运筹学----胡运权-课后答案PPT课件

合集下载

运筹学PPT完整版胡运权

运筹学PPT完整版胡运权

C
m n
基可行解:满足变量非负约束条件的基本解,简称基可
行解。
可行基:对应于基可行解的基称为可行基。
可 行 解
非可行解
基解
基可行解
线性规划问题的数学模型
例1.4 求线性规划问题的所有基矩阵。
Page 30
解: 约束方程的系数矩阵为2×5矩阵 r(A)=2,2阶子矩阵有10个,其中基矩阵只有9个,即
运筹学的历史
“运作研究(Operational Research)小组”:解决复 杂的战略和战术问题。例如:
1. 如何合理运用雷达有效地对付德军德空袭 2. 对商船如何进行编队护航,使船队遭受德国潜
艇攻击时损失最少; 3. 在各种情况下如何调整反潜深水炸弹的爆炸深
度,才能增加对德国潜艇的杀伤力等。
Page 4
线性规划问题的数学模型
约束方程的转换:由不等式转换为等式。
aij x j bi
aij x j xni bi
xni 0 称为松弛变量
aij x j bi
aij x j xni bi
xni 0 称为剩余变量
变量 x j 的变0换 可令 xj x,j 显x然j 0
Page 23
用 x3 x3 替换 x3 ,且 x3 , x3 0
线性规划问题的数学模型
Page 25
(2) 第一个约束条件是“≤”号,在“≤”左端加入松驰变量x4, x4≥0,化为等式;
(3) 第二个约束条件是“≥”号,在“≥”左端减去剩余变量x5, x5≥0;
(4) 第3个约束方程右端常数项为-5,方程两边同乘以(-1),将右 端常数项化为正数;
x
v a 2x2 x a dv 0 dx
2(a 2 x) x (2) (a 2 x)2 0

运筹学胡运权第五版课件(第二章)分析

运筹学胡运权第五版课件(第二章)分析

2 x3 4 x4 4 x2 x3 x4 6
x1 0, x2,x3 0, x4无约束
对偶问题:max w 5 y1 4 y2 6 y3
y1 2 y2
2
s.t.
y1 3 y1
2 y2
y3 y3
3 5
y1 4 y2 y3 1
y1 0, y2 0, y3无约束
zmax=wmin .
证: 设X*是原问题的最优解,则所有检验数都非正。
即 = C- CB B-1 A 0 ∴ CB B-1 A C 令 CBB-1 = Y* T,有 Y*T A C, 转置得A TY* CT -----------------------① 又因为 S′ = -CBB-1 = -Y * T 0,所以Y* = -( S′)T 0------②
4x1 2x2 6x3 24
s.t.
3x1 6x2 4x3 15
5x2 3x3 30
x1 0, x2无约束,x3 0
解:第一步 改写为 min 的基本形式
令x1 x1,x2 x2 x2
min z 7x1 (4 x2 x2) 3x3
4
x1
(2 x2
x2)
6 x3
24
证明: 由弱对偶性: 当X 和Y 分别是P和D的可行解时,CX bTY 若CX ,则不存在Y 使得CX bTY; 若bTY ,则不存在X 使得CX bTY。
注:逆定理不成立。 即“如果原问题无可行解,那么对偶问题有无界解”不成立。 此时,对偶问题可能有无界解,也可能无可行解。
4、强对偶性(对偶定理) 若原问题有最优解,则对偶问题一定有最优解,且
由①②知Y*是对偶问题的可行解,
而 CX* = CB b ′,其满足: CX* =CB (B-1 b) = CB B-1b = Y*T b= b TY* 由最优性(性质2),∴ Y*是对偶问题的最优解。

运筹学教程(第二版)(胡运权)课后答案(清华大学出版社)

运筹学教程(第二版)(胡运权)课后答案(清华大学出版社)

