草甘膦生产废水的预处理与综合利用
年产万吨草甘膦建设项目废水治理方案探析

Ke y w o r d s g l y p h o s a t e c o n s t uc r t i o n p r o j e e t ; w a s t e w a t e r ; l a k a l i n e h y d r o l y s i s ; b i o c h e m i s t r y
的装置 同时 也能促 进难 生物 降解 物 的消化[ 3 1 。
3 废 水 处 理 成 本 分 析
水 综合 排放 标准 一级 ( G B 8 9 7 8 — 1 9 9 6 ) 翻 。
1 废 水 来 源 及 废 水 排 放 节 点
生成 C O D 2 8 2 0 0 m g / L的高 浓 度 废 水 为 1 8 6 t / d, 生 成
C O D 8 0 0 ~ l 0 0 0 mg / L的低 浓度 废水 为 l 0 0 0 t / d 。 处理 高 浓废
A b s t r a c t T h e q u a l i t y o f t h e w a t e r p r o d u c e d i n t h e c o n s t r u c t i o n p r o j e e t o f g l y p h o s a t e a n d i t s t r e a t m e n t t e c h n o l o g y r e s e a r c h w a s l a u n c h e d ,
Di s c u mi o n o n Wa s t e wa t e r Ma n a g e me n t P r o g r a m i n C o n s t r u c t i o n P r o j e c t o f 1 0 0 0 0 T o n s / Y e a r Gl y p h o s a t e
草甘膦母液处理技术

草甘膦母液本质上属于高浓有机废水,可以通过传统的焚烧、催化氧化、催化氧化+生化的方法进行减量化、无害化的处理。
然而由于草甘膦母液复杂的水质特征,如可生化性差、盐分高和水质波动大等,在处理的同时往往会付出高昂的处置成本。
利用焚烧、催化氧化、生化处理等处理工艺虽然可以有效地处理草甘膦母液废水,但却很大程度地浪费草甘膦母液废水所含的大量可回收利用资源(废水中含无机盐15 %—20 %、草甘膦0.5 %—1.5 %),而且还会不可避免的生成一些二次污染物,更增加了草甘膦母液废水处理负担。
为了实现草甘膦母液废水中无机盐、草甘膦等有效成分的回收,不少研究学者及草甘膦生产企业开发了很多新型处理方法:压力驱动膜分离法、沉淀法、吸附法等方法,其中吸附和膜分离法以其高效的分离效果而成为目前草甘膦母液废水应用较广的处理方法:1.膜浓缩法膜浓缩分离利用渗透性将不同分子大小的物质进行分离,可以有效起到浓缩和提纯的目的。
其中对于甘氨酸法草甘膦母液,通过膜法可将无机氯化钠和大部分水从母液中分离出来,浓液中氯化钠含量降低至1 %,并有效提高浓缩倍率。
分离出的淡液需经过蒸发浓缩和除盐等处理;对于IDA法草甘膦母液,因原水副产物较少,可将淡液循环用于合成工艺,且膜处理后浓液盐含量较低,可增大用于配置30 %水剂的母液利用率。
DMP法:由于合成工艺过程加入的液碱导致DMP法草甘膦母液废水呈现强碱性,这是不利于膜及膜组件的长期稳定运行的,因此需要在母液废水进入膜组件之前加入一定量的浓HCl将其pH调节至中性。
