruskal Wallis的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:用成组的Wilcoxon秩和检验,但用Bonferroni方法校正P值等)进行两两比较。
二、分类资料的统计分析1.单样本资料与总体比较1)二分类资料:(1)小样本时:用二项分布进行确切概率法检验;(2)大样本时:用U检验。
2)多分类资料:用Pearson c2检验(又称拟合优度检验)。
2.四格表资料1)n>40并且所以理论数大于5,则用Pearson c2 2)n>40并且所以理论数大于1并且至少存在一个理论数<5,则用校正c2或用Fisher’s 确切概率法检验 3)n£40或存在理论数<1,则用Fisher’s 检验3.2×C表资料的统计分析 1)列变量为效应指标,并且为有序多分类变量,行变量为分组变量,则行评分的CMH c2或成组的Wilcoxon 秩和检验2)列变量为效应指标并且为二分类,列变量为有序多分类变量,则用趋势c2检验 3)行变量和列变量均为无序分类变量(1)n>40并且理论数小于5的格子数<行列表中格子总数的25%,则用Pearson c2(2)n£40或理论数小于5的格子数>行列表中格子总数的25%,则用Fisher’s 确切概率法检验4.R×C表资料的统计分析 1)列变量为效应指标,并且为有序多分类变量,行变量为分组变量,则CMH c2或Kruskal Wallis的秩和检验2)列变量为效应指标,并且为无序多分类变量,行变量为有序多分类变量,作none zero correlation analysis的CMH c23)列变量和行变量均为有序多分类变量,可以作Spearman相关分析4)列变量和行变量均为无序多分类变量,(1)n>40并且理论数小于5的格子数<行列表中格子总数的25%,则用Pearson c2(2)n£40或理论数小于5的格子数>行列表中格子总数的25%,则用Fisher’s 确切概率法检验三、Poisson分布资料1.单样本资料与总体比较:1)观察值较小时:用确切概率法进行检验。
2)观察值较大时:用正态近似的U检验。
2.两个样本比较:用正态近似的U检验。
配对设计或随机区组设计四、两组或多组计量资料的比较1.两组资料:1)大样本资料或配对差值服从正态分布的小样本资料,作配对t检验2)小样本并且差值呈偏态分布资料,则用Wilcoxon的符号配对秩检验2.多组资料:1)若大样本资料或残差服从正态分布,并且方差齐性,则作随机区组的方差分析。
如果方差分析的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:LSD检验,Bonferroni检验等)进行两两比较。
2)如果小样本时,差值呈偏态分布资料或方差不齐,则作Fredman的统计检验。
如果Fredman的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:用Wilcoxon的符号配对秩检验,但用Bonferroni方法校正P值等)进行两两比较。
五、分类资料的统计分析1.四格表资料1)b+c>40,则用McNemar配对c2检验或配对边际c2检验2)b+c<40,则用二项分布确切概率法检验2.C×C表资料:1)配对比较:用McNemar配对c2检验或配对边际c2检验 2)一致性问题(Agreement):用Kap检验变量之间的关联性分析六、两个变量之间的关联性分析1.两个变量均为连续型变量1)小样本并且两个变量服从双正态分布,则用Pearson相关系数做统计分析 2)大样本或两个变量不服第二篇:医学统计学总结1、同一资料的标准差是否一定小于均数?答:均数是描述定量资料集中趋势的指标,而标准差是描述定量资料离散程度的指标,二者反映的是资料分布特征的两个不同方面。
2、极差、四分位间距、标准差、变异系数的适用范围有何异同?答:这四个指标的相同点在于均用于描述计量资料的离散程度。
不同点为:极差可用于各种分布的资料,一般常用于描述单峰对称分布小样本资料的变异程度,或用于初步了解资料的变异程度。
若样本含量相差较大,则不宜用极差来比较资料的离散程度。
四分位间距:适用于描述偏态分布资料、两端无确切值或分布不明确资料的离散程度。
标准差常用于描述对称分布,特别是正态分布或近似分布资料的离散程度。
变异系数适用于比较计量单位不同或均数相差悬殊的几组资料的离散程度。
3、x2检验用于什么?答:x检验用于:推断两个及两个以上总体率或构成比是否有差别,两个分类变量间有无相关关系,多个率的趋势检验,以及两个率的等效检验等。
此外,也用于频数分布的拟合优度检验。
4、四格表的U检验和x2检验有何联系?答:(1)相同点:四格表的u检验的根据是正态近似原理(n足够大,∏和1-∏均不太小)。
能用四格表的u检验进行两个率比较检验的资料,都可以用x检验。
