初一年级奥数知识点:从算式到方程

合集下载

人教版七年级上册第9讲 从算式到方程

人教版七年级上册第9讲  从算式到方程

第三章 一元一次方程 第9讲 从算式到方程知识导航1.方程及方程的解的概念.2.一元一次方程的概念.3.等式的性质.【板块一】一元一次方程的概念方法技巧1.判断一个方程是否为一元一次要抓住四点:①只含有一个未知数;②未知数的次数是1;③方程的等号两边的式子均为整式;④化简后未知数的系数不为0.2.运用一元一次方程的概念可以求字母的值. 题型一 判断一元一次方程【例1】下列方程是一元一次方程的是( )A.x -2=2xB.2x=5x -1 C.249xxD. x +2y =0【练1】下列方程①x =4;②x -y =0;③2(y 2-y )=2y 2+4;④120x中,是一元一次方程的有( ) A. 1个B. 2个C. 3个D. 4个题型二 运用一元一次方程的概念求值 【例2】方程2(4)40a a xx 是关于x 的一元一次方程,求a 的取值.【练2】若2(3)82m m x是关于x 的一元一次方程,则m 的值是( )A. 3B.-3C.±3D.不能确定针对练习11.方程:①0.3x =1;②y =5x -1;③x 2-4x =3;④-x =6;⑤x +2y =0.其中一元一次方程有( )A.4个B.3个C.2个D.1个 2.若(m -2)236m x是关于x 的一元一次方程,则m 等于( )A.1B.2C.1或2D.任何数3.已知方程1(2)1a a x 是关于x 的一元一次方程,则x 的值为 .【板块二】一元一次方程的解方法技巧1.将一元一次方程的解代人原方程中,可以求出字母的值2.根据一元一次方程的解的关系,求字母的值3.根据一元一次方程无解或有无数个解的情况,求字母的值题型一已知一元一次方程的解求字母的值【例3】关于x的一元一次方程(a+1)x+a2-1=0的解为x=0,求a的值.【练3】方程2x+1=3与2x-33a=0的解相同,求a的值.题型二根据方程的解的关系求字母的值【例4】m为何值时,关于x的方程4x-2m=3x-1的解是x=2x-3m的解的2倍.【练4】当m为何值时,关于x的方程5m+2x=12+x的解比关于x的方程x(m+1)=m(1+x)的解大2.题型三根据方程无解或有无数个解求字母的值【例5】关于x的方程2a(x+5)=3x+1无解,求a的值.【练5】若关于x的方程(2m+3)x=n-2有无数个解,求m,n需要满足的条件.题型四 根据方程的整数解求字母的值【例6】方程mx +2x -12=0是关于x 的一元一次方程,若此方程的解为正整数,则满足条件的正整数的个数为( )A.2个B.3个C.4个D.5个【练6】若关于x 的方程ax +5=x +1的解为正整数,则整数a = .针对练习21.下列说法 ①若ab <0,则0a b a b+=;②若23mx y +(m +2)x 2y -1是关于x ,y 的四次三项式,则m =±2;③若23(2)2mm x m --+=是关于x 的一元一次方程,则这个方程的解是x =1;④若关于x 的方程ax +1=x -b 有无穷多个解,则a =1,b =-1.其中正确的有( )A.4个B.3个C.2个D.1个2.下列结论:①若a +b +c =0,且abc ≠0,则方程a +bx +c =0的解是x =1; ②若a (x -1)=b (x -1)有唯一的解,则a ≠b ;③若b =2a ,则关于x 的方程ax +b =0(a ≠0)的解为x =12-;④若a +b +c =1,且a ≠0,则x =1一定是方程ax +b +c =1的解;其中正确个数有( )A.4个B.3个C.2个D.1个3. 关于x 的方程(x -3)m =3-2m 的解是整数,则满足条件的所有的整数m 的值为 .4.关于x 的方程(a -1)x 2+x +a 2-4=0是一元一次方程,求方程的解.5.若关于x 的方程2m mx --m +3=0是一元一次方程,求这个方程的解.6.已知方程21k x -+k =0是关于x 的一元一次方程,求方程的解.7.若关手x 的方程23x -3k =5(x -k )+1的解是绝对值最小的数,求k 的值.【板块三】等式的性质方法技巧1.判断等式是否成立,要注意判断等式两边除以的数或式子是否为0.2.两边平衡的天平表示一个等式. 