运筹学教程(第⼆版)(胡运权)课后答案(清华⼤学出版社)运筹学教程(第⼆版)习题解答第⼀章习题解答运筹学教程1.1 ⽤图解法求解下列线性规划问题。

并指出问题具有惟⼀最优解、⽆穷多最优解、⽆界解还是⽆可⾏解。

1 2x , x ≥ 0 ? ≤ 2 2 1 ? .? 2 x 1 - x 2 ≥ 2st- 2 x + 3x (4) max Z = 5 x 1 + 6 x 2≤ 82 5 ≤ x ? 1 ? 5 ≤ x ≤ 10 .?max Z = x 1 + x 26 x 1 + 10 x 2 ≤ 120st ?(3) 1 2 x , x ≥ 0 ? 2 1 ? ? ? 4 x 1 + 6 x 2 ≥ 6st .?2 x + 2 x ≥ 4 (1) min Z = 2 x 1 +3 x 21 2 ? ≥ 12 2 1 ? x , x ≥ 0 .? ?2 x 1 + x 2 ≤ 2st ?3x + 4 x (2) max Z = 3x 1 + 2 x 2x , x ≥ 0 1 2该问题⽆解≥ 12 2 1 ? ? 2 x 1 + x 2 ≤ 2st .?3 x +4 x ( 2 ) max Z = 3 x 1 + 2 x 2第⼀章习题解答3 2 1x = 1, x = 1, Z = 3是⼀个最优解⽆穷多最优解,1 2x , x ≥ 0 ? 2 1 ? ? ? 4 x 1 + 6 x 2 ≥ 6st .?2 x + 2 x ≥ 4 (1) min Z = 2 x 1 +3 x 2该问题有⽆界解1 2x , x ≥ 0 ? ≤ 2 2 1 ? .? 2 x 1 - x 2 ≥ 2st- 2 x + 3x (4) max Z = 5x 1 + 6 x 2第⼀章习题解答唯⼀最优解, x 1 = 10, x 2 = 6, Z = 16 ≤ 82 5 ≤ x ?1 ? 5 ≤ x ≤ 10 .?max Z = x 1 + x 26 x 1 + 10 x 2 ≤ 120st ?(3)第⼀章习题解答运筹学教程1.2 将下述线性规划问题化成标准形式。

清华大学《运筹学教程》胡运权主编课后习题答案

清华大学《运筹学教程》胡运权主编课后习题答案

3 x1 x2 x5 3
st
4 x1 3 x2 x3 x6
x1
2 x2
x4
4
6
x j 0(, j 1,,4)
cj
CB
xB
b
-M x5 3
-M
x6
6
0
x4
4
cj zj
-4 x1 1
-M x6 2
0
x4
3
cj zj
-4
-1 0
x1
x2
x3
3
1
0
4
3 -1
1
20
7M-4 4M-1 -M
小于0 ,因此已经得到唯一最优解,最优解为:
X * 2 5 ,9 / 5,1,0T
max Z 10x1 15x2 12x3
5x1 3x2 x3 9
(4)
st
5x1 2x1
6x2 x2 x3
15x3 5
15
x j 0(, j 1,,3)
39
1.8 已知某线性规划问题的初始单纯形
表和用单纯形法迭代后得到下面表格,试求括
弧中未知数a∼l值。
项目
X1 X2 X3 X4 X5
X4 6 (b) (c) (d) 1 0
X5 1 -1 3 (e) 0 1
Cj-Zj
a -1 2 0 0
X1 (f) (g) 2 -1 1/2 0
X5 4 (h) (i) 1 1/2 1
Cj-Zj
0 -7 (j) (k) (l)
6 4
x1 , x2 0
无穷多最优解
(蓝 色 线 段 上 的 点 都 是 最优 解 )
x1
6 5
,
x2

(完整版)运筹学胡运权第五版课件(第1章)

