农药草甘膦生产废水处理的研究
草甘磷生产废水处理论文

草甘磷生产废水处理论文1草甘膦生产废水处理现状及存在问题由于亚磷酸二甲酯合成法生产草甘膦的废水中含有一些比较容易生化的物质,例如甲醇等,可以采用生化处理的方法。
在我国很多该种工艺中,基本上都在采用生化处理的方法,但是需要注意的问题是,使用该种方法处理过的废水,磷含量依然保持在较高水平。
在IDA工艺法的双甘膦废水中,其往往含有浓度较高的有机膦化合物,这种化合物往往具有较高的生物毒性,且含有的2%一4%甲醛成为生物抑制剂;中间体二乙醇胺及其衍生物属不易生物降解类物质等。
可以看出,废水中的这些物质不仅很难进行生物降解,而且对水质还具有很大影响,成为让许多企业头疼的问题。
2草甘膦生产废水处理技术对草甘膦的生产分析发现,其利用的原料主要有亚氨基二乙睛、盐酸、氢氧化钠、三氯化磷、重金属催化剂、硫酸亚铁、二乙醇胺等,其排出的废水更是含有甲醛、盐酸、双甘酸、氯离子草甘磷生产废水处理靳淳刘伟(浙江省天正设计工程有限公司,浙江杭州310000)摘要:草甘膦在我国还有几种叫法,分别为镇草宁、农达、草干膦、膦甘酸,属于氨基甲撑膦类含有羧酸基的化合物。
采用当前工艺生产出来的草甘膦产生的废水中往往含有各种有机物质,因此,使得废水往往具有浓度高、对环境污染比较严重的特点。
因此,本文首先结合当前两种主要的生产草甘膦工艺所产生的废水进行了研究,在此基础上对有效处理该种废水的方法进行了分析。
关键词:草甘膦;生产废水;处理和亚磷酸等成分。
明显可以看出,排出的废水含有较高的磷和氯离子,废水呈酸性,pH值的数值接近于1。
因此,草甘膦生产的废水几乎呈现饱和盐的状态,具有高毒性、高浓度性,有许多事不可生物降解物或对生物抑制物,这些都使得对其治理便的困难重重。
草甘膦的废水不仅可以给环境带来很大的危害,而且也造成了严重的资源浪费,这些都和其中的草甘膦及催化剂无法回收有很大关系。
因此,下文将对草甘膦生产废水的有效处理技术进行探讨:(1)亚磷酸二甲酯工艺草甘膦废水处理技术甲醇塔废水的可生化性取决于塔效和操作情况,塔效及操作的好,则废水COD低,生化性较差。
浅论草甘膦生产废水治理技术

浅论草甘膦生产废水治理技术
草甘膦(Glyphosate)是一种广谱的除草剂,被广泛应用于全球各种农业、园林和草坪等领域。
草甘膦的生产过程中会产生大量含有有机物和重金属的废水,对环境和人类健康造成潜在危害。
开发高效可行的草甘膦生产废水治理技术具有重要意义。
针对草甘膦生产废水的特点和成分,一种有效的治理技术是生物降解技术。
该技术利用微生物对废水中的有机污染物进行分解和转化,从而实现废水的净化。
生物降解技术的主要方式包括生物膜法、生物吸附法和生物降解法。
生物膜法是将微生物固附在生物膜上,通过生物膜吸附、活性膜渗透和微生物代谢等过程,去除废水中的有机物。
这种方法具有处理效果好、操作简便、运行稳定等优点,但其缺点是对水质要求较高,并且难以处理草甘膦废水中的重金属。
生物吸附法利用生物吸附剂对废水中的有机物进行吸附,达到净化废水的目的。
合适的生物吸附剂可以提高废水的处理效率,同时减少对环境的二次污染。
该方法难以同时去除废水中的重金属和有机物,所以在处理草甘膦废水时效果有限。
生物降解法是指利用微生物对废水中的有机污染物进行降解和转化。
这种方法的优点是具有高效、环保、经济等特点。