题型一 判断等式是否成立【例7】下列结论错误的是( )A.若a =b ,则2222a bm m =++ B.若11a bm m =--,则a =b C.若x =3,则x 2=3xD.若ax +2=bx +2,则a =b【练7】已知a =b ,c 是有理数,下列各式中不正确的是( )A .ac 2=bc 2B .c -a =c -bC .a -c =b -cD .a b c c=题型二 用天平表示等式【例8】中央电视台二套“开心辞典”是一档广受大家喜爱的节目,某期节目中有这样一个问题:如图,两个天平都平衡,根据图形可知,3个球体的重量等于 5 个正方体的重量.【练8】如图标有相同字母的物体的质量相同,若A 的质量为20g ,当天平处于平衡状态时,B 的质量为 .针对练习31.下列等式成立的是( )A.(-1)2=2B.-|-2|=2C.-5a +8a =-3aD. -2xy +3yx =xy2.下列判断不正确的是( )A.若a =b ,则-4a =-4bB.若2a =3a ,则a =0C.若a =b ,则ac 2=bc 2D.若ac 2=bc 2,则a =b3.如图所示,天平左边放着3个乒乓球,右边放着5.4g 的砝码和一个乒乓球,天平恰好平衡,如果设一个乒乓球的质量为xg .(1)请你列出一个含有未知数x 的方程; (2)说明所列的方程是哪一类方程? (3)利用等式的性质求出x 的值.【板块四】一元一次方程的综合应用方法技巧1.运用一元一次方程可以解决图表问题中的规律问题.2.运用列一元一次方程的方法可以解决数轴上的动点问题.题型一一元一次方程与图表问题【例9】把正整数1,2,3,4,…,2019排列成如图所示的一个表.用一正方形在表中随意框住4个数,把其中最小的数记为x.(1)另三个数用含x的式子表示出来,从小到大依次是,, ;(2)当被框住的4个数之和等于416时,x的值是多少?(3)被框住的4个数之和能否等于2018?如果能,请求出此时x的值;如果不能,请说明理由.【练9】关于x的一次二项式ax+b的值随x的变化而变化,分析下表中的数据,若ax+b=15,则x=.题型二一元一次方程与动点问题【例10】已知数轴上A,B两个点对应的数分别是a,b,且满足|a+3|+(b-9)2=0.(1)求a,b的值;(2)点M是数轴上A,B之间的一个点,若MA=2MB,求点M所对应的数;(3)点P,点Q为数轴上的两个动点,点P从A点以3个单位长度每秒的速度向右运动,点Q同时从B点以2个单位长度每秒的速度向左运动.设运动时间为t秒,若AP+BQ=2PQ,求时间t的值.【练10】如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,C是AB的中点,且a、b满足|a+3|+(b+3a)2=0(1)求点C表示的数;(2)点P从点A出发以3个单位每秒的速度向右运动,点Q同时从点B出发以2个单位每秒的速度向右运动,若AP-BQ=2PQ,求时间t;针对练习41.用边长为1厘米的小正方形在桌面上摆放如图所示的塔状图,第n 次所摆放图形的周长为68厘米,则n = .第1次 第2次 第3次 第4次2.把正奇数1,3,5,…,2017排成如图所示的7列,规定从上到下依次为第1行、第2行、第3行、…,从左到右依次为第1至7列.(1)①图表中共有 个数,数2017在第 行,第 列; ②图表中第n 行第7列的数可用n 表示为 ;(2)按如图所示的方法用一个“L ”形框框住相邻的三个数,设被框的三个数中,最小的一个数为x ,是否存在这样的x 使得被框的三个数的和等于405?若存在,求出x 的值;若不存在,请说明理由. (3)(直接填空)若在(2)中“L ”形框框住的三个数的和记为“S ”,则S 的最大值与最小值的差等于 .3.如图,数轴上A ,B 两点所对应的数分别是a 和b ,且()2570a b ++-=.(1)则a = ,b = ;AB 两点之间的距离为 ;(2)有一动点P 从点A 出发第一次向左运动1个单位长度;然后在新的位置第二次运动,向右运动2个单位长度;在此位置第三次运动,向左运动3个单位长度,……按照如此规律不断地运动,当运动到2018次时,求点P 所对应的有理数;(3)在(2)的条件下,点P 在某次运动时恰好到达某一个位置,使点P 到点B 的距离是点P 到点A 的距离的3倍,请直接写出此时点P 的位置,并指出是第几次运动.。

