四格表卡方检验

合集下载

四格表卡方检验

四格表卡方检验
四格表卡方检验
本章结构
第一节 四格表 2检验
第二节 四格表确切概率法
第三节 R×C 表资料的 2检验
第四节 配对四格表资料的 McNemar检验
第五节 多个样本率的两两比较
2023年3月29日
第一节 四格表 2检验
卡方检验的基本思想 四格表专用公式 四格表卡方检验的应用条件 校正卡方检验
2023年3月29日
表8-4 两组疗效比较
05水准不拒绝H0,不能认为两法疗效不同。
第五节 多个样本率的两两比较
2023年3月29日
衡量理论数与实际数的差别
检验统计量 2 值:
2R,C(ArcTrc)2
( AT) 2
T r,c1
rc
T
2023年3月29日
2(27125.324)2(522.76)2(7491.76)2
Statistics→Crosstable(交叉表) 指定 Row(s):组别 Columns(s):疗效 击Statistics按钮选择Chi-square。
2023年3月29日
输出结果
理论数小于5的格子数为2(占50%),最小理论数为4.18 卡方检验:有效观测数 n=71>40,有两个格子理论数T<5,故用
2 检验
2 检验(Chi-square test)是现代统计学的
创始人之一,英国人K . Pearson(1857-1936 )于1900年提出的一种具有广泛用途的统计方 法,可用于两个或多个率间的比较,计数资料 的关联度分析,拟合优度检验等等。
本章仅限于介绍两个和多个率或构成比比较
的 2检验。
2023年3月29日
相反
2023年3月29日
1.建立数据文件

40第四节-四格表的卡方检验

40第四节-四格表的卡方检验
例2: 教科书第238页。
第四节 四格表旳卡方检验
• 一、独立样本四格表旳卡方检验 • 独立样本四格表旳χ2检验,就是最简朴旳双向表 即22表旳χ2检验。它既能够用缩减公式来计算χ2值, 又能够用χ2检验旳基本公式来计算χ2值。
例1: 教科书第240页。
例如: 教科书第242页。
例如: 教科书第244页。
关键词:普小教师 有特殊教育需要旳学生 随班就读态度

2.校正χ2值旳计算
• 在有关样本四格表中,假如(b+c)<30或 (b+c)<50(即要求比较严格),则要对χ2值进 行亚茨连续性校正。其校正公式为:
2 ( b c 1)2
bc
例1: 教科书第246页。
北京、香港两地普小教师对有特殊教育需要学生
随班就读态度旳比较研究
韦小满、袁文得、刘全礼
摘要:从北京、香港两个地域旳一般小学中随机抽取了 225名教师进行问卷调查。成果表白,在对有特殊教育需要学 生在一般班级随班就读旳基本态度上,香港地域持赞同态度旳 教师百分比高于北京地域。但对各类有特殊教育需要学生旳随 班就读,两地教师旳态度既有相同旳方面,也有不同旳方面。 两地教师对随班就读旳接受程度明显受学生旳残疾类型和残疾 程度旳影响。