在经纳滤膜组件分离后,母液废水中的无机盐和醇类等小分子物质与草甘膦、增甘膦、双甘膦等大分子物质分离,前者进入淡液1,后者进入浓液1。
母液废水中的所有无机盐几乎全部存在于淡液中,其浓度高达15 %-20 %,且主要为NaCI,因此在经蒸发结晶之后可以获得工业盐。
由于增甘膦、双甘膦等杂质的存在会严重影响30%草甘膦水剂的配置过程,因此需要利用纳滤膜组件分离增甘膦、双甘膦与草甘膦(双甘膦分子量:227.00,增甘膦分子量:263.09,草甘膦分子量:169.00),使前者进入浓液2,后者进入淡液2后再经纳滤膜组件3浓缩得到浓液3,并用于配制有效成分30 %的草甘膦水剂或用于草甘膦原粉的提取,所得淡液III主要为水及部分小分子有机物,经常规生化处理后可达到排放标准。
草铵膦废水处理解决方案

草甘膦是世界上使用广泛的一种除草剂,可在环境中积累和转移,对环境和人类健康造成潜在威胁。
草甘膦是大多数除草剂中存在的有效成分,其通过抑制杂草生长来确保作物产量,在农业生产领域中它发挥着关键作用。
但草甘膦在农业中的广泛应用也会对人类健康构成威胁,因为草甘膦可以通过农业径流或其他途径释放到地表水和地下水中,而地表水和地下水常被用作居民饮用水来源。
因此,选择有效的技术去除农业径流中的草甘膦是非常必要的。
一、草甘膦废水处理技术1、吸附法吸附法由于其设计简单、无毒等优点,被广泛应用于废水处理领域。
几十年来,很多人采用了不同的材料吸附去除水环境中的草甘膦。
吸附剂大多使用生物炭,比如活性炭,其成本低、具有高度的芳香性和多孔性结构,这些特点可以提高去除效率。
此外,化学改性方法可以有效地改性生物炭表面性能,以获得较高的吸附性能,如用硫脲改性猪粪制备的生物质炭使得表观吸附量增加。
或采用生物炭吸附草甘膦,所使用的生物炭吸附剂是由巴西油桃木壳经过清晰、干燥后,切割形成小碎块,再放入马弗炉内在380℃条件下碳化,最后去灰、干燥,筛出44-74μm颗粒而制得。
考虑其不需要化学活性,吸收性生物炭似乎是一种很有前景的低成本替代品。
还有一种将桉树树皮活性炭对草甘膦进行吸附实验。
首先,将桉树树皮反复冲洗以分离杂质,再将树皮切成碎片,在300℃马弗炉内放置2H;其次,将烧焦树皮置于棕色瓶中,在60℃条件下加入H3PO4和正磷酸,并用NaOH中和静置一晚;最后,再用20%甲醇和去离子水洗涤,经烘箱干燥后制得桉树树皮活性炭。
实验表明,酸性活性炭具有多孔表面,拥有更强的草甘膦去除能力;提高温度也能增强其去除效率,这揭示了其吸热性质;在非均质表面的物理吸附和化学吸附中,吸收率为97.84%。
通过共沉淀法制备纳米CuFe2O4改性生物炭,发现其对草甘膦的吸附量为269mg/g。
总之,吸附法是一种可选择的有效草甘膦处理方式,但也存在一些缺点,即吸附剂对草甘膦没有选择性。
石灰预处理草甘膦废水的研究

石灰( C a ( O H ) : >9 I 0 %, 过筛率 1 0 0目≥9 5 ) , J B 3 0 0 一 D型强 力搅 拌机 , p H 2 1 3 / H I 2 2 3型 台式酸度 计 ,水银 温度 计 , 2 0 0 0 ml 三 口烧
瓶, 电热 套 。
1 . 4试 验 方 法
取5 0 0 m l 草甘膦废水置于 2 0 0 0 m l 三 口烧瓶内,插 ^水银温度计 和搅拌机, 将三口烧瓶置于电热套内, 加入石灰 , 试 验在不同石灰用量 、