四格表的双侧u检验与x检验是完全等价的,两个统计量的关系为u= x,u20.05/2= u20.05/1.u检验和卡方检验都存在连续性矫正问题(2)不同点:①正态分布可以确定单、双侧检验界值,满足正态近似条件时,可以使用四格表的单侧u检验。
②满足四格表u检验的资料,计算两率之间的95%可信区间,尚可分析两率之差有无实际意义。
③x2检验还可以用于配对设计四格表,但这时推断∏1,∏2是否有差别的x2公式不同。
5.参数检验和非参数检验的区别何在?各有何优缺点? 答:区别:参数检验,其应用条件是已知总体的分布类型,对总体参数进行估计或检验。
非参数检验,不依赖总体分布的具体形式,目的在于检验总体分布是否不同。
(2)参数检验优点是符合应用条件时,检验效能较高。
缺点是对资料要求严格,不能用于等级数据、一端或两端有不确切数据,此外,还要求资料的分布类型已知和总体方差齐等条件。
非参数检验优点是应用范围广,计算简便,对资料的要求不高;缺点是若对符合参数检验条件的资料用非参数检验,则会降低检验效能。
如需检验出同样大小的差异,非参数检验往往需要更大的样本含量。
6.对同一资料,又出自同一研究目的,用参数检验和非参数检验所得不一致时,宜以何者为准?答:两者各有使用条件,究竟取哪种结论,要根据资料是否满足该种检验方法的应用条件进行选择。
在符合参数检验的条件时,可接受参数检验的结论,而资料不符合参数检验的条件时,应以非参数检验的结论为佳。
如总体分布为极度偏态或其他非正态分布,或者两总体方差不齐时,此时宜采用秩和检验的结果。
7.非参数检验适用于哪些情况?答:①等级资料②偏态资料。
当观察资料成偏态或极度偏态而又未经任何变量变换,或虽经变量变换但仍未达到正态或近似正态分布时③总体分布类型未知的资料④要比较的各组资料方差不齐⑤一端或两端有不确定数据。
8.两样本比较的秩和检验,当n1>n2>10时采用u检验,这时检验是属于参数检验还是非参数检验?为什么?答:两组比较的秩和检验,当n很大时,可利用秩和T的分布随n增大渐进正态分布的性质,进行u检验,此时利用的并非原始数据,而是经秩变换后的数据,故仍属非参数检验。
9.直线回归分析中应注意哪些问题?答:做回归分析一定要有专业意义,不能将毫无联系的两个变量作直线回归分析;回归分析之前首先应绘制散点图,考查x与y之间有无直线趋势以及是否存在异常点;考虑是否满足建立线性回归模型的基本假定;直线回归方程的应用与图示一般以自变量x的取值范围为限;两变量的直线关系不一定是因果关系,也可能是伴随关系。
10.简述直线回归与直线相关的区别与联系。
答:区别:①资料要求不同:直线回归中因变量y是来自正态总体的随机变量,而r既可以是来自正态总体中的随机变量,也可以是严密控制、精确测量的变量;相关分析则要求x,y是来自双变量正态分布总体的随机变量,②分析目的不同:直线回归用于说明两变量间依存变化的数量关系;直线相关用于说明变量间的直线相关关系。
联系:①方向一致:对一组数据计算,r与b,它们的正负号是一致的。
②假设检验等价:对同一样本r和b的假设检验得到的t值相等。
③用回归解释相关:由r2=SS回/SS总可知,若回归平方和越接近总平方和,则r越接近于1。
11.简述直线相关、秩相关的区别与联系。
答:区别:①资料要求不同:直线相关要求x、y是来自双变量正态总体的随机变量;秩相关适用于不服从双变量正态分布或总体分布类型未知以及用等级表示的原始数据。
②相关意义不同:直线相关表示两变量的直线相关关系存在,秩相关表示两变量的相关关系。
联系:相关系数的取值范围相同;秩相关是将原始数据进行秩变换,以秩次计算直线相关系数。
12.均数的可信区间和参考值范围有何不同?22222答:均数的可信区间:按一定的概率100(1-α)%(即可信度)估计总体均数所在的范围,得到的范围亦称可信区间。
参考值范围:医学参考值范围指包括绝大多数正常人的人体形态、功能和代谢产物等各种生理及生化指标常数,也称正常值。
由于存在着个体差异,生物医学数据并非常数,而是一定范围内波动,故采用医学参考值范围作为判定正常和异常的参考标准。
13秩和检验的优缺点是什么? 答:①不受总体分布限制,适用面广②适用于等级资料及两端无确定值的资料③易于理解,易于计算。
缺点:是对分布类型的广泛适应性,使其很难充分利用资料提供的信息,有时会导致检验效能降低。
14在t检验和u检验时,何种情况下采用单侧检验?答:单侧检验的备择假设带有方向性,如:m>m0,实际中只可能出现一种情况。
双侧检验的备择假设中包含不等号(如:m≠m0),实际上包括两种情况:m>m0或m<m0,无方向性。
15.均数、几何均数和中位数的适用范围是什么?答:均数适用于描述单峰对称分布,特别是正态分布或近似正态分布资料的集中趋势。
(由于均数易受到极端值的影响,故不适用于描述偏态分布资料的集中趋势,只是需采用几何均数或中位数。
)几何均数对于原始观察值呈偏态分布,但经过对数变换后呈正态分布或近似正态分布的资料,易用几何均数描述其集中趋势。