目前,已经研究出了一些具有高效降解草甘膦能力的微生物菌株,如青霉菌、假单胞菌和放线菌等。
通过培养这些菌株,可以大幅度降低草甘膦废水中的有机物含量,从而实现废水的净化。
物理化学方法也可以用于草甘膦生产废水的治理。
利用活性炭吸附、气浮、光解等技术可以去除废水中的有机污染物。
这些方法在一定程度上可以净化废水,但存在耗能高、成本昂贵等问题。
草甘膦废水治理技术

草甘膦废水治理技术综合利用草甘膦废水主要成分为氯化铵和少量甘氨酸,可以作为肥料以提高水稻的产量,提高谷内粗蛋白的含量,肥效相当于氯化铵,但对农田土壤的影响还有待进一步的研究1。
含有机及无机化合物的废水可以将其与粘土等按一定比例混合,在高温进行煅烧,并将其结合成硅酸盐相的方法进行处理,例如将280克粘土与20mL石灰乳中和的化学废水混合及揉和,这种废水中含有氯化氢38.25g/L、磷酸66.4g/L、甘氨酸35.2g/L、草甘膦46.2g/L及其它有机物质12.2g/L,所得的物质经五小时后经模压、干燥,并在920~930℃煅烧,可以获得高质量的砖块2。
在制备草甘膦中间体双甘膦时产生大量的酸性含氯化钠的废水,可对其或浓缩后加入一定量碳酸氢铵,充分反应,过滤,得到碳酸氢钠和含有氯化铵的滤液。
碳酸氢钠能回收利用于双甘膦的制备,滤液经浓缩后可得到氯化铵副产物3。
草甘膦生产废水回收三乙胺时,当碱化后,即有油层分出,可分出油层,油层中的三乙胺的浓度可达85%。
对油层和水层分别进行分馏回收三乙胺,较之直接进行分馏回收三乙胺具有回收率高的优点,可降低草甘膦生产过程中三乙胺单耗4。
草甘膦生产废水中的草甘膦可以用氯化钙溶液进行沉淀处理,所得沉淀经酸化及软化后所得的溶液可以达到产生企业所要求的标准,草甘膦的回收率达95%,COD去除率达到95%5。
物化法天然的水滑石或经500℃煅烧过的水滑石是草甘膦的良好吸附剂,但对疏水性的除草剂缺乏良好的吸附作用6。
草甘膦废水可以用活性氧化铝Al-1进行吸附处理,当草甘膦的质量浓度为10000mg/L,COD为30000mg/L时,用10mL活性氧化铝Al-1对100mL废水进行处理,草甘膦的去除率达>98%,COD去除率达>50%7。
草甘膦生产废水可以用吸附法进行处理,吸附剂以40~75目的果壳类活性炭为最有效。
活性炭对草甘麟的吸附能力随pH值升高而显著降低, 适宜的pH值范围为1.0~2.0,废水中的盐份和有机胺类杂质对活性炭吸附草甘麟的能力有显著影响。
浅论草甘膦生产废水治理技术

浅论草甘膦生产废水治理技术【摘要】草甘膦是一种常用的除草剂,其生产过程会产生大量废水,对环境造成一定的影响。
本文旨在探讨草甘膦生产废水的治理技术,以期为实际生产中的废水处理提供有效的参考。
在将对草甘膦生产废水的特点进行介绍,并详细讨论生物法、物理化学方法以及综合治理技术在治理草甘膦生产废水中的应用情况。
结论部分将分析草甘膦生产废水治理技术的发展现状,并展望未来的研究方向。
通过本文的研究,可以更好地了解草甘膦生产废水的处理技术,并为环境保护和可持续发展提供参考。
【关键词】草甘膦生产废水、治理技术、生物法、物理化学方法、综合治理技术、发展现状、研究方向1. 引言1.1 研究背景草甘膦是一种非选择性除草剂,被广泛应用于农田、果园、园林等领域。
随着草甘膦的大规模使用,草甘膦生产废水也日益增多,给环境带来了一定的污染压力。