四格表卡方检验结果解读

四格表卡方检验结果解读

四格表卡方检验结果解读
卡方检验是一种统计方法,用于判断两个分类变量之间是否存在关联性。

四格表卡方检验是卡方检验的一种特殊形式,常用于比较两个变量的分布,特别是当变量有两个分类且分别为两个互斥的水平时。

四格表卡方检验的结果解读主要包括卡方值、自由度和显著性水平等。

卡方值是用于衡量观察到的频数与期望频数之间的偏离程度。

自由度是指用于计算卡方值的度量数量,计算方法为(行数-1)*(列数-1)。

显著性水平是指判断卡方值是否显著的阈值,通常使用0.05或0.01作为判断标准。

当卡方值显著小于显著性水平时,我们可以认为两个变量之间不存在关联性。

这意味着两个变量的分布在统计上没有差异,变量之间的关联是由于随机差异引起的。

反之,当卡方值显著大于等于显著性水平时,我们可以认为两个变量之间存在关联性。

这意味着两个变量的分布在统计上存在差异,变量之间的关联是非随机的。

需要注意的是,卡方检验只能表明两个变量之间是否存在关联性,不能确定关联性的方向和强度。

如果想要探究更深入的关系,可以使用其他统计方法,如相关分析或回归分析等。

四格表卡方检验是一种常用的统计方法,用于判断两个变量之间的关联性。

通过解读卡方值、自由度和显著性水平,可以得出两个变量之间是否存在关联性的结论。

然而,卡方检验只能表明是否存在关联性,不能确定其方向和强度。

如需深入了解两个变量的关系,可以考虑其他统计方法。

四格表卡方检验

四格表卡方检验
• (1)在spss中调出数据文件Li8-2.sav • (2)频数变量加权。 • 从菜单选择 • Data→Weight Cases • 弹出Weight Cases对话框,选择Weight Cases by框,框内选入“频数”,即指定该变量为频数变量
第29页/共42页
• (3) 2检验 从菜单选择 Analyze→Descriptive Statistics→Crosstable(交叉表) 指定 Row(s):组别 Columns(s):疗效 击Statistics按钮选择Chi-square。
第30页/共42页
输出结果
理论数小于5的格子数为2(占50%),最小理论数为4.18 卡方检验:有效观测数 n=71>40,有两个格子理论数T<5,故用
校正卡方检验2 =2.746,P=0.098,不能认为两药疗效不同。
第31页/共42页
第二节 四格表确切概率法
四格表确切概率法基本思想 实例
第32页/共42页
36
2
38
合计
62
9
71
第25页/共42页
例8-2 对表8-4资料推断两组的疗效有无差别
(1) H0: 1 2 ,即两组疗效相同
H1: 1 2 ,即两组疗效不同 , α=0.05
(2)计算2值,最小理论数
9 33 T12 71 4.18
因有理论数1<T<5,n>40,故用校正2检验
第26页/共42页
一致性检验 危险度分析
配对四格表卡 方检验
第20页/共42页
主要输出结果
校正只适用于四格表 理论数小于5的格子数为0(占0%),最小理论数为8.24
第21页/共42页
结果分析

简述四格表资料卡方检验的应用条件

简述四格表资料卡方检验的应用条件

简述四格表资料卡方检验的应用条件一、四格表资料卡方检验的应用条件。

(一)样本具有代表性(二)可用t检验。

(三)四格表资料卡方检验。

(四)资料中无重大缺失值,资料无偏斜,独立样本均值和方差相等。

二、三格表资料卡方检验的应用条件。

(一)有3个或3个以上数据可以作为参考值。

(二)可用t检验。

三、四格表资料卡方检验的适用范围。

(一)使用前提:被检验的资料必须是正态分布。

(2)当非正态分布时,只能利用t检验来判断结果。

(二)使用说明:如果使用三格表资料进行卡方检验时,可以通过做差运算处理后,在用t检验对未知参数值进行判断。

如果需要将数据进行调整之后再进行卡方检验,就要做比例因子的运算。

在我们做差运算之后,必须将比例因子加到已知数据中去,并保证两者同为1。

(三)例题:已知样本的标准差和方差如下:一格表资料卡方检验:只有一个样本组, X=3, Y=4, Z=5,则Y=0, Z=0的概率为多少?二格表资料卡方检验:使用的样本组有4个样本,且X=1, Y=1, Z=2,则Z=1的概率为多少?三格表资料卡方检验:四格表资料卡方检验:假设这四组数据具有如下特点:二、三格表资料卡方检验的应用条件。

(一)有3个或3个以上数据可以作为参考值。

(二)可用t检验。

二格表资料卡方检验:四格表资料卡方检验:四格表资料卡方检验: (三)例题:某机械厂2000年产量及职工人数如下表所示,试计算各组职工年龄之间的关系。

四格表资料卡方检验:四格表资料卡方检验:已知数据X=5, Y=6, Z=7,则Y=8的概率为多少?三格表资料卡方检验:使用的样本组有3个样本,且X=1, Y=1, Z=2,则Z=1的概率为多少?四格表资料卡方检验:四格表资料卡方检验:已知数据X=6, Y=7, Z=8,则Y=9的概率为多少?三格表资料卡方检验:使用的样本组有3个样本,且X=1, Y=1, Z=2,则Z=1的概率为多少?四格表资料卡方检验: (1)假设四个样本X=1, Y=1, Z=1,则Y=8的概率为多少? (2)使用三格表资料进行卡方检验,四格表资料卡方检验。

