运筹学(胡运权)第三版存贮论习题答案ppt课件
运筹学11-存储论

第11章存储论存储论也称库存论(Inventory theory),是研究物资最优存储策略及存储控制的理论。
物资的存储是工业生产和经济运转的必然现象。
任何工商企业,如果物资存储过多,不但积压流动资金,而且还占用仓储空间,增加保管费用。
如果存储的物资是过时的或陈旧的,会给企业带来巨大经济损失;反之,若物资存储过少企业就会失去销售机会而减少利润,或由于缺少原材料而被迫停产,或由于缺货需要临时增加人力和费用。
寻求合理的存储量、订货量和订货时间是存储论研究的重要内容。
§1 确定型经济订货批量模型本节假定在单位时间内(或称计划期)的需求量为已知常数,货物供应速率、订货费、存储费和缺货费已知,其订货策略是将单位时间分成n等分的时间区间t,在每个区间开始订购或生产相同的货物量,形成t循环储存策略。
在建立储存模型时定义了下列参数及其含义。
D:需求速率,单位时间内的需求量(Demand per unit time)。
P:生产速率或再补给速率(Production or replenishment rate)。
A:生产准备费用(Fixed ordering or setup cost)。
C:单位货物获得成本(Unit acquisition cost)。
H:单位时间内单位货物持有(储存)成本(Holding cost per unit per unit time)。
B:单位时间内单位货物的缺货费用(Shortage cost per unit short per unit time)。
π:单位货物的缺货费用,与时间无关(Shortage cost per unit short, independent of time)。
t:订货区间(Order interval),周期性订货的时间间隔期,也称为订货周期。
L:提前期(order lead time),从提出订货到所订货物且进入存储系统之间的时间间隔,也称为订货提前时间或拖后时间。
《运筹学研究生辅导课件》第五章存储论习题解答.docx

第五章习题解答1.某商品单位成本为5元,每天存贮费为成本的0. 1%,每次订货费为10 元。
已知对该商品的需求是100件/天,不允许缺货。
假设该商品的进货可以随时实现。
问应怎样组织进货,才能最经济。
解根据题意,其屈于“不允许缺货,补充时间极短”的经济订货批量存贮模型,可知K二5 元/件,C[=5X0. 1%二0. 005 元/件•天,Cg^lO 元,R二100 件/天。
因此有=/?/*=100X6. 32=632 (件)C= 72x0.005x10x100 =3. 16 (元/天)所以,应该每隔6. 32天进货一次,每次进货该商品632件,能使总费用(存贮费和订货费Z和)为最少,平均约3.16元/天。
若按年计划,则每年大约进货365/6. 32^58 (次),每次进货630件。
2.某仪表厂今年拟生产某种仪表30000个。
该仪表屮有个元件需要向仪表元件厂订购。
每次订购费用50元,该元件单价为每只0.5元,全年保管费用为购价的20%o (1)试求仪表厂今年对该元件的最佳存贮策略及费用。
(2)如明年拟将这种仪表产量提高一倍,则所需元件的订购批量应比今年增加多少?订购次数又为多少?解:(1)根据题意,其属于“不允许缺货,补充时间极短”的经济订货批量存贮模型。
确定以1年为时间单位,且R二30000只/年,C3二50元/次,K二0. 5 元/只;C| 二0. 2K=0. 1 元/只•年。
因此有最佳经济批量为最佳订货周期为心余號^83(年)最小平均总费用为C' = = 72x0.1x50x30000 =548 (元)(2)明年仪表产量提高一倍,则R 二60000只/年,其他己知条件不变,可得:因此所需元件订购批量比今年增加:7746-5477=2269 (只)全年订购次数:R n =—— :=6需=7. 75(次)比较n 二7和n 二8时的全年运营费用:n 二7时,订购周期t=l/7,年运营费用:⑴心厂疇出心79(元)n 二8时,订购周期t 二1/&年运营费用:C =60000x0,1+50x8=775 (元) 2x8比较两者的年运营费用,取"8,即全年订购8次,毎次订购批量60000/8 =7500 只。
运筹学PPT完整版

