随机信号统计特性分析

合集下载

医学信号处理二_随机信号统计特征分析

医学信号处理二_随机信号统计特征分析

西安交通大学实验报告课程 医学信号处理 第 页 共 页系 别 生命学院 实 验 日 期 2017 年 3 月 31日 专业班级 医电42 实 验 报 告 日 期 2017 年 4 月 7 日 姓 名 黄横波 学号 2141201033 报 告 退 发 ( 订正 、 重做 ) 同 组 人_________________________________ 教 师 审 批 签 字实验名称 随机信号统计特征分析一、实验目的1. 理解随机信号的各种统计特征。

2. 学习用MATLAB 语言编写统计特征程序。

3. 观察不同通道脑电信号的统计特征。

二、实验内容1. 分别产生1000个点的白噪声信号x 和y ,分别计算x 和y 均值、均方值以及方差,并计算信号x 、y 自相关函数,并作图显示信号以及它们的自相关函数、互相关函数。

(产生白噪声信号的函数:randn ,相关函数:xcorr )2. 使用1中的信号x 加上余弦信号x ’构成的随机信号z ,作图显示x ’和z 信号图形,分别计算z 、x ’的自相关函数,以及x ’与z 互相关函数,并作图显示自相关函数和互相关函数。

(其中,'()cos(1501)x t t ππ=⋅⋅+⋅,信号采样的时间间隔0:1:999t =,相关函数:xcorr )3. 给出三个通道脑电信号FP1导联、FP2导联以及Pz 导联,分别计算脑电信号的均值、均方值、方差以及自相关函数,作图显示脑电信号信号和它们的自相关函数。

另外,计算FP1导联和FP2导联、FP1导联和Pz 导联,FP2导联和Pz 导联的互相关函数,并作图显示。

(FP1导联、FP2导联以及Pz 导联脑电信号数据:eeg1.mat 、eeg2.mat 以及eeg3.mat ,数据长度均为10000,信号采样率1000Hz ,单位:微伏(V µ)。

)4. 分析讨论(1)按照1中的方法分别产生长度不同的信号x 、y ,计算它们的均值、均方值以及方差,并计算信号x 、y 自相关函数,并作图显示自相关函数。

随机信号分析实验报告

随机信号分析实验报告

随机信号分析实验报告引言:随机信号是指信号在时间或空间上的其中一种特性是不确定的,不能准确地预测其未来行为的一类信号。

随机信号是一种具有随机性的信号,其值在一段时间内可能是不确定的,但是可以通过概率论和统计学的方法来描述和分析。

实验目的:通过实验,学习了解随机信号的基本概念和特性,学习了解和掌握常见的随机信号分析方法。

实验原理:随机信号可以分为离散随机信号和连续随机信号。

离散随机信号是信号在离散时间点上,在该时间点上具有一定的随机性;而连续随机信号是信号在连续时间上具有随机性。

常见的随机信号分析方法包括概率密度函数、功率谱密度函数等。

实验器材:计算机、MATLAB软件、随机信号产生器、示波器、电缆、电阻等。

实验步骤:1.配置实验仪器:将随机信号产生器和示波器与计算机连接。

2.生成随机信号:调节随机信号产生器的参数,产生所需的随机信号。

3.采集数据:使用示波器采集随机信号的样本数据,并将数据导入MATLAB软件。

4.绘制直方图:使用MATLAB软件绘制样本数据的直方图,并计算概率密度函数。

5.计算统计特性:计算随机信号的均值、方差等统计特性。

6.绘制功率谱密度函数:使用MATLAB软件绘制随机信号的功率谱密度函数。

实验结果和讨论:我们采集了一段长度为N的随机信号样本数据,并进行了相应的分析。

通过绘制直方图和计算概率密度函数,我们可以看出随机信号的概率分布情况。

通过计算统计特性,我们可以得到随机信号的均值、方差等重要参数。

通过绘制功率谱密度函数,我们可以分析随机信号的频谱特性。

结论:本实验通过对随机信号的分析,加深了对随机信号的理解。

通过绘制直方图、计算概率密度函数、计算统计特性和绘制功率谱密度函数等方法,我们可以对随机信号进行全面的分析和描述,从而更好地理解随机信号的特性和行为。

2.王五,赵六.随机信号分析方法.物理学报,2024,30(2):120-130.。

第一章 离散随机信号统计分析基础

第一章 离散随机信号统计分析基础

❖ 如果我们把对温漂电压的观察看作为一个随机试验,那么,每一次的记录,就是
随机试验的一次实现,相应的结果就是一个样本函数:
xi (t)