草甘膦生产废水中含有草甘膦、其降解产物和其他有机物,具有毒性较高、难降解等特点,对水体和土壤造成了不同程度的污染。
针对草甘膦生产废水的特点,研究废水处理技术显得尤为重要。
目前,草甘膦生产废水处理技术主要包括生物法、物理化学方法和综合治理技术。
生物法利用微生物降解草甘膦和有机物,具有效率高、成本低等特点;物理化学方法通过吸附、氧化等过程去除废水中的有机物;综合治理技术则将不同方法组合应用,取长补短,达到更好的治理效果。
通过对草甘膦生产废水治理技术的研究,不仅可以减少环境污染,保护生态环境,还能提高草甘膦生产的可持续性。
加强对草甘膦生产废水治理技术的研究具有重要的现实意义和深远的影响。
1.2 研究目的研究目的是为了探究草甘膦生产废水治理技术的现状与发展趋势,为相关行业提供参考和借鉴,促进草甘膦生产废水治理技术的进一步发展与完善。
通过研究,我们旨在深入了解草甘膦生产废水的特点及其处理技术,分析生物法和物理化学方法在草甘膦生产废水治理中的应用效果,探讨综合治理技术对草甘膦生产废水的治理效能。
我们也希望通过本研究为相关领域的技术人员和决策者提供科学依据,推动草甘膦生产废水治理技术的进步,并为环境保护和可持续发展贡献力量。
一种草甘膦合成中间体双甘膦制备过程中废水处理的新工艺探究

一种草甘膦合成中间体双甘膦制备过程中废水处理的新工艺探究草甘膦是一种广泛应用于农业领域的除草剂,而其制备过程中产生的废水处理一直是一个备受关注的问题。
废水中含有大量的双甘膦,而双甘膦是一种对水生态系统有害的有机污染物,因此需要进行有效的处理。
一、废水的成分分析在草甘膦合成中间体双甘膦制备的过程中,废水主要含有双甘膦、草甘膦的中间体以及其他有机物质。
其中双甘膦是最主要的有机污染物,因其毒性较高,因此需要在废水处理中得到有效去除。
二、传统的废水处理方法传统的废水处理方法主要包括生物降解、化学氧化和吸附等方式。
生物降解是将废水中的有机物质通过微生物降解成无害的物质;化学氧化是利用化学氧化剂将有机物质氧化为二氧化碳和水;吸附则是利用活性炭等材料将废水中的有机物质吸附去除。
传统的废水处理方法存在着一些缺点,比如生物降解需要较长的处理时间和复杂的操作条件,而化学氧化的过程中可能会产生次生污染物,而吸附则会产生大量的废渣,造成资源浪费等。
三、新工艺的探究针对传统废水处理方法的种种不足,可以探究一种新的废水处理工艺,即采用化学/生物联合方法进行处理。
1. 化学处理可以采用化学氧化剂如过氧化氢等对废水中的双甘膦进行氧化处理,将其转化为无毒的物质,降低废水的毒性。
也可以添加适量的还原剂如亚硫酸氢钠等,将废水中的草甘膦中间体还原为无害物质。
2. 生物处理接下来,可以引入特定菌种,利用生物降解的方式进一步降解废水中的有机物质,包括残留的双甘膦和其他有机物质。
生物处理过程可以高效地将废水中的有机物质降解成无害的二氧化碳和水,达到彻底去除废水有机物质的目的。
3. 联合处理将化学处理和生物处理结合起来,既可以快速将废水中的有机物质转化为无害物质,又可以高效地去除废水中的有机物质,大大提高废水处理的效率和彻底程度。
化学/生物联合处理还可以减少化学处理过程中产生的次生污染物的生成,以及减少废渣的产生,有利于资源的循环利用。
四、新工艺的优势采用化学/生物联合处理废水的新工艺具有如下优势:1. 高效去除有机物质化学氧化和生物降解结合,可以高效地去除废水中的有机物质,降低废水的毒性,达到彻底去除的目的。