四格表卡方检验结果解读

四格表卡方检验结果解读

四格表卡方检验结果解读在统计学中,卡方检验是一种常用的统计方法,用于检验两个或多个分类变量之间是否存在关联性。

四格表卡方检验是其中的一种形式,通常用于分析两个分类变量的关联性。

四格表是由两个分类变量所组成的一个二维交叉表,其中每个分类变量各有两个水平(类别)。

卡方检验的目的是判断这两个分类变量是否独立,即变量之间是否存在关联性。

卡方检验的原假设为“两个变量之间独立”,备择假设则为“两个变量之间不独立”。

进行卡方检验的关键是计算出卡方值,并将其与临界值进行比较。

若计算得到的卡方值大于临界值,则认为两个变量之间存在显著关联性;反之,若计算得到的卡方值小于或等于临界值,则认为两个变量之间不相关。

卡方值的计算是基于四格表中的观察频数与期望频数的比较。

观察频数是指四格表中每个单元格中的实际观察到的频数,而期望频数是指基于假设模型下,每个单元格中的预期频数。

解读四格表卡方检验的结果时,首先需要查看输出的卡方检验统计量和自由度。

卡方检验统计量通常表示为χ2(读作“卡方”),其数值越大,说明两个变量之间的差异越显著。

自由度表示独立变量的自由度和独立变量水平数目之间的关系。

自由度越大,说明检验结果越可靠。

在解读卡方检验结果时,需要关注的重要指标有四个:卡方值,自由度,P值和显著性水平。

卡方值越大,表明差异越显著,与假设模型越不符合。

自由度越大,卡方值越大,相应的P值越小,表明差异越显著。

P值是在给定假设模型成立的条件下,观察到卡方值或更极端的情况发生的概率。

一般而言,当P值小于等于0.05时,我们可以拒绝原假设,认为两个变量之间存在显著关联性。

当P值大于0.05时,我们无法拒绝原假设,即无法得出两个变量之间存在关联性的结论。

显著性水平是事先确定的一个阈值,通常取0.05。

当P值小于等于显著性水平时,拒绝原假设;当P值大于显著性水平时,无法拒绝原假设。

在解读四格表卡方检验结果时,需要同时综合考虑卡方值、自由度、P值和显著性水平这四个指标来进行判断。

卡方检验四格表计算举例

卡方检验四格表计算举例

卡方检验四格表计算举例卡方检验是一种统计学方法,用于确定观察到的频数与期望频数之间的差异是否显著。

它常常应用于四格表(4×2)、二项分布(2×2)和多格表(大于4×2)等情况中。

下面以一个四格表的例子来进行卡方检验的计算。

假设我们进行了一项实验,想要研究两种不同的投放广告方式对销售额的影响。

为了测试这个假设,我们随机选择了两组参与者,每组30人。

一组参与者暴露在广告A下,另一组参与者暴露在广告B下。

我们记录了两组参与者中购买产品的人数如下:广告A广告B购买1020未购买2010根据这个表格,我们可以计算期望频数,然后计算卡方值和p值。

首先,我们需要计算每个格子的期望频数。

期望频数是根据总样本数和每个组的比例计算得到的。

总样本数为60(30+30),购买产品人数比例为(10+20)/60,未购买产品人数比例为(20+10)/60。

广告A(期望)广告B(期望)购买10(15)20(15)未购买20(15)10(15)接下来,我们计算卡方值。

卡方值的计算公式为:卡方值=∑((观察频数-期望频数)^2/期望频数)。

卡方值=((10-15)^2/15)+((20-15)^2/15)+((20-15)^2/15)+((10-15)^2/15)=5/3+5/3+5/3+5/3=20/3≈6.67最后,我们需要计算p值,用于判断卡方值的显著性。