所能有经样历本的函整数个的过x集程i (合,t)该集合就i=是1一,个2随,…机过,N程,,N也→即随∞机,信就号构,成记了之温为漂:电压可
X(t)
物随机变理量 意义:x1 (t1 ), x2 (t1 ), , xN (t1 )
lim
M
1 2M
1
M
x(n)x(n
nM
m)
x
(m)
例1.2.3 讨论例1.2.1随机相位正弦序列的各
态遍历性。
解 对 X (n) Asin(2fnTs ),其单一的时间样本
x(n) Asin(2fnTs ) , 为一常数,对 X (n)
作时间平均,显然
mx (n)
lim
M
2
1 M
自相关函数和自协方差函数的关系
❖ 1 X (m) X (m) mX2 XY (m) XY (m) mX mY
❖ 2当 mX 0 时
X (m) X (m) XY (m) XY (m)
工程实际中,当m趋于无穷大时,可以认 为不相关,存在:
lim
m
X
(m)
E[
X
*
(n)
X
自相关函数 X (n1, n2 ) 和 n1,n2 的选取无关,而仅和 n1, n之2 差有关,那么,我 们称X(n)为宽平稳的随机信号,或广义平稳随机信号 。其具有以下的统 计特征. ❖ 1)均值为常值。
2)自相关函数和自协方差函数均只是m的函数。
目的:使问题简化,实际工程中大部分属于这种
严平稳随机信号:指概率特性不随时间的平移而变化(或说与 时间基准点无关)的随机信号。只有当X(n)是高斯随机过程 时,宽平稳才是严平稳。

课程设计一:随机数的产生及统计特性分析-实验报告

课程设计一:随机数的产生及统计特性分析-实验报告

标准实验报告实验名称:随机数的产生及统计特性分析实验报告学生姓名:学号:指导教师:实验室名称:通信系统实验室实验项目名称:随机数的产生及统计特性分析实验学时:6(课外)【实验目的】随机数的产生与测量:产生瑞利分布随机数,测量它们的均值、方差、相关函数,分析其直方图、概率密度函数及分布函数。

通过本实验进一步理解随机信号的一、二阶矩特性及概率特性。

【实验原理】瑞利分布密度函数为:)0(,0,)(2222>⎪⎪⎩⎪⎪⎨⎧<≥=-σσσxxexxfx均值与方差:EX =σπ2,V ar(X)=2)22(σπ-相关函数:⎰+∞∞--=+=)(*)()()()(txtxdttxtxrxττ均值各态历经定义:E[X(t)]以概率1等于A[X(t)],则称X(t)均值各态历经。

物理含义为:只要观测的时间足够长,每个样本函数都将经历信号的所有状态,因此,从任一样本函数中可以计算出其均值。

——“各态历经性”、“遍历”。

于是,实验只需在其任何一个样本函数上进行就可以了,问题得到极大简化。

【实验记录】程序执行结果:rayl_mean =3.7523 err_mean = 0.7523 rayl_var = 3.8303 err_var = 0.8303【实验分析】可以看到,统计均值、统计方差与理论值都很接近。

当序列长度为1000时候,均值误差为5.63%,方差误差为12.19%;当序列长度为10000时,均值误差为0.79%,方差误差为1.04%,可以看到随着序列长度增大,样本的统计均值与统计方差与理论值得误差明显减小,当序列长度足够大的时候,样本的统计均值与统计方差会趋近与理论均值与理论方差,可以用统计均值、统计方差来计算理论均值与方差。

通过比较样本的直方图,与理论的瑞利分布概率密度函数图,发现样本出现的频率分布趋近于理论概率值,可见,当样本足够大的时候,随机变量取值的频率趋近于其概率,可以用频率分布近似概率分布。

随机信号统计特性分析

随机信号统计特性分析

实验一、随机信号统计特性分析学生姓名刘冰学院名称精密仪器与光电子工程专业生物医学工程学号**********一、实验目的随机信号是生物医学信号处理软件调试所必须的信号。

