模糊计算和模糊推理
3模糊逻辑与推理

X为A X为非常A X为非常A X为差不多A
X为差不多A
X非A X非A
y为B
y不定 y非B
广义拒式推理中,前提2给定,与前提1和结论有关的直觉判据
y为B’(前提1)
X为A’(结论)
x非A x为非(非常A) x为非差不多A x未知
判据5 判据6 判据7 判据8-1 判据8-2
y非B y为非(非常) y为非差不多B y为B
yV
(1) 模糊蕴含最小运算(Mamdani)玛达尼 (2)模糊蕴含积运算(Larsen) (3)模糊蕴含算术运算(Lukasiewicz)
(4) 模糊蕴含的最大最小运算(Zadeh)
(5)模糊蕴含的布尔运算
(6)模糊蕴含的标准算法(1)
(7) 模糊蕴含的标准算法(2)
4 近似推理
对于广义肯定式推理
(1) A A B A RP A RP [0.2 0.4 0.5 0.8 1] (2) A A2 B A RP A2 RP [0.2 0.4 0.5 0.8 1] (3) A A0.5 B A RP A0.5 RP [0.2 0.4 0.5 0.8 1] (4) A 非A=A B A RP A RP [0.16 0.24 0.36 0.4 0.4]
AB ( x, y) min[ A ( x), B ( y)] ˆ AB ( x, y) [ A ( x) B ( y)] ˆ
这二种计算并不是基于因果关系,是出于计算的简单性,但保留了 因果关系,与传统的命题逻辑推理不符。 称为工程隐含
用真值表表示:(精确隐含)
只有第四项的推理结果不太符合直觉判据 Rc、Rp一般称为“工程蕴含”,其它的形式如下为传统蕴 含(基于传统的逻辑推理)
模糊推理以及逻辑运算(重点参考第5页后的内容)

Mamdani 和 Larsen 分别提出极小和乘积的隐含运算。 AB ( x, y) ˆ min[ A ( x), B ( y)] AB ( x, y) ˆ [ A ( x) B ( y)]
这二种计算并不是基于因果关系,是出于计算的简单性, 但保留了因果关系,与传统的命题逻辑推理不符。
x y
(1 2 ) c ( z )
3) 多前提多规则
前提(事实) 1 前提 2 (规则1 ) 前提 3 (规则2 ) 结果(结论) x是A, y是B if x 是A1和 y是B1 , then Z是C1 if x 是A2和 y是B2 , then Z是C2 z是C
C1
0
取上界:
B ( y ) 1 min[ 0, A B ( x x, y )] 1
说明二点: 1)对 x x 一个特定的规则(其结果是具有有限支集的特定
模糊集合),激发的结果是一个具有无限支集的模糊集合。 2)对 x x 所有各点,规则将以最大可能的输出隶属函数值1, 来激发规则。 从工程观点看,以上二点,违反了工程中的因果关系,即 有因才有果。无因不能有果。
确逻辑(传统逻辑)的一些概念
命题逻辑、布尔代数、和集合论是同构的。 隐含是重要的概念。 传统的命题逻辑中,命题的“真”和“假”必须具有 意义。逻辑推理是给定一个命题,组合成另一个命题的过 程。 组合的基本操作: 1)合取 Conjunction, 2)析取 Disjunction 3)隐含 Implication
1. 直接 基于模糊规则的推理
• 当模糊推理的输人信息是量化的数值时,可以 直接基于模糊规则作推理,然后把推理结论综 合起来,典型的推理过程可以分为两个阶段, 其中第一阶段又分为三个步骤,表述如下: (1)计算每条模糊规则的结论:①输入量 模糊化,即求出输入量相对于语言变量各定性 值的隶属度;②计算规则前提部分模糊命题的 逻辑组合(合取、析取和取反的组合);③将 规则前提逻辑组合的隶属程度与结论命题的隶 属函数作min运算,求得结论的模糊程度。
模糊逻辑入门