初一数学上册从算式到方程预习笔记整理

初一数学上册从算式到方程预习笔记整理

初一数学上册从算式到方程预习笔记整理一. 教学内容:从算式到方程1. 方程、方程的解、一元一次方程的定义。

2. 等式的性质。

3. 分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

二. 知识要点:1. 与方程有关的定义(1)含有未知数的等式叫做方程。

(2)使方程中等号左右两边相等的未知数的值叫做方程的解。

(3)只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。

一元一次方程有两个特点:①未知数所在的式子是整式,即分母中不含未知数;②只含有一个未知数,未知数的次数是1。

2. 等式的性质(1)等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等. 如果a=b,那么a±c=__________。

(2)等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等. 如果a=b,那么=__________;如果a=b(c ≠0),那么=__________。

关于等式的几点说明:①弄清等式与代数式的区别与联系:等式与代数式不同,等式是含“=”的式子,代数式不含有等号,它是用运算符号连接数或表示数的字母而成的式子. 等式可用来表示两个代数式之间有相等关系,但代数式不是等式。

②一个等式中,如果等号对于一个,叫做连等式,如③等式的另外两个性质:等式的左右两边互换,所得结果仍是等式,如a=b,则b=a(这一性质也叫等式的对称性);等式具有传递性,如:若a=b,b=c,则a=c(这一性质也叫等量代换)。

3. 学会列方程列方程的一般步骤:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的等量关系;(2)“设”就是设未知数;(3)“列”就是列方程,这是最关键的一步. 一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程。

列方程需要注意的事项:(1)列方程时,寻找题目中的等量关系是关键,可利用列表、线段图等方法分析已知量与未知量的关系,从而寻找出等量关系式。

【初中数学七年级上册】【第三章】【第一节-从算式到方程】【知识点3-方程的解】

【初中数学七年级上册】【第三章】【第一节-从算式到方程】【知识点3-方程的解】
初中数学 七年级上

第3章

一 元一次方程
1 节: 从算式到方程
主讲人:
知识点 3
方程 的 解
时代变迁,生活busy,科技创新,教学easy。了解更多,尽在为之易:
使方程左右两边的值相等的未知数的值,叫做 方程的解 只含有一个未知数的方程的解,也叫做 根
时代变迁,生活busy,科技创新,教学easy。了解更多,尽在为之易:
练习5 解:
x=1,x=2,x=3中哪个是方程2x-2=x+1的解?
1、把x=1代入方程左边,结果等于多少?把x=1 代入方程右边,结果等于多少?它们相等吗? 2、把x=2代入方程左边,结果等于多少?把x=2 代入方程右边,结果等于多少?它们相等吗? 3、把x=3代入方程左边,结果等于多少?把x=3 代入方程右边,结果等于多少?它们相等吗?
时代变迁,生活busy,科技创新,教学easy。了解更多,尽在为之易:
检验一个数值是不是方程的解的步骤:
1.将数值代入方程左边进行计算, 2.将数值代入方程右边进行计算,
3.比较左右两边的值,若左边=右边,则是方程的解, 反之,则不是。
时代变迁,生活busy,科技创新,教学easy。了解更多,尽在为之易:
把x=3分别代入方程的两边,得 左边=2x-3=2×3-3=3 右边=5x-15=5×3-15=0
∴左边≠右边 因此,x=3不叫做原方程的解。
时代变迁,生活busy,科技创新,教学easy。了解更多,尽在为之易:
总结
使方程左右两边的值相等的未知数的值是方程的解。 使方程左右两边的值不相等的未知数的值不是方程 的解。
例 1
求方程 2x-3=5x-15 的解
把x=4分别代入方程的两边,得 左边=2x-3=2×4-3=5 右边=5x-15=5×4-15=5