p值表示在假设成立的情况下,观察到大于或等于当前卡方值的频数出现的概率。

p值可以通过查表或计算软件进行计算。

在这里,我们使用计算软件得到p值≈0.009,这是根据自由度为1的卡方分布得到的。

最后我们需要比较p值和显著性水平(通常为0.05)来判断原假设(两种广告方式对销售额无影响)是否成立。

由于p值(0.009)小于显著性水平(0.05),我们可以拒绝原假设,并得出结论:两种广告方式对销售额有显著影响。

以上是一个卡方检验四格表的计算举例。

根据具体的数据和研究问题,我们可以通过类似的步骤进行卡方检验的计算和解释。

四格表分析

四格表分析

2 P
k i 1
( Ai
Ti )2 Ti
服从自由度为k-1旳卡方分布。
即:
2 P
2,v,拒绝H0。
上述卡方检验由此派生了不同应用背景旳多种问 题旳检验,尤其最常用旳是两个样本率旳检验等。
措施原理
牙膏类型 含氟牙膏 一般牙膏 合计
表 6.2 使用含氟牙膏与一般牙膏儿童的龋患率
患龋齿人数 70(76.67) 45(38.33) 115
此时,能够考虑边际卡方检验,见P130
注意事项
配对四格表卡方与成组设计卡方
因为配对设计旳资料同一对观察成果间一般是非独 立旳,而成组设计旳资料一般能够以为是独立旳, 所以配对四格表资料不能用成组设计旳2或 Fisher检验旳,而要用配对设计旳2或配对设计 旳直接计算概率法进行检验。
Poisson分布资料推断
累计概率 0.0106 0.0895 0.3138 0.6306 0.8726 0.9745 0.9974 0.9999 1.0000
*本例现有样本情况 d=6。
❖ 然后将其中不大于等于既有样本概率旳概率值相加,即为
P值:
▪ 本例中P值=P(0)+ P(6)+P(7)+P(8)=0.0361<0.05
措施原理
❖ 理论频数
▪ 基于H0成立,两样本所在总体无差别旳前提下
计算出各单元格旳理论频数来
TRC
nR nC n
牙膏类型 含氟牙膏 一般牙膏 合计
患龋齿人数 70(76.67) 45(38.33) 115
未患龋齿人数 130(123.33) 55(61.67) 185
调查人数 200 100 300
❖ 使用不同旳牙膏并不会影响龋齿旳发生(两个分 类变量间无关联) ▪ 两变量旳有关分析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五、小期望次数的连续性校正
如果个别单元格的理论次数小于5,处理 方法有以下四种:

1、单元格合并法 2、增加样本数 3、去除样本法 4、使用校正公式
六、应用卡方检验应注意取样设计
注意取样的代表性
主要内容
第一节 第二节 第三节 第四节 卡方检验的原理 配合度检验 独立性检验 同质性检验
配合度检验
配合度检验主要用于检验单一变量的实 际观察次数分布与某理论次数分布是否 有差别。
一、配合度检验的一般问题
统计假设

虚无假设:实际数等于理论数 备择假设:实际数不等于理论数 通常为分类数减去1 根据某种经验或理论
自由度的确定

理论次数的计算

二、配合度检验的应用
1、检验无差假说 理论次数=总数*1/分类项数 例题p.332
四格表的Fisher精确概率检验方法


在理论次数小于5时,也可用费舍精确概率检验法, 代替卡方检验法。 公式和例题(p.350)
三、R*C表独立性检验
基本方法与四格表的独立性检验相同。
四、多重列联表分析
如果有三个自变量,可以将其中一个人 口学变量看作控制变量,对于控制变量 的不同水平进行单个列联表分析。
举例:正态分布吻合性检验
例题:p.336
四、比率或百分数的配合度检验
如果计数资料用百分数表示,最后计算 出来的卡方值要乘以100/N后,再与查表 所得的临界值进行比较。 例题:p.337
五、二项分类的配合度检验与比 率显著性检验的一致性
二者实质相同,只是表示方式不同。 相比较而言,配合度检验计算方法更为 简单。 例题:p.338

统计方法的选择(不同情况有简便公式) 结果及解释

差异显著说明有关联
二、四格表的独立性检验
独立样本或简捷公式 例题:p.347
相关样本四格表卡方检验


用简捷公式较为简单 例题:p.349
二、四格表的独立性检验
四格表卡方值的近似校正

当四格表的任一格理论次数小于5时,要用Yates连续 性校正公式计算卡方值(具体公式见书p.349)。
第一节 第二节 第三节 第四节 卡方检验的原理 配合度检验 独立性检验 同质性检验
独立性检验
独立性检验主要用于两个或两个以上因素多项 分类的计数资料分析,也就是研究两类变量之 间的关联性和依存性问题。 如果两变量无关联即相互独立,说明对于其中 一个变量而言,另一变量多项分类次数上的变 化是在无差范围之内;如果两变量有关联即不 独立,说明二者之间有交互作用存在。
独立性检验