❖ 模糊逻辑取消二值之间非此即彼的对立,用隶属 度表示二值间的过度状态
例如,“室温在27ºC是高温度”,这个命题真值如何呢?
模糊集合与隶属度函数
❖ 古典集合:对于任意一个集合A,论域中的任何 一个元素x,或者属于A,或者不属于A。集合A 也可以由其特征函数定义:
A (A B) A, A (A B) A
A U A, A U A A , A
A A A B A B, A B A B
模糊逻辑
❖ 经典逻辑是二值逻辑,其中一个变元只有“真” 和“假”(1和0)两种取值,其间不存在任何 第三值。
❖ 模糊逻辑也属于一种多值逻辑,在模糊逻辑中, 变元的值可以是[0,1]区间上的任意实数。
❖ 幂等律 ❖ 交换律 ❖ 结合律
❖ 分配律
❖ 吸收律 ❖ 两极律
❖ 复原律 ❖ 摩根律
A A A, A A A A B B A, A B B A (A B) C A (B C) (A B) C A (B C)
A (B C) (A B) (A C) A (B C) (A B) (A C)
1 , x A fA (x) 0 , x A
❖ 模糊集合:论域上的元素可以“部分地属于”集 合A 。一个元素属于集合A的程度称为隶属度, 模糊集合可用隶属度函数定义。
定义 设存在一个普通集合U,U到[0,1]区间的任一映射f都可以确定U的 一个模糊子集,称为U上的模糊集合A。其中映射f叫做模糊集的隶属度函 数,对于U上一个元素u, f(u)叫做u对于模糊集的隶属度,也可写作A(u)
隶属度 隶属度 隶属度
1.0 0.8 0.6 0.4 0.2 0.0
0
模糊推理方法

模糊推理方法模糊推理方法是一种基于模糊逻辑的推理方法,它不同于传统的二值逻辑推理,而是考虑了事物之间的不确定性和模糊性。
在现实生活中,我们经常面对各种模糊的问题,例如天气预报、医学诊断、金融风险评估等等,这些问题都存在一定的模糊性和不确定性。
而模糊推理方法正是为了解决这些模糊问题而被提出的。
模糊推理方法的核心是模糊集合理论,它将模糊性作为一个数学概念进行描述。
在模糊集合理论中,每个元素都可以具有一定的隶属度,表示该元素属于该模糊集合的程度。
通过模糊集合的隶属度,我们可以对事物进行模糊分类和模糊推理。
模糊推理方法主要包括模糊逻辑推理和模糊数学推理两种形式。
模糊逻辑推理是通过对模糊命题的模糊逻辑运算,推导出模糊结论的过程。
模糊数学推理则是利用模糊数学的方法,通过模糊关系的运算,得出模糊结论的过程。
在模糊推理方法中,常用的推理规则包括模糊蕴涵规则、模糊合取规则、模糊析取规则等。
这些推理规则可以根据具体的问题和需求进行选择和组合,以实现对模糊问题的推理和决策。
模糊推理方法的应用非常广泛。
在天气预报中,由于气象数据的不确定性和模糊性,传统的二值逻辑推理往往无法准确预测天气情况。
而模糊推理方法可以通过对多个气象数据的模糊运算,得出更准确的天气预报结果。
在医学诊断中,由于病情的复杂性和多样性,传统的二值逻辑推理往往无法全面考虑各种可能性。
而模糊推理方法可以通过对病情特征的模糊分类和模糊推理,提供更全面的医学诊断结果。
除了天气预报和医学诊断,模糊推理方法还广泛应用于金融风险评估、交通流量预测、工程管理等领域。
在金融风险评估中,由于金融市场的不确定性和复杂性,传统的二值逻辑推理往往无法准确评估风险。
而模糊推理方法可以通过对各种金融指标的模糊运算,得出更准确的风险评估结果。
在交通流量预测中,由于交通数据的不确定性和随机性,传统的二值逻辑推理往往无法准确预测交通流量。
而模糊推理方法可以通过对多个交通数据的模糊运算,得出更准确的交通流量预测结果。
模糊推理公式