( 下转第 8 5页)
《 资 源 节约 与环保 》 2 0 1 3年 第 1 0期
1 . 2试 验 工 艺 原 理
水解 , 使草甘膦分解成无机磷并使之沉淀 , 从而大量削减 C O D C r 、 总 套 , 控制反应在不同温度进行 , 搅拌 3 0 m i n 。结果如表 4所示 。 磷等。反应原理方程式 : 2 H3 P O 4 - I - 3 C a ( O I  ̄=C a 3 ( P O 4 ) z + 6 H 2 0 。
取5 0 0 m l 原废水 ,用石灰分别调节至不 同 p H值 ,搅拌反应 3 0 mi n , 结果如表 2 所示 。 表2 p H值对草甘膦废水处理效果的影响
编号
草 甘膦废水是化工农药行业生产草甘膦粉剂 、 水剂过程 中排 出的有 机高浓度废水 。废水 中含有高浓度有机磷化合物及 甲醛 , 对生物 有抑 制作 用 , 属不 易生物降解 类。 目前 国内许多企业 的污 水处理设施 主要 采用厌氧或好氧生物工艺 , 处 理草甘膦废水 的效 果并不理想 。因此 , 草甘膦废水 的处 理成 为困扰国 内许多企业 的 难题 。迫切需要 找到一种在生物法前端 , 能有 效削减废水 中污染 从表 2可知 ,随着原废水 p H值的增大 ,用石灰处理后 ,废水 物总量 , 提升废水可生化性 的预处理方法 。国内外 科研 人员为此 C O D C r 、 甲醛 、 总磷逐渐降低 , 去除率逐渐增 大, 但当 p H值达到 1 1 做 了大量 的研究工作 , 目前 主要 采用次氯酸钠氧化 处理[ 1 ] 、 F e 络 卿_ 石 ;一 l ¨㈣ ㈨ 后 , 三种污染物的去除效果已经不明显 , 记录投加的石灰量为 7 . 5 2 %。 合处理日 、 微 电解处理嘲 等。 本研究基于企业综合效益 , 治理污染考
含磷废水处理工艺流程

含磷废水处理工艺流程一、废水收集含磷废水处理的第一步是收集废水。
在这一步,需要确定废水的来源,了解废水的性质,包括废水的浓度、温度、流量等,以及掌握废水的排放规律,以确保后续处理的有效进行。
二、预处理收集的废水需要经过预处理才能进行后续的处理。
预处理的目的是去除废水中的大颗粒杂质和悬浮物,为后续处理提供更为清洁的水质。
预处理的方法包括过滤、沉淀、分离等。
三、调节水质调节水质是为了稳定废水的水质,以便进行后续的除磷反应。
这一步需要将废水的水质参数调整到最佳状态,以便最大限度地去除磷。
常用的调节水质的方法包括加药调节、曝气调节等。
四、除磷反应除磷反应是含磷废水处理的核心环节。
在这一步,需要选择合适的除磷剂,根据废水的性质和除磷要求进行反应,使废水中的磷与除磷剂发生化学反应,形成不溶于水的沉淀物。
常用的除磷剂包括石灰、硫酸铝、铁盐等。
五、沉淀分离沉淀分离的目的是将除磷反应生成的沉淀物与废水分离,使处理后的水得以净化。
这一步通常采用沉淀池或澄清池进行处理,通过静置或加药等方法使沉淀物下沉,上清液即为处理后的废水。
六、泥浆处理泥浆处理是指对沉淀后产生的泥浆进行处理的过程。
在这一步,需要将泥浆进行浓缩和脱水,以减小体积并方便运输和处理。
常用的泥浆处理方法包括自然干燥、机械脱水等。
七、泥饼处置泥饼处置是指对脱水后的泥饼进行处理的过程。
在这一步,需要根据泥饼的性质和当地的环保要求选择合适的处置方式,如土地利用、填埋、焚烧等。