七年级上学期数学 3.1 从算式到方程

七年级上学期数学 3.1 从算式到方程

七年级上学期数学中,第三章第一节“从算式到方程”主要介绍的是如何将实际问题抽象成数学算式,并进一步转化为方程的过程。

这一部分内容对于建立和理解方程的概念非常重要,是学习代数的基础。

核心内容包括:
1.算式与方程的概念:
●算式:表示数的运算过程,如(3+5)、(2\times4)等。

●方程:含有未知数的等式,目的是找到未知数的值,使等式成立,如
(x+5=10)。

2.方程的构成:
●方程通常包含未知数(如x、y)、常数、运算符(加、减、乘、除)以及等
号“=”。

3.建立方程:
●通过分析实际问题,确定未知数,根据问题中的条件关系,用代数表达式表示
这些关系,从而建立方程。

●例如,如果一个数加上3等于7,可以写成方程\(x+3=7\)。

4.解方程:
●学习基本的解方程方法,如加减法、乘除法,逐步求解未知数。

●对于简单的一元一次方程,目标是通过等式的性质,将未知数单独留在方程的
一边,求出其值。

5.应用题:
●结合生活实际,通过设定未知数,将文字问题转换为方程问题,解决诸如购物
找零、行程问题、工作量分配等问题。

学习重点:
●理解并区分算式与方程的含义。

●掌握将实际问题抽象成方程的能力。

●学会基本的方程解法,特别是解一元一次方程。

通过这部分的学习,学生能够初步掌握利用方程解决实际问题的方法,为后续更复杂的代数学习打下坚实的基础。

七年级数学从算式到方程知识精讲

七年级数学从算式到方程知识精讲

七年级数学从算式到方程【本讲主要内容】从算式到方程(什么是方程、什么是一元一次方程、等式的性质)一、理解并掌握一元一次方程的定义;区别列方程与列算式解应用题的优劣;一次方程建模思想。

二、掌握一元一次方程的解的概念;会检验一个数是否是一个方程的解;会用列举法或估算法求一元一次方程的解。

三、掌握等式的两条性质,并会用它解决一些简单的问题。

四、了解方程的概念;巩固等式性质,会用等式性质解一元一次方程。

【知识掌握】【知识点精析】方程的定义及理解:◆方程:含有未知数的等式叫做方程。

如:2x -5=1, x+y=6等。

◆判断一个式子是不是方程,只需看两点:一是等式,二是含有未知数的等式。

二者缺一不可。

例:下列各式不是方程的是( ) A. 3y²+y -4=0 B. x=y+1 C. x²+2xy+y² D.21(x -1)+x=4 分析:含有未知数的等式就是方程 答案:C例:下列方程中一元一次方程的个数是( ) ①x=-1 ②2x -y=1 ③2(x -y)=1 ④x1=-1 A. 1个 B. 2个 C. 3个 D. 4个分析:扣住只含一个未知数,未知数指数是1。