模糊推理公式模糊推理是一种非常有趣但也有点让人挠头的概念。
咱们先来说说啥是模糊推理。
比如说,你觉得“天气热”这个概念。
到底多少度算热呢?30 度?35 度?每个人的感受可能都不太一样。
这就是一种模糊性。
而模糊推理呢,就是在这种不那么清晰明确的情况下,尝试做出合理的判断和推测。
咱就拿个实际的例子来说吧。
假设学校要组织一次户外活动,老师需要根据天气情况来决定是否照常进行。
如果只是简单地规定温度超过 30 度就取消活动,这好像有点太绝对了。
因为可能 30 度的时候,有些同学觉得还能忍受,有些同学已经热得不行了。
这时候模糊推理就派上用场啦!老师可能会综合考虑多个因素,比如温度、湿度、风速,甚至同学们的身体状况。
温度高一点,但是湿度低、风速大,也许活动还能继续;要是温度高、湿度也大、风速又小,那可能就得慎重考虑了。
在模糊推理中,有一些常用的公式和方法。
比如说扎德推理法,它通过一系列的运算和规则,来处理那些模糊的信息。
咱再回到前面说的户外活动的例子。
老师可能会给温度、湿度、风速等等因素设定一个模糊的范围和权重。
比如说,温度在 25 到 30 度之间算“有点热”,30 到 35 度之间算“热”,超过 35 度算“非常热”。
湿度在 40%到 60%之间算“舒适”,低于 40%算“干燥”,高于 60%算“潮湿”。
然后根据这些模糊的定义和权重,来计算出一个综合的评估值,从而决定活动是否进行。
还有一种叫 Mamdani 推理法,也是处理模糊推理的一把好手。
它的原理和扎德推理法有点类似,但在具体的运算和规则上可能会有所不同。
想象一下,如果老师用了模糊推理的公式来做决定,同学们可能会觉得老师的决定更加贴心和合理。
不会因为一刀切的规定而感到不满或者失望。
其实啊,模糊推理不仅在学校里的这种小事上能发挥作用,在很多大的领域,比如工程控制、医疗诊断、经济预测等等,都有着广泛的应用。
比如说在医疗诊断中,医生判断一个病人的病情,可不只是看单一的指标。
补充知识-模糊推理

简单模糊推理
• 知识中只含有简单条件,且不带可信度因子的模糊推理称为简单模糊推 理。 • 合成推理规则:对于知识 IF x is A THEN y is B 首先构造出A与B之间的模糊关系R,然后通过R与证据的合 成求出结论。 如果已知证据是 x is A’ 且A与A’可以模糊匹配,则通过下述合成运算求取B’: B’=A’◦R 如果已知证据是 y is B’ 且B与B’可以模糊匹配,则通过下述合成运算求出A’: A’=R◦B’
贴近度: A∙B=(0.3∧0.2)∨(0.4∧0.5)∨(0.6∧0.6)∨(0.8∧0.7)=0.7 A⊙B=(0.3∨0.2)∧(0.4∨0.5)∧(0.6∨0.6)∧(0.8∨0.7)=0.3 (A,B)=1/2[A∙B+(1-A⊙B)]=1/2[0.7+(1-0.3)]=0.7
海明距离: d(A,B)=1/4×(|0.3-0.2|+|0.4-0.5|+|0.6-0.6|+|0.8-0.7|)=0.075 (A,B)=1-d(A,B)=1-0.075=0.925
按这种方法,对δmatch(A,D)与δmatch(B,D)可以得到: 0.8/1+0.5/1+0.1/1+0.5/1+0.5/1+0.1/0+0.1/1+0.1/0+0.1/0 =0.8/1+0.1/0 由于μ1=0.8>μ0=0.1,所以得到: δmatch(A,D) ≥δmatch(B,D) 同理可得: δmatch(A,D) ≥δmatch(C,D) δmatch(B,D) ≥δmatch(C,D) 最后得到: δmatch(A,D) ≥δmatch(B,D)≥δmatch(C,D) 由此可知R1应该是首先被选用的知识。
模糊逻辑中模糊运算