需要注意的是,在处置过程中要确保符合当地的环保要求,防止二次污染。
八、出水检测出水检测是为了确认处理后的水质是否符合排放标准。
在这一步,需要对处理后的水进行检测,包括磷含量、化学需氧量、悬浮物等指标。
如果检测结果符合标准,则可以排放;如果不符合标准,需要对废水进行进一步处理或调整工艺参数。
含磷废水处理工艺流程需要经过多道工序和处理环节,每一环节都对后续的处理效果有着重要的影响。
因此,在实际操作中需要严格按照工艺流程进行操作,并加强监测和管控,确保处理效果和环保要求得到满足。
生态环境部就草甘膦生产企业磷污染防治正式发文

14/852要闻聚焦生态环境部就草甘膦生产企业磷污染防治正式发文 生态环境部要求全面推进固定污染源氮磷达标排放。
草甘膦生产作为精细磷化工中的重要环节,过程复杂、污染排放贡献大,需要予以重点关注。
草甘膦为目前全球产销量最大的农药品种。
2015年,我国草甘膦行业产能约为70万吨,实际产量约为46.3万吨,产能、产量均为全球第一。
草甘膦生产过程中的废水排放相对复杂,其含磷废水包括生产工艺废水和母液。
同时,生产过程还产生大量废酸、低浓度废液及工艺副产物,母液处理过程也将产生部分二次副产物。
草甘膦生产过程中磷元素的利用率只有60%~65%,30%~35%的磷元素进入到母液中,母液若未妥当处理,直接排放将造成严重污染。
草甘膦生产企业污染治理状况及存在问题 1、草甘膦母液处理方式 草甘膦母液由于成分复杂、难降解、有机物含量高,处理难度很大。
国外的草甘膦生产大多采用亚氨基二乙酸法,其草甘膦母液采用浓缩填埋方式处理,由于完全填埋成本太高,在我国很难推广。
我国草甘膦生产企业母液处理一般采用氧化法,主要有焚烧法、高温氧化法、中温氧化法、低温氧化法等。
除焚烧法以外,可在母液处理过程中通过多效蒸发或者膜分离技术回收氯化钠和磷酸盐。
大多数企业将上述几种工艺进行组合处理草甘膦母液,例如:膜分离回收草甘膦,浓缩母液定向转化回收焦磷酸钠;膜分离回收草甘膦,母液催化氧化回收磷酸盐。
2、草甘膦生产企业污染排放存在的问题 一是2010年以前,我国基本采用了将稀母液浓缩后加入草甘膦固体和助剂配成10%草甘膦水剂进行销售的方法,但这也导致大量的无机盐(氯化钠、亚磷酸钠等)进入环境和水体,引起了土壤的板结和盐碱化。
2009年农业农村部、工信部第1158号公告,明确要求10%草甘膦水剂在2009年度停止生产,2011年底停止销售和使用。
这就意味着高浓度母液需要进行有效处理。
较大规模的草甘膦生产企业已经采取措施对母液进行了回收利用,对废水进行了有效处理,但其余停产企业中有未生产、未注销、未建设污染治理或母液回收设施等情况,存在复产排放污染物的风险。
草甘膦废水处理方法

草甘膦有内吸作用,杀草谱广,对多年生深根杂草的地下组织破坏力很强,能达到一般农业机械无法达到的深度,但草甘膦废水中含有高浓度有机磷化合物、可生化性低、具有生物毒性,需要亟待解决,下面就为大家介绍下其处理方法都有哪些,希望对你有所帮助。
草甘膦废水处理方法主要有:1、芬顿氧化法:处理的成本高,污泥多,容易返色,比较难控制,且芬顿处理腐蚀性较大,连水泥池都被腐蚀掉,如果防护不好对人体都有一定程度的腐蚀。
2、光催化氧化法:在可见光或紫外光作用下使有机污染物氧化降解的反应过程。
但由于反应条件所限,光化学氧化降解往往不够彻底,易产生多种芳香族有机中间体,成为光化学氧化需要克服的问题,而通过和光催化氧化剂的结合,可以大大提高光化学氧的效率,但使用的催化剂多为纳米颗粒,回收困难,而且光照产生的电子一空穴对易复合而失活。