通过本实验,了解一种伪随机信号产生的方法,及伪随机信号的数字特征。

二、实验要求1.用同余法编制产生伪随机信号的程序。

2.检验所产生的伪随机信号是高斯分布的。

3.检验伪随机信号的自相关函数。

三、实验方法1.伪随机信号的产生用下式产生一组在[-0.5,0.5]内均匀分布的伪随机信号:()()()k i C k i M =⨯-1% (1) ()()n i k i M =-/.05(2)其中(1)表示k(i)为(())/C k i M ⨯-1的余数,n(i)为一组在[-0.5,0.5]区间的均值为0的伪随机信号。

令C =+239,M =212,i=0,1,2,…499。

通过任意给定k(0),用上式可以产生一组伪随机信号。

2.用中心极限定理产生一组服从正态分布的伪随机信号 中心极限定理:设被研究的随机变量可以表示为大量独立随机变量的和,其中每个随机变量对总和只起微小作用,则这个随机变量是服从正态分布的。

产生一个长度为500的伪随机信号,其中每一项为L 个伪随机变量和。

检验落在[]σσ+-,内概率68%,[]-+22σσ,内概率95.4%,[]-+33σσ,内概率99.7%。

()σ2211==-∑Nni i N3.用自相关函数检验上述信号对于产生的伪随机信号,其自相关函数是δ函数,k=0时函数值取得最大。

()()()R k Nn i n i k n i N k =*+=-∑1四.实验流程框图 按照实验方法用matlab 实现流程图如下产生伪随机信号(用给出的公式的产生均匀分布)用中心极限定理产生一组服从正态分布的伪随机信号(对100个伪随机数据求和,重复500次)检验得到的正太分布(用3sigma原则并画出直方图)自相关检验上述信号Matlab程序如下:clcclear allclose all%**同余法编制产生伪随机信号,用中心极限定理产生一组服从正态分布的伪随机信号***** C = 2^9 + 3;M = 2^12;a=500; %设置信号数据量L=100; %求和长度for j=1:a %循环500次k(1) = rand() ;%n(1)=k(1)./M-0.5;for i=1:1:Lk(i+1)=mod(C*k(i),M);n(i)=k(i)./M-0.5;ends(j)=sum(n); %对长度为L的伪随机信号求和得到正态分布的伪随机信号endfigureplot(s);title('中心极限法产生的500的伪随机信号');%******************检验所产生的伪随机信号是高斯分布的*************figure,hist(s);title('正态分布直方图');d= sqrt( mean(s.*s) ); % 求标准差D1 = find( -d<s & s<d ); %找出在正负sigma之间的数据P1 = length(D1) / a; %求该范围内的概率D2 = find( -d*2<s& s<d*2 ); P2 = length(D2) / a; D3 = find( -d*3<s & s<d*3 ); P3 = length(D3) / a;%***********用自相关函数检验上述信号******************** for k=0:a-1; ss=0; for j=1:(a-k)ss=ss+s(j).*s(j+k);%依次求和 endRs(k+1)=ss./a; %取平均值 endfigure,plot(Rs);title('随机信号的自相关函数');%*************用自带函数检验并作对比***************************** figureplot(xcorr(s));tilte('自带函数求得的自相关函数');运行结果:050100150200250300350400450500-8-6-4-20246810中心极限法产生的500的伪随机信号1.得到的结果基本符合正态分布图 以下是3sigma 原则得到的结果:P1,P2,P31分别是[]-+σσ,,[]-+22σσ,,[]-+33σσ,,范围内的概率,与标准的[]-+σσ,内概率68%,[]-+22σσ,内概率95.4%,[]-+33σσ,内概率99.7%相对比,也基本符合。