模糊逻辑中模糊运算1 模糊逻辑的概念介绍模糊逻辑是一种处理不确定性信息的数学工具,它可以应用于人工智能、控制系统、模式识别、自然语言处理等领域。
相对于传统的经典逻辑,模糊逻辑可以更好地处理模糊不确定性和人们日常生活中经常遇到的模糊信息。
2 模糊逻辑的基本运算模糊逻辑中的基本运算包括模糊集合的运算和模糊关系的运算。
模糊集合的运算包括模糊集合的并、交、补等运算,模糊关系的运算包括模糊关系的复合、逆关系、限制等运算。
3 模糊关系的笛卡尔积在模糊关系的笛卡尔积中,把两个模糊关系并列在一起,然后对它们的对应元素进行运算,可以得到一个新的模糊关系。
对于笛卡尔积运算,最常用的是模糊子集交。
4 模糊关系的模糊合成模糊合成运算是模糊逻辑中最常用的运算,也是最基本的运算之一。
在模糊合成运算中,把两个模糊关系合成在一起,得到一个新的模糊关系。
模糊合成的常见方式有:模糊关系的最小运算、模糊关系的标准运算和模糊关系的最大运算等。
5 模糊逻辑中的模糊推理在模糊逻辑中,通过将前提与论证进行模糊化处理,得到一个只含有模糊信息的结论。
根据不同的推理规则,模糊逻辑中的推理方式也有所不同。
6 模糊逻辑的应用模糊逻辑可以应用于很多领域,比如人工智能、控制系统、模式识别、自然语言处理等。
例如,在智能交通领域,模糊逻辑可以帮助我们更好地处理驾驶员的意图、车辆的位置等信息,从而提高驾驶安全性。
7 模糊逻辑的优缺点模糊逻辑的主要优点在于它可以更好地处理模糊不确定性和人们日常生活中经常遇到的模糊信息。
但是,模糊逻辑也存在着一些缺点,比如可能会导致计算量过大,同时也难以处理复杂的问题。
8 总结模糊逻辑作为一种处理模糊信息的数学工具,在很多领域中都有着广泛的应用。
模糊逻辑的基本运算包括模糊集合的运算和模糊关系的运算,其中模糊合成运算是最常用的运算之一。
虽然模糊逻辑存在一些缺点,但是它仍然具有重要的价值和实际应用价值。
第七章 模糊控制技术第五节模糊推理

• 对于实际的一个命题(事件),可以用“真”或“假”进行 判断。如果该命题非真即假,我们说这是精确命题(事件), 采用二值逻辑推理。如果命题不是绝对的“真”或“假”,而 是反映其以多大程度隶属于“真”,也就是带有模糊性,则该 命题为模糊命题,必须采用不确定性推理方法进行推理。
如果命题A、B为模糊命题,则需要采用不确定性推理方法。 不确定推理情况下的假言推理具有如下逻辑结构:
Hale Waihona Puke 五、模糊推理1.语言变量
设:H4代表“极”或者“非常非常”,其意义是对描述的 模糊值求4次方;
H2代表“很”或者“非常”,其意义是对描述的模糊值 求2次方;
H1/2代表“较”或者“相当”,其意义是对描述的模糊 值求1/2次方;
H1/4代表“稍”或者“略微”,其意义是对描述的模糊 值求1/4次方。
这样,集中化算子的幂乘运算的幂次大于1,幂次越高,语 气的强化程度越大;松散化算子的幂乘运算的幂次小于1, 幂次越高,语气的弱化程度越大。
关系生成规则:设A是X上的模糊集合,B是Y上的模糊集 合,是X到Y的模糊关系R(x,y)。则存在一种方法,也就是 关系生成规则,由A和B得到:
推理合成规则:即由模糊关系R(x,y)和小前提A′中的得 到Y上的模糊集B′的规则,即:
➢ 其中,算符“o”代表合成运算,通过解模糊关系程序获 得推理结果B′,这就是模糊推理过程。
五、模糊推理
2.模糊逻辑和模糊推理
一个单输入单输出模糊系统的模糊推理的模型如图所示:
更一般的模糊推理模型包含有多个大条件,构成多条规则模 糊推理模型,具有如下的逻辑结构:
其关系生成规则:根据Aij(i≤n,i≤m)和生成模糊关系R,R 就是X=X1×X2×…Xm×Y上的模糊关系。而推论合成规则