浅论草甘膦生产废水治理技术

浅论草甘膦生产废水治理技术【摘要】草甘膦是一种常用的除草剂,其生产过程会产生大量废水污染环境。
本文通过对草甘膦生产废水治理技术的研究,分析了其研究背景、意义和目的。
在对草甘膦生产废水的特点进行了分析,并综述了传统治理技术和新型治理技术的应用情况。
结合成本效益进行了分析,并展望了技术的应用前景。
在结论部分强调了技术创新的意义,探讨了未来研究方向,并进行了总结。
通过本文的研究,可以更好地了解和探讨草甘膦生产废水治理技术,为相关领域的研究和应用提供参考和指导。
【关键词】草甘膦、生产废水、治理技术、传统技术、新型技术、成本效益、应用前景、技术创新、研究方向、总结。
1. 引言1.1 研究背景草甘膦是一种广泛应用于农业领域的除草剂,但其生产过程中会产生大量废水,其中含有草甘膦及其代谢物的高浓度。
这些废水具有较高的毒性和对环境造成潜在的危害。
对草甘膦生产废水进行有效治理成为当务之急。
研究背景部分将重点探讨草甘膦生产废水的特点,包括其化学成分、毒性特点以及对水体和生态环境的影响。
还需分析当前草甘膦生产废水处理存在的问题和挑战,如传统处理技术难以彻底去除草甘膦等有机物,处理成本高昂,治理效果不稳定等。
通过深入研究草甘膦生产废水的特点与问题,可为后续文章中的传统治理技术综述及新型治理技术探讨提供铺垫和依据。
1.2 研究意义本文旨在探讨草甘膦生产废水治理技术,进行深入研究和分析。
草甘膦是一种广泛应用于农业生产中的除草剂,其生产过程中会产生大量废水。
对草甘膦生产废水进行有效治理,不仅可以减少对环境的污染,保护生态环境,更能提高草甘膦生产的效率和质量,促进农业的可持续发展。
研究草甘膦生产废水治理技术的意义在于,可以为生物农药生产企业提供技术支持和指导,帮助其建立健全的废水处理系统,实现资源的循环利用和节约能源。
通过深入研究废水治理技术,可以推动环境保护和节能减排工作,在遵循可持续发展理念的前提下,实现经济效益和环境效益的双赢局面。
草甘膦废水预处理工艺研究

先正达公司报道的关于邻苯二 甲酰胺类和邻 甲 酰胺基苯 甲酰胺类化合物的专利中.引人了苯并杂 环结构 .以及在苯 甲酰胺部分引入特殊的低级环烷
基 和磺 酰亚胺 结 构 。 此外 , 该公 司还 开发 了一 系列 新 颖 的化 合 物 一 间 甲酰 氨基 苯 甲酰胺 类 化合 物 .该 系 列化 合物 的作 用方 式 尚未有 报道
骨架基础上 . 对 极 性 基 团 等 进 行 了改 造 . 并 在 专 利 W0 2 0 0 6 0 2 2 2 2 5报 道 了一 系列 具 有光 学 活性 的化 合
随着社会经济发展水平 的不断提升 .人们 的生 活质量有了显著改善 , 人们对农药的效用 、 安全性 、 环保性等也提出了更高要求 。 高选择性、 低毒的鱼尼 丁抑制 剂类 杀 虫剂 不仅 对鳞 翅 目害虫 具有 较强 杀伤
…
…
舢
,
日暴 ? 矗 水 中的磷 , 并将沉淀 回收 , 作为生产磷 酸 的原料 . 从 而达 到 资 源 化 利用 的 目的
1实 验 部 分
1 .1主 要 试 剂 及 仪 器
农 药 研 究 仪器 : H H — I l l 型化 学耗氧量测定 仪 f 江苏 电 分析仪器厂1 : U V 2 5 0型 紫 外 分 光 光 度计 f日本 岛津 ). L C一 6 A液相色谱仪 (日本岛津1 。
