刚体力学作业解答

刚体力学作业解答
刚体力学作业解答

5.1、一长为l 的棒AB ,靠在半径为r 的半圆形柱面上,如图所示。今A 点以恒定速度0v 沿水平线运动。试求:(i)B 点的速度B v ;(ii)画出棒的瞬时转动中心的位置。 解:如图,建立动直角系A xyz -,取A 点为原点。B A AB v v r ω=+?,关键是求ω 法1(基点法):取A 点为基点,sin C A AC A CO A A v v r v v v v ωθ=+?=+=+ 即sin AC A r v ωθ?=,AC r ω⊥,化成标量为

ω在直角三角形OCA ?中,AC r rctg θ=

所以200sin sin sin cos A AC v v v r rctg r θθ

θωθθ

===

即2

0sin cos v k r θ

ωθ

=

取A 点为基点,那么B 点的速度为:

20023

00sin [(cos )sin ]

cos sin sin (1)cos B A AB v v v r v i k l i l j r v l l v i j

r r

θ

ωθθθ

θθ

θ=+?=+?-+=-- 法2(瞬心法):如图,因棒上C 点靠在半圆上,所以C 点的速度沿切线方向,故延长OC ,

使其和垂直于A 点速度线交于P 点,那么P 点为瞬心。 在直角三角形OCA ?中,sin OA r r θ

=

在直角三角形OPA ?中,2

cos sin AP OA r r r ctg θ

θθ

==

02

cos ()sin A PA PA PA r v r k r j r i i v i θ

ωωωωθ

=?=?-===,即20sin cos v r θωθ= 取A 点为基点,那么B 点的速度为:

20023

00sin [(cos )sin ]

cos sin sin (1)cos B A AB v v v r v i k l i l j r v l l v i j

r r

θ

ωθθθ

θθ

θ=+?=+?-+=-- 5.2、一轮的半径为r ,竖直放置于水平面上作无滑动地滚动,轮心以恒定速度0v 前进。求轮缘上任一点(该点处的轮辐与水平线成θ角)的速度和加速度。 解:任取轮缘上一点M ,设其速度为M v ,加速度为M a

θ

C A

v CO

v

如图,取轮心O 为原点,建立动系O xyz -,其中轮心的速度方向为x 轴正向,O xy -平面位于轮上。那么轮子的角速度为k k ωωθ=-=

取O 点为基点,那么M O OM v v r ω=+?

因轮无滑动地滚动,所以C 点为瞬心。0O CO v r v ω=?=

0CO k r j v i ω-?=,化简有00CO v v

r r

ω==,那么有:

00

00(cos sin )

(cos sin )(1sin )cos M O OM v v r v i k r i j v v i k r i j r

v i v j ωωθθθθθθ=+?=-?+=-

?+=+-

0000002

0[(1sin )cos ]cos sin (cos sin )(cos sin )(cos sin )

M M d d

a v v i v j v i v j dt dt

v i j v i j v i j r

θθθθθθθθθωθθθθ=

=+-=+=+=-+=-+ 5.3、半径为r 的圆柱夹在两块相互平行的平板A 和B 之间,两板分别以速度1v 和2v 匀速反向运动,如图示。若圆柱和两板间无相对滑动,求: (i)圆柱瞬心的位置

(ii)位于圆柱上与板的接触点M 的加速度。

解:(i)如图,圆柱瞬心的位置为C 点,不妨设12v v > 在图示的直角坐标系中,k ωω=-,

11v v i =,22v v i =-,CM CM r r j =, (2)CN CN CM r r j r r j =-=-

因为1M CM v v r ω==?,2N CN v v r ω==?