②③中含有两个未知数。

④中x 的指数是1,但它不是整式。

答案:A 说明:不能认为x1+1=0或11 y -2=0是一元一次方程。

方程的解的定义、如何验证方程的解:◆方程的解:使方程左、右两边都相等的未知数的值,叫做方程的解。

例:方程12(x -3)-1=2x+3的解是( ) A. x=3 B. x= 354C. x=-4D. x=4 分析:把A 、B 、C 、D 四个x 的值代入方程中计算,使左右两边相等的x 的值即为方程的值。

答案:D 。

方法技巧:也可以把原方程的解求出来再选项。

◆根据方程的解的定义可知,只要将给出的数分别代入方程的左边和右边,看左、右两边的值是否相等。

如果左边=右边,则这个数就是方程的解,否则,左边≠右边,这个数就不是方程的解。

新初一数学第九集 从算式到方程

新初一数学第九集  从算式到方程

第九集 从算式到方程【知识储备】1、等式与方程的认识2、等式的性质【本集要点】知识点一:等式与方程的概念1.等式的概念:等式是用等号表示相等关系的式子。

如 :953,,10751213=+=+=+=+x a V x y y x ,都叫等式。

2.方程的概念:含有未知数的等式叫方程。

如845=-x ,其中x 是未知数;又如523=-y x 其中x, y 是未知数。

知识点二:一元一次方程的概念1.一元一次方程的概念:只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程例如 15)5(21,1212=+=-x x 等都是一元一次方程.其中“元”是指未知数,“一元”是指只含有一个未知数,“一次”是指未知数的次数都是1.2.解方程:就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解3.方程的解:能使方程左右两边相等的未知数的值,叫做方程的解。

4.会根据已知条件列出方程。

5.会检验一个数是不是一个方程的解:将这个数分别代入方程的左边和右边,看是否使左边等于右边。

知识点三:等式的性质1.等式性质1: 等式两边加上(或减去)同一个数(或式子),结果仍相等。

用字母表示为:如果a=b ,那么a ±c=b ±c2.等式性质2: 等式两边乘以同一个数,或除以同一个不为0的数,结果仍相等。

用字母表示为:如果a=b ,那么ac=bc ;如果a=b ,那么cb c a (c ≠0)。

注意:①等式两边除以一个数时,这个数必须不为0;②对等式变形必须同时进行,且是同一个数或式。

【终极目标】1.初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;2.理解一元一次方程.方程的解等概念以及等式的两条性质;3.会用等式的性质解简单的(用等式的一条性质)一元一次方程;4.培养观察.分析.概括及逻辑思维能力以及获取信息,分析问题,处理问题的能力.+ —×3 ÷3【精讲精练】例1.判断下列各式是不是方程,并说明理由:(1) 3+5=4+4 (2) 2a+3b (3) x+2y=5(4) 3+(-2)=8-|7| (5)21x+6=3x-5例2.下列方程中是一元一次方程的是( )A. 0342=+-x xB.743=-y xC.023=+xD.12=x 例3.根据下列条件列出方程(1)某数比它的4倍小8。

从算式到方程知识点总结

从算式到方程知识点总结

从算式到方程知识点总结
一、任务和目标
本单元旨在让学生了解和掌握从算式到方程的过渡,理解方程的概念和意义,掌握一元一次方程的解法,并能应用于实际问题。

二、核心内容
1.算式与方程的区别:算式是利用运算符号连接起来的数学表达式,不含未知数;方程是含有未知数的等式。

2.一元一次方程的概念:只含有一个未知数,并且未知数的最高次数为1的方程为一元一次方程。

3.解一元一次方程的步骤和方法:
(1) 去分母:将方程中的分数系数化为整数系数。

(2) 去括号:将方程中的括号去掉。

(3) 移项:将方程中的未知数项移到等号的另一侧,常数项移到等号的另一侧。

(4) 合并同类项:将方程中的同类项合并。

(5) 化系数为1:将未知数的系数化为1.
重难点精析
1.理解方程的概念:重点理解方程的本质,即“=”两侧的意义是相等的,以及如何用代数语言描述实际问题中的等量关系。