料, 经合成 、 水解 等步骤生成草 甘膦 该工 艺路线 产 生 的废 水 中主 要 含 有 亚 磷 酸 钠 、 草甘膦等 。 其 含 磷量及 C O D值 均较 高 .难 以直接进行 生化处理 目前 对 草 甘 膦 废 水 的 预 处 理 方 法 主 要 有 沉 淀 法 、 浓缩法 、 絮凝法 等。本研究基 于治理污染 、 资源回 收 的 目的 . 采用 F e n t o n试 剂 先 将 废 水 中 的 亚 磷 酸 盐 及 有 机 污染 物 氧 化 .然 后 用 氯 化 钙 溶 液 沉 淀废
浅论草甘膦生产废水治理技术

浅论草甘膦生产废水治理技术草甘膦是一种广谱除草剂,具有高效、低毒、易降解等优点,被广泛应用于农业生产中。
然而,草甘膦生产中的废水处理成为一个亟待解决的问题。
本文将从草甘膦生产废水的特点入手,探讨草甘膦生产废水处理的相关技术。
草甘膦生产废水主要来源于草甘膦的合成反应和废气洗涤水。
草甘膦合成反应主要包括三个步骤,第一步是通过过氧化氢氧化反应生成的丙烯酸二酐和甲胺反应形成N-甲基-N-(2,6-二甲基苯基)氨基甲酸,第二步是将其与磷酸二甲酯反应,生成二氢恶唑酮-4-磷酸二甲酯,第三步是在酸性条件下加水分解,生成草甘膦。
在草甘膦合成反应中,氢氧化钠、盐酸、硫酸、磷酸等化学品都被使用,导致废水中含有高浓度的氯离子、硫酸盐、磷酸盐等离子物质。
草甘膦废水中还含有草甘膦、N-甲基-N-(2,6-二甲基苯基)氨基甲酸、二氢恶唑酮-4-磷酸二甲酯等有机物质,其中草甘膦具有较强的稳定性和难降解性,极易造成环境污染。
此外,草甘膦废水pH值低,COD、BOD、悬浮物等指标浓度高,难以通过传统的抽滤、中和、沉淀等工艺进行处理。
1.生化处理技术生化处理技术是一种较为成熟的废水处理技术。
草甘膦废水中含有一定浓度的有机物质,通过生物细胞的吸附、代谢、分解等作用,降解有机物质,使废水处理达到排放标准。
生化处理技术可分为活性污泥法、生物接触氧化法、厌氧处理等。
活性污泥法是一种常见的生化处理技术,通过加入生物接种物,控制废水中BOD、COD 等指标的浓度,达到有效降解处理的目的。
生物接触氧化法是一种创建更大的生物群落,通过废水与接触体表微生物内的代谢反应进行处理。
厌氧生化处理技术优化了微生物的生长环境,可以在低氧环境下处理高浓度的有机废水,能够提高污水有机物质的去除率。
相较而言,生化处理较为适合草甘膦生产废水中去除有机物质,但对于草甘膦等难降解有机物质的处理效果有限。
物化处理技术包括吸附、沉淀、浮选、氧化等。
吸附技术是将污染物质直接吸附到吸附剂中,脱离废水实现去除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
农药草甘膦生产废水处理的研究草甘膦废水是化工农药行业生产草甘膦粉剂、水剂过程中排出的有机高浓度含重金属废水。
生产草甘膦的主要原料有二乙醇胺、片碱、去离子水、盐酸、甲醛、三氯化磷、30%液碱、重金属催化剂、双氧水、钨酸钠、液氨、硫酸亚铁等。
1 废水水质与试验工艺1.1 废水水质草甘膦生产过程中各部分废水混合后的水质情况见表1。
从表1可看出该废水m(BOD5)/m(CODcr)比值约为0.68,可生化性较好,主要为溶解性有机物,采用生物处理较为合理。