(完整版)运筹学胡运权第五版课件(第1章)
四运筹学研究的基本特点?系统的整体优化?多学科的配合?模型方法的应用五五运筹学研究的基本步骤运筹学研究的基本步骤?分析与表述问题?建立数学模型?对问题求解?对模型和模型导出的解进行检验?建立对解的有效控制?方案的实施第一章线性规划及单纯形法linearprogrammingandsimplexmethodggp11一般线性规划问题的数学模型11问题的提出例1用一块边长为a的正方形铁皮做一个无盖长方体容器应如何裁剪可使做成的容器的容积最大
(3)L.P. 的顶点与基可行解一一对应。
§1.3 单纯形法(Simplex Method)原理
3-1 预备知识:凸集与顶点
(1)凸集:对于集合C中任意两点连线段上的点,若全在C内, 则称集合C为凸集。
直观特征:图形从内部向外部凸出。
凸集
非凸集
(2)顶点:凸集中不在任意两点的连线段内部的点。
X1
转化为
(2)若约束条件为不等式,
则依次引入松弛变量或剩余变量(统称为松弛变量),
转化为等式约束条件。
约束为≥不等式,减去松弛变量,化为等式约束条件;
多 退
约束为≤不等式,加上松弛变量,化为等式约束条件。
少 补
注意:松弛变量在目标函数中系数全为0。
例:max z=2 x1+3 x2
2 x1+2 x2 12
s.t.
4x1
16
5 x2 15
x10, x2 0
标准化
max z 2x1 3x2 0x3 0x4 0x5
2x1 2x2 x3
12
s.t.
4
x1
5 x2
x4 16 x5 15
x1, x2 , x3, x4 , x5 0
(3)若决策变量xj≤0,则令

运筹学胡运权第五版(第6章)课件

运筹学胡运权第五版(第6章)课件

与点v关联的边的条数,记为dG(v)或d(v)。 • 悬挂点 次为1的点,如 v5
• 悬挂边 悬挂点的关联边,如 e8
• 孤立点 • 偶点
次为0的点 次为偶数的点,如 v2
• 奇点
次为奇数的点, 如 v5 运筹学胡运权第五版(第6章)
5、链:图中保持关联关系的点和边的交替序列,其 中点可重复,但边不能重复。
(2)Lij表示图中点i和j之间的最短距离(即最小权和)。 易见 Lii=0
运筹学胡运权第五版(第6章)
3、狄克斯屈拉(Dijkstra)标号算法
(1)适用范围 用于求某两个点之间的最短距离。 即在已知的网络图中,从给定点s出发,要到达目
的地t。问:选择怎样的行走路线,可使总行程最短?
(2)原理 最短路上任何片段是最短路。
注意:
① 树是边数最多的无圈图。
在树中不相邻的两个点之间添上一条边,则恰得到一个圈。
② 树是边数最少的连通图。
从树中去掉一条边,则余下的图不连通。
运筹学胡运权第五版(第6章)
3、图的最小部分树
(1)部分树:若G1是G2的一个部分图,且G1为树, 则称G1是G2的一个部分树(或支撑树)。
G2: A
5
v5
v1
v2
v3
v4
(3)思想 按离出发点s的距离由近至远逐步标出最短距离
Lsi以及最佳行进路线。运筹学胡运权第五版(第6章)
例 求图中S到T的最短路及最短距离。
A 5 S
5 5
B
5
D
T
C
E
4
运筹学胡运权第五版(第6章)
(4)步骤 在网络图中求s到t的最短路。
第一步 从s出发,将Lss=0标记在s旁边的方框内 (表示点s已标记); 第二步 找出与s相邻且距离最小的点,设为r,计算 Lsr=Lss+dsr,并将结果标记在r旁边的方框内(表示点 r已标记),同时标记边sr; 第三步 从已标记的点出发,找出这些点的所有未 标记邻点,分别计算已标记点的方框数与其邻点的距 离之和,利用“叠加最小”的原则确定下一个被标记 点,设为p,并将最小的和标记在p旁边的方框内(表 示点p已标记),同时标记相应边; 第四步 重复第三步,直到t得到标记为止。