同质性检验

三、卡方检验的基本公式
( f0 fe ) fe
2
2
f0为实际观察次数 fe为理论次数
四、期望次数的计算
在配合度检验时,期望值为总体的实际 数值,或是某一理论存在的数值。 在独立性检验和同质性检验中,如果两 个变量或两个样本无关联时,期望值为 列联表中各单元格的理论次数,即各个 单元格对应的两个边缘次数的积除以总 次数。
六、卡方的连续性校正
当某一期望次数小于5时,应该利用校正 公式计算卡方值。 2 ( f f 1 / 2 ) 0 e 2 公式(p.340) fe 例题:p.341 如果三项分类或更多时,出现某一单元 格内的理论次数小于5的情况,则不需要 进行校正也能得到较为准确的结果。
主要内容
若多个列联表呈现的结果一致,可以将 数据合并;若不一致,则需要各自进行 分别的解释。
主要内容
第一节 第二节 第三节 第四节 卡方检验的原理 配合度检验 独立性检验 同质性检验
同质性检验
同质性检验目的在于检验不同人群母总体在某 一个变量的反应是否具有显著差异。 同质性检验与独立性检验的方法基本相同,但 检验的目的不同。
独立性检验的两个母总体指的是两个变量所代 表的概念母总体,而非人口学上的母总体。
一、独立性检验的一般问题与步骤
统计假设

虚无假设:多因素之间独立 备择假设:多因素之间有关联或者说差异显著
单元格所对应的行的总合乘以对应的列的总合,然后 再除以总数 df=(R-1)(C-1)
理论次数的计算

自由度的确定
第十章 卡方检验
教科所 张念成
教学目标
了解卡方检验的一般原理; 掌握卡方检验的具体方法,例如配合度 检验、独立性检验和同质性检验。
卡方检验适用情况
对计数数据进行统计分析,应该用卡方 检验。 如果测量数据的总体分布形态不清楚, 也可以用卡方检验等非参数检验的方法 进行分析。
主要内容
第一节 第二节 第三节 第四节 卡方检验的原理 配合度检验 独立性检验 同质性检验


独立性检验是对同一样本的若干变量关联情形的检 验,目的在于判明数据资料是相互关联还是彼此独 立。 同质性检验是对两个样本同一变量的分布状况的检 验,是对几个样本数据是否同质作出统计决断。
一、单因素分类数据的同质性检验
步骤和例题(p.355)
二、列联表形式的同质性检验
方法与单因素的相同。 具体方法和例题(p.357)


实际频数:指在实验或调查中得到的计数资 料。 理论次数:指根据概率原理、某种理论、某 种理论次数分布或经验次数分布计算出来的 次数。
一、卡方检验的假设
分类相互排斥、互不包容; 观测值相互独立; 每一个单元格中的期望次数至少为5。
二、卡方检验的类别
配合度检验

主要用来检验一个因素多项分类的实际观察数与某 理论次数是否接近。 用来检验两个或两个以上因素各种分类之间是否有 关联或是否具有独立性的问题。 主要目的在于检定不同人群母总体在某一个变量的 反应是否具有显著差异。
2、检验假设分布的概率 理论次数的计算按照理论分布求得 例题p.333
三、连续变量分布的吻合性检验
对于连续随机变量的计量数据,有时在 实际研究中预先不知道其总体分布,而 是要根据对样本的次数分布来判断是否 服从某种指定的具有明确表达式的理论 次数分布。 关于分布的假设检验方法有很多,运用 卡方值所做的配合度检验是最常用的一 种。
主要内容
第一节 第二节 第三节 第四节 卡方检验的原理 配合度检验 独立性检验 同质性检验
为什么叫作卡方检验
计数数据一般应用属性统计方法,因为 这类数据是按照事物属性进行多项分类 的。 而且,对这些计数数据的统计分析是根 据卡方分布进行的。
卡方检验的功能
处理一个因素两项或多项分类的实际观 察频数与理论频数分布是否相一致的问 题,或者说有无显著差异的问题。 关于实际次数和理论次数
相关文档
最新文档