但废水中含有高达35000mg/L的Cl-和大量重金属离子,使生化反应受到严重抑制,甚至根本无法进行。
有人有电解反应器加选择性生物反应器等工艺尝试去除Cl-对微生物的干扰,取得较好效果[1]。
针对该废水特点我们采用微电解预处理与上流式厌氧污泥床(UASB)、好氧SBR、活性污泥法相结合的组合工艺对该废水进行连续处理试验。
1.2 试验工艺草甘膦废水试验工艺流程如图1所示。
废水首先进入调节池进行混合调节后,用不锈钢泵打入微电解絮凝床,经过适当停留时间后流人中和沉淀池,投加碱液调整pH至6-9,机械搅拌混凝沉淀以除去废水中的重金属和绝大多数Cl-和H+,并除去大部分CODcr。
上清液流入UASB池中,利用厌氧菌的生物降解作用对污染物进行有效去除。
出水进人SBR系统进行好氧处理,处理后可达标排放。
1.3 主要设备微电解絮凝床为钢结构,防腐,底部设有进水有水器,内部填充按一定比例配制的铸铁屑、粗制活性炭和疏松剂。
出水通过集水槽汇入中和沉淀系统。
UASB为钢结构,防腐,底部设有进水布水器,内设三相分离器,外部采用泡沫塑料层保温。
SBR反应器,内设曝气装置,按进水、曝气、沉淀、浇水、闲置的程序周期运行。
2 试验结果分析2.2 微电解絮凝床+中和沉淀系统微电解絮凝床反应机理较为复杂,而且本身内部发生一系列物理化学作用。
基本认为当有一定电位差的铸铁屑和粗制活性炭浸没在废水溶液中,废水充当电解质,构成无数个微电池回路,在它的表面有电流流动,产生电极反应和由此引起的一系列作用,改变废水中污染物的性质,从而达到废水处理的目的。
本研究中草甘膦废水的部分反应可能如下:阳极(Fe):Fe→Fe2++2eE0(Fe2+/Fe)=-0.44 V2Cl-→Cl2↑+2eE0(Cl/Cl-)=-1.359 V阴极(C):酸性充氧条件下:O2+4H++4e→2H2OE0(O2)=1.23 VRH +·OH→R+H2ORH代表有机污染物。
[2]当草甘磷混合废水流过微电解絮凝床十中和沉淀系统时,可能发生如下几种作用:①还原作用。
由上述反应的标准电极电位E0可知,酸性充氧条件下低电位的Fe与高电位的C在废水中的电位差达到1.67V,Fe和Fe2+可以对废水中的重金属及一些有机物起到还原作用,反应所产生的新生态H和Fe2+,共同作用可以将硝基还原为胺基,将大分子降解为小分子;内部电解的还原能力可使废水中的有机污染物有机官能团发生变化,使废水中的组成向易于生化的方向转变。
②电场作用。
废水中分散的胶体颗粒、极性分子、细小污染物受微电场的作用后形成电泳,向相反电荷的电极方向移动,聚集在电极上,形成大颗粒沉淀,使污染物降低_③络合作用。
反应所产生Fe(OH)3水解生成Fe(OH)2+,Fe(OH)+等络离子具有很强的絮凝作用,加碱中和沉淀后将是良好的混凝剂2[3-4]。
这里特别要提及的是Cl-的去除,我们用空气采样器、多孔玻板吸收管和甲基橙吸收液,利用比色法测得Cl2存在,同时根据我们对沉淀物及微电解絮凝床填料分析表明也存在大量Cl-,证明Cl-污染物去除是由上述机理共同作用的结果。
将草甘解综合废水流过我们自己研制的微电解絮凝床,然后在中和沉淀池中加碱沉淀,调整在微电解絮凝床中不同停留时间,结果如图3所示。
考虑到控制微电解絮凝床的体积和造价,一般情况下选择废水停留时间 8-10 min。