《随机信号分析》课件

《随机信号分析》课件
表示随机信号的波动范围,即信号值偏离均值的程度。
方差
均值
自相关函数描述了随机信号在不同时间点之间的相关性。
自相关函数可以用于分析信号的周期性和趋势性。
谱密度函数描述了随机信号的频率成分。
通过谱密度函数,可以了解信号在不同频率下的强度和分布。
04
CHAPTER
随机信号的频域分析
傅立叶变换是信号处理中的基本工具,用于将时间域的信号转换为频域的表示。通过傅立叶变换,我们可以分析信号的频率成分和频率特性。
02
时间变化特性
由于随机信号的取值是随机的,因此其时间变化特性也是随机的,表现为信号的幅度、频率和相位都是随机的。
在通信领域,随机信号可以用于扩频通信、信道编码等,以提高通信的可靠性和抗干扰能力。
通信
在雷达领域,随机信号可以用于雷达测距、目标跟踪等,以提高雷达的抗干扰能力和探测精度。
雷达
在地球物理学领域,随机信号可以用于地震勘探、矿产资源探测等,以提高探测的精度和可靠性。
线性系统的输出信号的统计特性与输入信号的统计特性和系统的传递函数有关。通过分析线性系统对随机信号的作用,我们可以了解系统对信号的影响和信号经过系统后的变化情况。
05
CHAPTER
随机信号的变换域分析
总结词
拉普拉斯变换是一种将时域信号转换为复平面上的函数的方法,用于分析信号的稳定性和可预测性。
详细描述
详细描述
06
CHAPTER
随机信号处理的应用
信号传输
随机信号分析在通信系统中用于信号传输的调制和解调过程,通过对信号的随机性进行编码和解码,实现可靠的信息传输。
目标检测
01
随机信号分析在雷达系统中用于目标检测和跟踪,通过对接收到的回波信号进行分析和处理,实现高精度和高可靠性的目标定位和识别。

随机信号分析课件第5章

随机信号分析课件第5章

100%
计算方法
通过计算随机信号各个时刻取值 小于或等于某个值的概率,然后 绘制成函数图像。
80%
应用
用于分析随机信号的统计特性, 如均值、方差等。
数字特征
01
02
03
定义
数字特征是一组描述随机 信号统计特性的数值,如 均值、方差、偏度、峰度 等。
计算方法
通过计算随机信号的各个 数字特征,得到一组数值。
随机信号的特点
不确定性
随机信号的值是不确定的,无法准确预测。
统计特性
随机信号具有特定的统计特性,如均值、方差、概 率分布等。
时间变化性
随机信号的值随时间变化,但遵循一定的统计规律 。
随机信号的应用场景
01
02
03
04
通信系统
在通信系统中,随机信号可用 于模拟噪声和干扰,以测试系 统的抗干扰性能。
高通滤波器
允许高频信号通过,抑制低频信号。
滤波器分类与设计
带通滤波器
允许某一频段的信号通过,抑制其他 频段信号。
带阻滤波器
允许某一频段以外的信号通过,抑制 该频段信号。
滤波器分类与设计
模拟滤波器设计
使用电阻、电容、电感等元件实现。
数字滤波器设计
使用数字信号处理算法实现。
滤波器性能评估
01
02
03
频域分析
02
01
03
定义
频域分析是对随机信号在频率域上的表现形式进行的 研究。
主要内容
包括信号的功率谱密度、频率特性等。
目的
通过频域分析,可以了解信号的长期行为和变化规律 。
时频分析方法
1 2 3
短时傅里叶变换

随机信号平稳特性分析

随机信号平稳特性分析
fx =0.0919*6^(1/2)*pi^(1/2)*exp(-x^2/2)
fy =0.0459*6^(1/2)*pi^(1/2)*exp(-y^2/8)
代码:
clc,clear,close all
x=-5.0:0.1:5;
y=-5.0:0.5:5;
%[x y]=meshgrid(-5:0.1:5);
N(0,3)
均值:0.0119
均方根:2.9445
方差8.6702
时域图、概率密度、频谱:
功率谱密度、自相关函数:
N(2,3)
均值:1.9509
均方根:2.9494
方差8.6989
时域图、概率密度、频谱:
功率谱密度、自相关函数:
代码略。
3.统计分布:二维正态分布(X,Y),N(0,1;0,4;0.5)的联合概率密度为 ,求二维正态分布 ,并用波形图来表示。
4.对N(0,1)正态分布随机数取几个不同的样本值,计算它们的数字特征,分析是否满足平稳性和遍历性。
选取了四个不同的样本值X1、X2、X3、X4,每一个பைடு நூலகம்本的长度为1000,均值分别为0.0385、-0.0144、-0.0249、0.0314,都约为0,所以X(n)均值可近似看作常数0。
自相关函数R仅跟m有关且Rx(0)<∞。
%syms y x z
%z = 1/(2*pi*sqrt(3)).*exp(-2*(x.^2-0.5*x*y+0.25*y.^2)/3);
fy=(6621238954613787*6^(1/2)*pi^(1/2)*exp(-y.^2/8))/144115188075855872;
fx=(6621238954613787*6^(1/2)*pi^(1/2)*exp(-x.^2/2))/72057594037927936;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一、随机信号统计特性分析
学生姓名刘冰
学院名称精密仪器与光电子工程
专业生物医学工程
学号3010202286
一、实验目的
随机信号是生物医学信号处理软件调试所必须的信号。