运筹学胡运权第五版(第6章)课件

运筹学胡运权第五版(第6章)课件
零图: 边集为空集的图。
运筹学胡运权第五版(第6章)
2、图的阶:即图中的点数。 例如 右图为一个五阶图
3、若图中边e= [vi,vj] ,则vi,vj称 为e的端点,
e称为vi,vj的关联边。 若vi与vj是一条边的两个端
点,则称vi与vj相邻; 若边ei与ej有公共的端点,
则称ei与ej相邻。
e8
1、图(graph):由V,E构成的有序二元组,用以表示对 某些现实对象及其联系的抽象,记作 G={V,E}。 其中V称为点集,记做V={v1,v2,···,vn}
E称为边集,记做E={e1,e2,···,em}
点(vertex):表示所研究的对象,用v表示; 边(edge):表示对象之间的联系,用e表示。 网络图(赋权图): 点或边具有实际意义(权数)的图, 记做N。
路:点不能重复的链。
圈:起点和终点重合的链。
回路:起点和终点重合的路。
连通图:任意两点之间至少存在一条链的图。
完全图:任意两点之间都有边相连的简单图。
n阶完全图用Kn表示,边数=
C 2 n(n 1)
n

2
注意:完全图是连通图,但连通图不一定是完全图。
运筹学胡运权第五版(第6章)
v1 e4
v4 e5 v5
依次下去,vn必然与前面的某个点相邻,图中有圈,矛盾!
注意:树去掉悬挂点和悬挂边后余下的子图还是树。
运筹学胡运权第五版(第6章)
(2)n阶树必有n-1条边。
证明(归纳法): 当n=2时,显然;
设n=k-1时结论成立。 当n=k时,树至少有一个悬挂点。
去掉该悬挂点和悬挂边,得到一个k-1阶的树,它有 k-2条边,则原k阶树有k-1条边。
7、已知图G1={V1,E1}, G2={V2,E2}, 若有V1V2,E1E2,则称G1是G2的一个子图; 若V1=V2,E1E2且 E1≠E2 ,则称G1是G2的一个部分图。

运筹学胡运权第五版课件

运筹学胡运权第五版课件

则依次引入松弛变量或剩余变量(统称为松弛变量),
转化为等式约束条件。
约束为≥不等式,减去松弛变量,化为等式约束条件;
多 退
约束为≤不等式,加上松弛变量,化为等式约束条件。 少

注意:松弛变量在目标函数中系数全为0。
例:max z=2 x1+3 x2
s.t.
2 x1+2 x2 12 标准化
4x1
16
z=2 x1+3 x2
2 x1+2 x2 12
4x1
16
5 x2
1x510, x2 0
此为有约束极值问题
h
9
1-2 线性规划问题的数学模型
1、原型:现实世界中人们关心、研究的实际对象。 模型:将某一部分信息简缩、提炼而构造的原型替代物。 数学模型:对现实世界的一个特定对象,为达到一定目的,
根据内在规律做出必要的简化假设,并运用适当数学工具得到 的一个数学结构。
应如何裁剪可使做成的容器的容积最大?
解:如图设四个角上减去的小正方形边
x 长为x,则容器体积为:
a
Va2x2x (0 x a) 2
由 dV 0 dx
有 xa 6
时,容积最大
此为无约束的极值问题
h
7
例2 常山机器厂生产 I、II 两型产品。这两型 产品都分别要在A、B、C三种不同设备上加工。按 工艺规定,生产每件产品的单位利润、消耗三种设 备的工时以及各种设备工时的限额如下表:
2x1 2x2 x3
12
s.t.
4 x1
5 x2
x4 16 x5 15
x1, x2, x3, x4, x5 0
h
28
P1 P2 P3 P4 P5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档