2.解一元一次方程的步骤:难点在于理解每个步骤的目的和原理,尤其是去分母和移项,需要细心操作,注意操作顺序和符号。

3.应用题中的方程求解:难点在于如何找到应用题中的等量关系,并转化为方程形式,然后通过解方程得到答案。

3.1.1从算式到方程课件ppt新人教版七年级上(精品课件在线)

3.1.1从算式到方程课件ppt新人教版七年级上(精品课件在线)

4
女儿的问题:
我班共有40个小朋友,其中男 孩子比女孩子多8人,你能说 说我班男孩和女孩各有几人么? 请列出方程。
如果设男孩为x人,则女孩为(x-8) 人,由题意可得:
x+(x-8)=40 如果设女孩为x人,则男孩 为(x+8)人,由题意可得:
x课+件(分x享+8)=405源自你今年几岁了?课件分享
并且未知数的指数是1(次),这样的方程
叫做一元一次方程。课件分享
9
下列式子是一元一次方程吗?
3 x-8
×
4y +5=12 ✓
x +y = 1 ×
x=0

x 2 -1=2x ×
1+2=3
×
x+3>5 ×
课件分享
10
挑一战星级自:我★:根据题意列方程
1、小颖种了一株树苗,开始时树苗高为40厘米,
栽种后每周树苗长高约15厘米,大约几周后树苗
存了几元钱?请列出方程。 是……
如果设去年爸爸存了x元钱,由
题意可得:
x+2.25%x = 800
课件分享
8
填一填: 这些方程有什么共同点?
方程
未知数个数 未知数指数
x-5=7
1
1
2y+4=9
1
1
x+0.25%x=800
1
1
x+(x+8)=40
1
1
3y =y -7
1
1
在一个方程中,只含有一个未知数x(元),
1、y的2倍加上5等于21,可列出方程__2_y_+__5_=_2_1__ 2、y的3倍等于y与7的差,可列出方程__3_y_=__y_-7_____
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一年级奥数知识点:从算式到方程
知识点1 通过实例体会方程是研究数量关系的重要数学模型.
方程的学习是初中数学中极其重要的基础知识,它的应用十分广泛,也是今后学习相关学科,如物理、化学等知识的重要工具,因此,使学生学会利用方程的模型去解决实际问题的方法十分重要.
例1中的两个问题的提出,目的是让学生亲身体验两种解法,算术方法和列方程(代数法)方法解决问题,其思维方向是不同的,感受两种解题中,列方程更便于思考,尤其是问题2体现的更加明显,使学生认识到引进未知数列方程解决实际问题的必要性,这是数学的一个进步.
知识点2 方程的意义.
判断下列各式哪些是等式,哪些是方程,并说出为什么?使学生能正确的认识什么是等式,什么是方程,培养学生的观察能力和言必有据的良好学习习惯.
知识点3 一元一次方程的意义.
借助例2引出一元一次方程的意义,在具体题目中,注意培养学生的说理能力.
例3(补充题)巩固一元一次方程的概念,求某些未知数的值.
分清什么是等式,什么是方程,建立起等式不一定是方程,但方程一定是等式的正确认识.
练习
1.写出一个以x=-1为根的一元一次方程_______.
2.(教材变式题)数0,-1,-2,1,2中是一元一次方程7x-10= +3的解的数是_____.
3.下列方程的解正确的是( )
A.x-3=1的解是x=-2
B. x-2x=6的解是x=-4
C.3x-4= (x-3)的解是x=3
D.- x=2的解是x=-2
4.(探究过程题)先列方程,再估算出方程解.
HB型铅笔每支0.3元,2B型铅笔每支0.5元,用4元钱买了两种铅笔共10支,还多0.2元,问两种铅笔各买了多少支?
5.若方程ax+6=1的解是x=-1,则a=_____.。

相关文档
最新文档