通过本实验,了解一种伪随机信号产生的方法,及伪随机信号的数字特征。

二、实验要求
1.用同余法编制产生伪随机信号的程序。

2.检验所产生的伪随机信号是高斯分布的。

3.检验伪随机信号的自相关函数。

三、实验方法
1.伪随机信号的产生
用下式产生一组在[-0.5,0.5]内均匀分布的伪随机信号:
()()()
k i C k i M =⨯-1% (1) ()()n i k i M =-/.05
(2)
其中(1)表示k(i)为(())/C k i M ⨯-1的余数,n(i)为一组在[-0.5,0.5]区间的均值为0的伪随机信号。

令C =+239,M =212,i=0,1,2,…499。

通过任意给定k(0),用上式可以产生一组伪随机信号。

2.用中心极限定理产生一组服从正态分布的伪随机信号 中心极限定理:设被研究的随机变量可以表示为大量独立随机变量的和,其中每个随机变量对总和只起微小作用,则这个随机变量是服从正态分布的。

产生一个长度为500的伪随机信号,其中每一项为L 个伪随机变量和。

检验落在
[]σσ+-,内概率68%,[]-+22σσ,内概率95.4%,[]-+33σσ,内概率99.7%。

()
σ2
2
1
1=
=-∑N
n
i i N
3.用自相关函数检验上述信号
对于产生的伪随机信号,其自相关函数是δ函数,k=0时函数值取得最大。

()()()
R k N
n i n i k n i N k =
*+=-∑1
四.实验流程框图 按照实验方法用matlab 实现
流程图如下
产生伪随机信号
(用给出的公式的产生均匀分布)
用中心极限定理产生一组服从正态
分布的伪随机信号
(对100个伪随机数据求和,重复500次)
检验得到的正太分布
(用3sigma原则并画出直方图)
自相关检验上述信号
Matlab程序如下:
clc
clear all
close all
%**同余法编制产生伪随机信号,用中心极限定理产生一组服从正态分布的伪随机信号***** C = 2^9 + 3;
M = 2^12;
a=500; %设置信号数据量
L=100; %求和长度
for j=1:a %循环500次
k(1) = rand() ;%
n(1)=k(1)./M-0.5;
for i=1:1:L
k(i+1)=mod(C*k(i),M);
n(i)=k(i)./M-0.5;
end
s(j)=sum(n); %对长度为L的伪随机信号求和得到正态分布的伪随机信号
end
figure
plot(s);title('中心极限法产生的500的伪随机信号');
%******************检验所产生的伪随机信号是高斯分布的*************
figure,hist(s);title('正态分布直方图');
d= sqrt( mean(s.*s) ); % 求标准差
D1 = find( -d<s & s<d ); %找出在正负sigma之间的数据
P1 = length(D1) / a; %求该范围内的概率
D2 = find( -d*2<s& s<d*2 ); P2 = length(D2) / a; D3 = find( -d*3<s & s<d*3 ); P3 = length(D3) / a;
%***********用自相关函数检验上述信号******************** for k=0:a-1; ss=0; for j=1:(a-k)
ss=ss+s(j).*s(j+k);%依次求和 end
Rs(k+1)=ss./a; %取平均值 end
figure,plot(Rs);title('随机信号的自相关函数');
%*************用自带函数检验并作对比***************************** figure
plot(xcorr(s));tilte('自带函数求得的自相关函数');
运行结果:
050100150200250300350400450500
-8
-6-4-202468
10中心极限法产生的500的伪随机信号
1.得到的结果基本符合正态分布图 以下是3sigma 原则得到的结果:
P1,P2,P31分别是[]-+σσ,,[]-+22σσ,,[]-+33σσ,,范围内的概率,与标准的[]
-+σσ,内概率68%,[]-+22σσ,内概率95.4%,[]-+33σσ,内概率99.7%相对比,也基本符合。

正态分布直方

随机信号的自相关函数
2.
()()()
R k N
n i n i k n i N k =
*+=-∑1
公式检验伪随机信号结果如上图,
对于产生的伪随机信号,其自相关函数是δ函数,k=0时函数值取得最大。

3.采用再带公式检验结果:
01002003004005006007008009001000
-1000
1000
2000
3000
4000
5000。

相关文档
最新文档