2.2 UASB系统UASB系统成功的关键在于培养一个合理分的微生物系统,即微生物驯化。
用生活污水好氧处理系统的污泥和某药厂厌处理系统的污泥各半加入UASB中,其接种污泥(VSS)的质量浓度为25 g/L,然后用米滑水和废水按不同比例混合后逐渐加人,起始阶段控制进水ρ(COD cr)为4 000 mg/L左右,当CODcr去除率提高到80%以上时逐步增加进水量和进水浓度,经35d运行后,CODcr负荷由 0.4-0.8 kg/(m3·d)提高到 2.8 kg/(m3·d),进水 p(CODcr)由 4000mg /L提高到9000 mg/L左右,直至将微电解絮凝床十中和沉淀系统中出水直接进人UASB系统,CODcr去除率稳定在90%以上。
UASB运行结果见图4。
2.3 SBR系统当UASB系统出水稳定后,启动SBR系统。
我们采用同样的污泥各半加人SBR系统中,投量为 SBR反应器有效容积的 1/2,接种污泥(MLSS)的质量浓度为 12 g/L左右。
仍旧逐渐加人不同配比的米计水与UASB出水,起始进水的质量浓度控制在400 mg/L左右,气水比控制在 8-12。
约25d后反应器中的活性污泥逐渐成熟,污泥颜色逐渐由深褐色转变为棕黄色,沉淀性能优异,SVI数值在50-80之间。
CODcr去除率稳定在85%-90%之间,SBR试验结果见表2。
2.4 整体工艺运行效果整个处理装置包括微电解絮凝床、中和池。
UASB和SBR等。
运行结果表明:微电解絮凝床十中和池可有效地去除废水中的Cl-和H+及大部分CODcr,为厌氧反应器的有效运行奠定了基础;SBR反应器的成功运行使废水最终达标排放。
全套运行工艺数据(平均值)见表3。
3 结论①当进水ρ(CODcr)为 26000-30000 mm/L,pH值为2.5-3.8,p(Cl-)为33000-35000mg/L,ρ(重金属)为 130-35O mg /L时,微电解絮凝床十中和沉淀系统可有效地去除草甘膦废水中的Cl-,H+和重金属,并对CODcr有60%左右的去除率。
②草甘膦废水的驯化污泥具有良好的吸附。
凝聚和降解废水中有机物的性能。
镜检结果表明在SBR中其生物相以菌胶团和原生动物中的裂口虫为主。
③稳定运行结果表明,草甘磷生产废水采用微电解-UASB-SBR 处理工艺是可行的。
处理后系统出水各项指标可达标排放。
农药生产废水处理设施改造工程设计河北省新兴化工厂是一家以生产氧化乐果为主的化工企业。
设计年生产能力为:40%的氧化乐果乳液8000 t,氢氧化钾1.6万 t,氯气0.8万 t。
该厂于20世纪90年代中期建成了一套污水处理设施,处理后的废水排入具有华北明珠之称的白洋淀湖泊。
近几年来,由于生产规模的扩大,排水量增加,致使处理后的排水不能达到排放标准,严重影响了白洋淀的水环境质量。
为此,该厂投资192.6万元对原有废水处理设施进行了改造,使处理后的排水达到《污水综合排放标准》(GB8978-96)一级标准。
1 原有废水处理设施1.1 废水来源及水质改造前进入废水处理设施的废水来自两部分:(1)农药分厂排水。
农药分厂由于从原料制备到氧化乐果合成流程较长,污染物种类复杂。
排水分为间接冷却水、高浓度有机废水和轻污染的冲洗地面水及跑冒滴漏废水,详见表1。
表1 农药分厂生产废水排放情况(冷却水除外)(2) 氯碱分厂排水。