所以有1CM v r ω=,2(2)CN CM v r r r ωω==-,联立解得:1

12

2CM rv r v v =+

或者取N 点为基点,那么:

11222(2)M N NM v v v i v r v i k rj r v i ωωω===+?=--?=-

1

v 2

v A

B

求得12

2v v r ω+=

,因1CM v r ω=,故112

2CM rv r v v =+

于是求得瞬心的位置位于距离M 点1

12

2CM rv r v v =

+的直径上。

(ii)瞬心到圆柱轴心O 的距离为12

12

CO CM v v r r r r v v -=-=

+ 圆柱轴心O 的速度为1212121222

O CO CO v v v v v v

v r r i ri i r v v ωω+--=?==

=+

M 点相对O 点的速度为:1212122

MO M O v v v v

v v v v i i i -+=-=-

= M 点相对O 点做圆周运动,故22

12()4MO M v v v a j r r

+==- 5.4、高为h 、顶角为2α的圆锥,在一平面上无滑动地滚动。已知圆锥轴线以恒定角速度Ω绕过顶点的铅直轴转动。求:

(i)圆锥的角速度

(ii)锥体底面上最高点的速度 (iii)圆锥的角加速度

解:取圆锥的顶点为原点,建立动系O xyz - 取圆锥和平面交线为y 轴, 圆锥的对称面OAB 位于O yz -平面

因圆锥轴线以恒定角速度Ω绕过顶点的铅直轴 转动,若设圆锥绕自身轴线的角速度为'ω 那么圆锥绕顶点的角速度为'ωω=+Ω

又OB 母线与平面接触,为圆锥的瞬时转动轴,故ω平行于OB

(i)在角速度合成的矢量三角形中,圆锥的角速率ctg ωα=Ω,即ctg j ωα=-Ω (ii)在动系O xyz -中,锥体底面上最高点A 的位矢可以表示为:

cos2sin 2OA OA OA r r j r k αα=+

由图中的几何关系可知:cos OA h

r α

= 所以(cos 2sin 2)cos OA h

r j k ααα

=

+

αΩ

'

ωωO

cos A OA α

(iii)因圆锥的角速度为ctg j ωα=-Ω,所以圆锥的角加速度为:

2()d d dj

ctg j ctg ctg j ctg i dt dt dt

ωααααα=

=-Ω=-Ω=-ΩΩ?=Ω 5.5、在一半径为R 的球体上置一半径为r 的较小的球,它们的连心线'OO 与竖直轴间保持α角,如图示。若'OO 绕竖直轴以恒定的角速度ω转动,小球在大球上无滑动地滚动。分别求出小球最高点A 和最低点B 的速度。 解:建立如图所示的动直角坐标系O xyz -

使'OO r 位于O yz -平面内。则有:

k ωω=,''cos 'sin j k ωωαωα=+ '()sin ()cos OO r r R j r R k αα=-+++ 'O A r rk =,'O B r rk =-

在大球和小球的角速度矢量直角三角形中,有'ω=所以2

'sin cos sin j k ωωααωα=+

''[()sin ()cos ]

[()sin ]()sin O OO v r k r R j r R k k r R j r R i

ωωααωαωα=?=?-+++=?-+=+

2'''()sin (sin cos sin )sin [(1cos )]A O O A v v r r R i j k rk r R i

ωωαωααωαωαα=+?=+++?=++

2'''()sin (sin cos sin )()sin [(1cos )]

B O O B v v r r R i j k rk r R ωωαωααωαωαα=+?=+++?-=-+

5.6、一边长为d 、质量为m 的匀质立方体,分别求出该立方体对过顶点的棱边、面对角线和体对角线的转动惯量P J 、f J 和b J

解:如图,要求图示棱边的转动惯量P J ,先求立文体过质心O 且平行于棱的z 轴的转动惯量z J

在图示的直角坐标系O xyz -中,,,x y z 轴皆为惯量主轴

ω

R

'

ω

故5

2

/2

/2

/2

2

2

2

2

/2/2/2()()66

d d d z d d d d md J x y dm x y dxdydz ρρ---=+=+==????

由平行轴定理:222

22623

P z md md md J J m =+=+= 要求图示面对角线的转动惯量f J ,先求立文体过质心O 点,且平行于面对角线的轴的转动惯量z J

,此轴与坐标轴的方向余弦分别为,坐标轴为惯量主轴,所以有: 222

006

000

00

0600

00

6x O y z md J md J J J md ?? ? ??? ? ?== ? ? ? ??