(1)当任务或目标确定后,如何统筹兼顾,合理安排,用 最少的资源 (如资金、设备、原标材料、人工、时间等) 去完成确定的任务或目标 (2)在一定的资源条件限制下,如何组织安排生产获得最 好的经济效益(如产品量最多 、利润最大.)
线性规划问题的数学模型
例1.1 如图所示,如何截取x使铁皮所围成的容积最 大?
(2)
x j 0, j 1,2,, n (3)
求解线性规划问题,就是从满足约束条件(2)、(3)的方程组 中找出一个解,使目标函数(1)达到最大值。
线性规划问题的数学模型
Page 27
可行解:满足约束条件②、③的解为可行解。所有可行解 的集合为可行域。
最优解:使目标函数达到最大值的可行解。
绪论
本章主要内容: (1)运筹学简述 (2)运筹学的主要内容 (3)本课程的教材及参考书 (4)本课程的特点和要求 (5)本课程授课方式与考核 (6)运筹学在工商管理中的应用
运筹学简述
Page 2
运筹学(Operations Research) 系统工程的最重要的理论基础之一,在美国有人把运筹
学称之为管理科学(Management Science)。运筹学所研究的 问题,可简单地归结为一句话: “依照给定条件和目标,从众多方案中选择最佳方案” 故有人称之为最优化技术。
Page 3
运筹学的主要内容
Page 4
数学规划(线性规划、整数规划、目标规划、动态 规划等) 图论 存储论 排队论 对策论 排序与统筹方法 决策分析
本课程的教材及参考书
Page 5
❖选用教材 ➢ 《运筹学基础及应用》胡运权主编 哈工大出版社
❖参考教材 ➢ 《运筹学教程》胡运权主编 (第2版)清华出版社 ➢ 《管理运筹学》韩伯棠主编 (第2版)高等教育出版社 ➢ 《运筹学》(修订版) 钱颂迪主编 清华出版社
运筹学 胡运权 课后答案课件

m
a ij y i c j
i1
yi 0
y
无
i
约
束
( j 1,..., n1 )
( j n1 1,..., n ) (i 1,...m 1 ) (i m 1 1,...m )
运筹学 胡运权 课后答案
2.4
运筹学 胡运权 课后答案
运筹学 胡运权 课后答案
2.9
运筹学 胡运权 课后答案
(d)
对偶问题:
max w 2y1 3 y2 5 y3
y1 2y2 y3 2
3 y1
y2 4 y3 2
4 y1 3 y2 3 y3 4
y1 0, y2 0, y3取 值 无 约 束
对偶问题:
m
m i n w b i y i i1
m
a ij y i c j
i1
(1,2章)
运筹学 胡运权 课后答案
图解法:
当 x2 2 x 11 5z经 过 运筹点 学 胡( 运1 权, 课3 2 后) 答案时 , z最 大 。
单纯形法:添加松弛变量化为标准形式,
max z 10x1 5x2 0x3 0x4
3x1 5 x1
4x2 2x2
x3
x4
9 8
x
j
0
( j 1, 2, 3, 4)
运筹学 胡运权 课后答案
1.6(a)
运筹学 胡运权 课后答案
运筹学 胡运权 课后答案
1.7
运筹学 胡运权 课后答案
1.8
(P36公式)表1-24中,x1,x5为基变量,g=1, h=0,l=0。
运筹学 胡运权 课后答案
1.11
运筹学 胡运权 课后答案
2024版清华大学出版《运筹学》第三版完整版课件

要点三
金融服务与投资管理
在金融服务和投资管理中,存储论可用 于优化资金配置和投资组合,降低风险 和提高收益。例如,通过定期订货模型 的运用,可以制定合理的投资策略和资 产配置方案,实现资产的保值增值和风 险控制。
2024/1/28
31
07
排队论
2024/1/28
32
排队论的基本概念
2024/1/28
清华大学出版《运筹 学》第三版完整版课
件
2024/1/28
1
目录
2024/1/28
• 绪论 • 线性规划 • 整数规划 • 动态规划 • 图与网络分析 • 存储论 • 排队论
2
01
绪论
2024/1/28
3
运筹学的定义与发展
运筹学的定义
运筹学是一门应用数学学科,主要研究如何在有限资源下做出最优决策,以最 大化效益或最小化成本。
目标函数
表示决策变量的线性函数,需要最大化或最 小化。
约束条件
表示决策变量需要满足的线性等式或不等式。
2024/1/28
决策变量
表示问题的未知数,需要在满足约束条件的 情况下求解目标函数的最优值。
8
线性规划问题的图解法
01
可行域
表示所有满足约束条件的决策变量构成的集合。
2024/1/28
02
目标函数等值线
2024/1/28
34
单服务台排队系统
M/M/1排队系统
到达间隔和服务时间均服从负指数分布的单服务台排队系 统。
M/D/1排பைடு நூலகம்系统
到达间隔服从负指数分布,服务时间服从确定型分布的单 服务台排队系统。
表格。
10
《运筹学基础及应用》胡运权主编,哈工大出版社,完整版ppt课件