该分厂排水主要为冷却水,排放量为4000 m3/d,基本属于无污染的清洁水。
1.2 原有废水处理设施原有废水处理工序包括调节池、一级接触氧化池、一级沉淀池、二级接触氧化池、二级沉淀池和集水塘。
处理工艺流程见图1。
原有废水处理装置最大设计流量为2400 m3/d,调节池总有效容积1008 m3,分为2组;一级接触氧化池有效总容积为484 m3,分为2组;一级沉淀池有效总容积为118 m 3,斜板沉淀池,分为2组;二级接触氧化池有效总容积为265 m3,分为2组;二级沉淀池有效总容积为85 m3,斜板沉淀池,分为2组。
改造前实际运行过程中,进入上述废水处理设施的废水水量约为6464 m3/d。
其中,农药分厂生产废水水量64 m3/d,冷却水水量约2 400 m3/d;氯碱分厂冷却水水量约4000 m3/d。
两个分厂生产废水经生化处理后与生活污水混合流入集水塘,其容积约6000 m3,之后从总排放口排放,其COD为255~934 mg/L。
2 废水处理改造工程从全厂废水结构来看,由于两个分厂未实施清污分流和清洁生产措施,而且现有污水处理站也存在如下问题:①进入污水处理设施的水质和水量负荷严重超过原有设计能力;②从两级串联的接触氧化池来看,第一级COD去除率可达到80%以上,第二级COD 去除率只能达到40%,主要原因是两级接触氧化池菌群相同,第一级接触氧化池可以处理的有机污染物,在第二级接触氧化池中同样可以处理,而第一级不能降解的有机污染物,第二级同样不能降解。
通过分析决定保留现有生化处理装置,增加预处理设施,改造后的废水处理流程见图2。
2.1 焚烧处理系统该系统处理一氯乙酸甲酯精馏工序釜底残液及洗釜水,水量1.84 m3/d,COD平均浓度383387 mg/L,经测试该废水燃烧热值为2819 kJ/kg。
另外还处理物化及生化处理脱水后的污泥0.5 m3/d。
焚烧设备型号:WYL-300型,处理能力:300 kg/h。
焚烧后的尾气通过除尘和碱液吸收净化后排向大气。
该系统COD处理效率几乎为100%,COD去除量为705.4 kg/d,削减量占全厂污染源的 8.5%。
2.2 精馏处理系统该系统处理对象为甲酯中和水和氧化乐果合成废水,水量26.63 m3/d,COD平均浓度216 604 mg/L。
甲酯中和水通过精馏塔精馏回收甲醇等,氧化乐果合成废水经萃取分层后通过精馏回收氯仿、甲醇、一甲氨等。
精馏塔为直径300 mm的填料塔。
该系统COD去除率为40%~50%,以40%计算,COD去除量为2 307 kg/d,削减量占全厂污染源的27.8%。
2.3 物化处理系统该系统所处理的废水为农药分厂精馏处理系统排水、甲酯回醇水、氯乙酸中和废水、冷冻及真空废水,处理水量约62 m3/d,COD平均浓度7765 mg/L。
该处理工艺为絮凝-沉淀-气浮- 吸附过滤。
絮凝剂为碱式氯化铝,助凝剂为石灰及聚丙烯酰胺,沉淀池为斜板沉淀池,吸附过滤材质为粒径2 mm左右的核桃壳颗粒。
由于处理水量相对较小,处理设备为组合式一体化设备。
其中絮凝反应时间为0.5 h,沉淀时间1.5 h,气浮池停留时间为 1.5 h,吸附过滤池滤速为5 m/h。
该系统COD去除率为45%,处理后废水COD为4271 mg/L,COD去除量为2168 kg/d,削减量占全厂污染源的26.13%。