3、膜分离技术:通过膜的选择性分离可以完成大分子物质和小分子物质的分离、纯化、浓缩的过程,与过滤的不同点在于膜可以在分子范围内进行分离,膜的分离过程为物理过程,没有相变和化学反应出现,在大分子有机物与无机离子和水等小分子物质的分离上有广泛的应用。
4、吸附法:利用吸附材料的特种吸附功能,对废水中特定污染物进行吸附回收,降低染物浓度,饱和后利用脱附剂对吸附材料进行脱附处理,使吸附材料再生重新利用这是简单直接的废水处理技术,可将草甘膦废水中草甘膦分离提浓,起到资源化回收的目的。
5、吸附工艺:其原理是利用特种吸附材料对要去除的组分或物质进行选择性吸附,当吸附饱和时,再利用特定的脱附剂对吸附材料进行脱附处理,使吸附材料得以再生,如此不断循环进行。
吸附处理废水常规工艺图将废水预先过滤去除悬浮和颗粒物质后进入吸附塔吸附,吸附塔中填充的特种吸附材料能将废水中的草甘膦吸附在材料表面,吸附饱和后利用特定的脱附剂对吸附材料进行脱附处理,使吸附材料得以再生,如此不断循环进行,脱附液可回收草甘膦。
含草甘膦废水吸附处理工艺流程工艺处理效果:采用吸附工艺处理草甘膦废水,资源化程度高:该企业草甘膦母液含量为2.2%,实验处理效果表明采用吸附处理,回收率95%以上。
草甘膦废水治理技术

草甘膦废水治理技术综合利用草甘膦废水主要成分为氯化铵和少量甘氨酸,可以作为肥料以提高水稻的产量,提高谷内粗蛋白的含量,肥效相当于氯化铵,但对农田土壤的影响还有待进一步的研究1。
含有机及无机化合物的废水可以将其与粘土等按一定比例混合,在高温进行煅烧,并将其结合成硅酸盐相的方法进行处理,例如将280克粘土与20mL石灰乳中和的化学废水混合及揉和,这种废水中含有氯化氢38.25g/L、磷酸66.4g/L、甘氨酸35.2g/L、草甘膦46.2g/L及其它有机物质12.2g/L,所得的物质经五小时后经模压、干燥,并在920~930℃煅烧,可以获得高质量的砖块2。
在制备草甘膦中间体双甘膦时产生大量的酸性含氯化钠的废水,可对其或浓缩后加入一定量碳酸氢铵,充分反应,过滤,得到碳酸氢钠和含有氯化铵的滤液。
碳酸氢钠能回收利用于双甘膦的制备,滤液经浓缩后可得到氯化铵副产物3。
草甘膦生产废水回收三乙胺时,当碱化后,即有油层分出,可分出油层,油层中的三乙胺的浓度可达85%。
对油层和水层分别进行分馏回收三乙胺,较之直接进行分馏回收三乙胺具有回收率高的优点,可降低草甘膦生产过程中三乙胺单耗4。
草甘膦生产废水中的草甘膦可以用氯化钙溶液进行沉淀处理,所得沉淀经酸化及软化后所得的溶液可以达到产生企业所要求的标准,草甘膦的回收率达95%,COD去除率达到95%5。
物化法天然的水滑石或经500℃煅烧过的水滑石是草甘膦的良好吸附剂,但对疏水性的除草剂缺乏良好的吸附作用6。
草甘膦废水可以用活性氧化铝Al-1进行吸附处理,当草甘膦的质量浓度为10000mg/L,COD为30000mg/L时,用10mL活性氧化铝Al-1对100mL废水进行处理,草甘膦的去除率达>98%,COD去除率达>50%7。
草甘膦生产废水可以用吸附法进行处理,吸附剂以40~75目的果壳类活性炭为最有效。
活性炭对草甘麟的吸附能力随pH值升高而显著降低, 适宜的pH值范围为1.0~2.0,废水中的盐份和有机胺类杂质对活性炭吸附草甘麟的能力有显著影响。