真实系统
数据准备
系统分析 问题描述
模型建立 与修改
模型求解 与检验
结果分析与 实施
本课程授课方式与考核
讲授为主,结合习题作业
学科总成绩
平时成绩 (40%)
期末成绩 (60%)
课堂考勤 (50%)
平时作业 (50%)
Page 8
运筹学在工商管理中的应用
Page 9
运筹学在工商管理中的应用涉及几个方面: 1. 生产计划 2. 运输问题 3. 人事管理 4. 库存管理 5. 市场营销 6. 财务和会计
基可行解
线性规划问题的数学模型
Page 30
例1.4 求线性规划问题的所有基矩阵。
maxZ 4x1 2x2 x3
5x110x1x2
x3 6x2
x4 2x3
3 x5
2
x
j
0,
j
1,
,5
解: 约束方程的系数矩阵为2×5矩阵
5 1 A1 0 6
1 2
1 0
0 1
r(A)=2,2阶子矩阵有10个,其中基矩阵只有9个,即
5 1
1 1 5 0 1 1
B 1 106 B 2 6 2 B 3 101 B 4 6 0
5 1 1 0
1 1 1 0
1 0
B 5 100 B 6 2 1 B 7 2 0 B 8 6 1 B 9 0 1
图解法
Page 31
线性规划问题的求解方法
一般有 两种方法
图解法 单纯形法
两个变量、直角坐标 三个变量、立体坐标
优化炼油程序及产品供应、配送和营销
每年节约成本600万美元 每年节约成本7000万
优化商业用户的电话销售中心选址
【优质】运筹学第三版课后习题答案-推荐word版 (13页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==运筹学第三版课后习题答案篇一:运筹学第3版熊伟编著习题答案运筹学(第3版)习题答案第1章线性规划 P36第2章线性规划的对偶理论 P74 第3章整数规划 P88 第4章目标规划P105第5章运输与指派问题P142 第6章网络模型 P173 第7章网络计划 P195 第8章动态规划 P218 第9章排队论 P248 第10章存储论P277 第11章决策论P304第12章多属性决策品P343 第13章博弈论P371 全书420页第1章线性规划1.1 工厂每月生产A、B、C三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.310和130.试建立该问题的数学模型,使每月利润最大.【解】设x1、x2、x3分别为产品A、B、C的产量,则数学模型为maxZ?10x1?14x2?12x3?1.5x1?1.2x2?4x3?2500?3x?1.6x?1.2x?140023?1? ?150?x1?250??260?x2?310?120?x3?130???x1,x2,x3?01.2 建筑公司需要用5m长的塑钢材料制作A、B两种型号的窗架.两种窗架所需材料规格及数量如表1-24所示:问怎样下料使得(1)用料最少;(2)余料最少.【解设xj(j=1,2,…,10)为第j种方案使用原材料的根数,则(1)用料最少数学模型为minZ??xjj?110?2x1?x2?x3?x4?800??x2?2x5?x6?x7?1200 ??x3?x6?2x8?x9?600?x?2x?2x?3x?9007910?4??xj?0,j?1,2,?,10(2)余料最少数学模型为minZ?0.5x2?0.5x3?x4?x5?x6?x8?0.5x10?2x1?x2?x3?x4?800??x2?2x5?x6?x7?1200??x3?x6?2x8?x9?600?x?2x?2x?3x?9007910?4??xj?0,j?1,2,?,101.3某企业需要制定1~6月份产品A的生产与销售计划。
运筹学习题解答PPT课件

研究课题P44:1.4(财务计划)
同理可得第三年,第四年,第五年的约束条件分别为: 0.08875B1 +0.055B2 +0.1175B3 +1.04S2 -S3 =222 0.08875B1 +0.055B2 +0.1175B3 +1.04S3 -S4 =231 0.08875B1 +0.055B2 +0.1175B3 +1.04S4 -S5 =240 第六年的现金收入除了债券回报和第五年存款的本息之外,由于债券
运筹学习题解说 -------------第4小组
小组成员介绍
背景
文本和线条
阴影
第4小组 标题文本
填充
强调
超链接
已访超链接
Page 2
研究课题P44:1.4(财务计划)
1.4某公司建立了一项提前退休计划,作为其公司重组的一部分。在自愿签约期结 束前,68位雇员办理了提前退休手续。因为这些人的提前退休,在未来的8年里, 公司将承担以下责任,每年年初支付的现金需求如下表所示:
问:如何使满足退休计划带来的8年期债务 所需资金最少?
Page 4
研究课题P44:1.4(财务计划)
解:
该公司财务人员面临的决策包括:投入的资金数量、第一年购买的债券 数量,以及八年内每年年初存入银行的资金,这些变量也是本问题的 决策变量。
①决策变量 设退休计划所形成的8年期债务所需第一年的总金额为F,第一年购买三
Page 13
谢谢!!!
.
14
(1+0.08875)B1 +0.055B2 +0.1175B3 +1.04S5-S6 =195 (1+0.055)B2 +0.1175B3 +1.04S6 -S7=225 (1 +0.1175)B3 +1.04S7 -S8 =255