? ? ??

?

由平行轴定理有:

22222

22

00650

0()626412000

6f md md d md md md J m md ?? ? ? ?=+=+= ?

? ?

? ? ??

?

?

?

体对角线与坐标轴的方向余弦分别为,坐标轴为惯量主轴,那么体对角线的转动惯量为:

222

2

006

06600

6b md md md J md ?? ? ? ?== ?

? ? ??

? 5.7、一匀质等边三角形的薄板,边长为l 、质量为m 。试在图示坐标系下,求出薄板对质心C 的惯量矩阵C J ,并由此导出对顶点O 的惯量矩阵O J

O ξηζ-的坐标轴分别相互平行,ξη和xy 都在薄板平面内。

解:由图中坐标系C xyz -的取法可知,,y z

x 轴是是三角板的对称面的法线,故,,x y z 都是惯量主轴。

三角板的密度为:σ=

先求三角板对x 轴的转动惯量。

因三角板关于y 轴对称,所以三角板对x 轴的转动惯量x J

是y 轴一侧直角板的2倍,如图,取距离C 点为x ,厚为dx 的线性微元,由图中几何关系

知,线性微元的高为()3()2

32l l h x tg

x π

=-=-,22(2)m

dm dS hdx l x dx l

σσ===- 线性微元对过质心且垂直于线性微元的轴的转动惯量为2

1()12

dm h ,由平行轴定理知线性微

元对x

轴的转动惯量:22

2211()()(()()122312x h l dJ dm h dm dm h =+=+ 222

2

23222()()(2)()212212444()36

x l l m l l dJ dm x x l x x x dx

l m m m ml x x x dx

l l =-+=--+=-+-+

2

/2

3220

44422()3624

l x x m m m ml ml J dJ x x x dx l l ==-+-+=??

再求三角板对y 轴的转动惯量

如图,取距离C 点为y ,厚为dy

的线性微元,由图中几何关系知,线性微元的长为

2)63l a y tg π==

,228()33l m

dm ady dy y dy l

σ=== 线性微元对过质心且垂直于线性微元的轴的转动惯量为21

()12

dm a 故线性微元对y 轴的转动惯量:

2222321128()()121233244]399y l m dJ dm a y dy l

m y y y dy l

=

=-=--

232

2/24439924l y y l m ml J dJ y y y dy l -==-+-+=??

最后求z 轴的转动惯量:

如图,对于线元过中心且平行于z 轴的转动惯量为

21

()12

dm a

由平行轴定理知线元对z 轴的转动惯量为:

221

()()12

z dJ dm a dm y =

+

22222

232/222

18)1224243242412

l z z l ml ml m J dJ a dm y dm y dm y y dy

l ml ml ml

-==+=+=+-=

+=?????

所以三角板对板对质心C 的惯量矩阵2

22200241000

0010242400200

12C ml ml ml J ml ?? ? ???

? ?== ? ? ? ??? ? ??

?

由平行轴定理易知:

222

2

24128x ml ml ml

J J m ξ=+=+=

222

27()224424y l ml ml ml

J J m η=+=+=

222

2512312z ml ml ml J J m ζ=+=+=

因三角板中0ζ=,所以0000

O J J J J J J ξ

ξηξη

ηζ??-

?=- ? ??

?

因三角板的两腰在坐标系O ξηζ-

中方程为:η=

和η=+

即ξ=

和l ξ=

20

20

02

()423l J d d l d m d d l ξη

ξξηη

ηηηηηη=

=-=-=

所以23070240010O ml J ??

-

?=

- ? ? ???

5.8、质量为m ,长为l

的夹角θ保持恒定。求杆对端点O 的角动量。 解:选取端点O 为原点,建立如图所示 的直角坐标系O xyz -,并取杆方向为y 轴

那么2

13

x z J J ml ==,0y J =

因杆上的质点在y 轴上,所以0x z ==

0xy J xydm ==?,0xz J xzdm ==?,xz J =?故杆对O 点的惯量矩阵为:

2210

030

001003O ml J ml ?? ? ?

= ? ? ??

?

在图示的直角坐标系O xyz -中,cos sin j k ωωθωθ=+

于是杆对O 点的角动量为:2

2210

00030

00cos 01sin 100sin 33O ml L J ml ml ωωθωθωθ???? ? ???

?

? ?=?== ? ? ? ? ? ??? ? ?

???

?

即2

1sin 3

O L ml k ωθ=

5.9、一半径为r ,质量为m 的圆盘,在水平面上作纯滚动,盘面法线与铅直轴间保持恒定角度α,盘心则以恒定速率u 作半径为2r 的圆周运动。求圆盘的动能。

解:如图所示,过圆盘的质心C 作法线,与铅直轴相交于O 点,建立动直角坐标系O xyz -,

x 轴沿CO 方向。连接AO ,以及连接OB ,这样就构成了一个陀螺在平面II 滚动。且OA

为陀螺的瞬时转动轴,故圆盘的角速度为:

(cos sin )AO e i k ωωωββ==+。

因,,x y z 轴都是圆盘的对称线,所以x 轴, y 轴和z 轴都是惯量主轴。 设铅直转轴与水平面相交于'O 点。 设圆盘绕x 轴自转的角速度为''i ωω= 圆盘的盘心绕铅直轴的角速度为:

(cos sin )i k ααΩ=Ω-+

θ

r

m

u 2r O

B A '

O D

'

ωω

由图中的几何关系知:

2sin OC

r r α=

,2222

222222sin sin ()24sin ()sin OA OC r r r r r r r r αβαα

====+++ 22

2

22

sin 4

cos 1sin 14sin 4sin αββαα

=-=-=++ 又已知2(cos sin )()2sin C OC r v r i k i rj ααα=Ω?=Ω-+?-

=-Ω,即2u

r Ω= 212x J mr =

,2222221

1214()()4

4sin 4sin y z OC r J J mr mr mr m mr αα

==+=+=+ 在角速度矢量三角形合成的图示中,'ωω=+Ω 即(cos sin )'(cos sin )i k i i k ωββωαα+=+Ω-+ 化简有:sin sin ωβα=Ω,cos 'cos ωβωα=-Ω 所以sin sin sin 2sin u r ααωββΩ=

=,即sin (cos sin )(cos sin )2sin u i k i k r α

ωωβββββ

=+=+ 因坐标轴都是惯量主轴,所以圆盘的动能为:

222222222222221

()

21

()2

1114

[cos ()sin ]224sin (sin 24)32

x x y y z z x x z z T J J J J J mr mr mu ωωωωωωβωβαα=++=+=++=+

5.10、一半径为r 的匀质圆盘,平躺在粗糙的水平桌面上,绕通过其中心的竖直轴转动,初始时刻圆盘的角速度大小为0ω。已知圆盘与桌面间的摩擦系数为μ。问经过多少时间圆盘将停止转动?

解:设匀质圆盘的面密度为σ,在圆盘上取一微元,数据如图所示。

圆盘对过其中心的竖直轴的转动惯量为221()2z J r r σπ=由角动量定理

dL

M dt

=,因圆盘定轴转动。故z z z J M ω=圆盘上所取微元只受重力,水平桌面的支持力和摩擦力 重力和支持力大小相等,方向相反。 若选择逆时针为正。那么有: z z J J k ωω=

ω

r

f

d θ

圆盘上所取微元的力矩为:

2()()z dM x f dm gxk xd dx gxk gd x dxk μμσθμσθ=?=-=-=- 223

0023

r

z z M dM g x dxd k gr k π

μσθπμσ==-=-??

? 431223r k gr k σπωπμσ=-,化简为:43g

r

μω=-

积分可得:43g

t c r μω=-+,c 为积分常数

因初始时刻,0t =时,0ωω=,代入ω的表达式可得:0c ω= 因此043g

t r

μωω=-

+ 显然圆盘停止转动时,0ω=,即0403g

t r

μω=-

+,解得034r t g ωμ=

5.11、如图示,一矩形匀质薄板ABCD ,长为l ,宽为d ,质量为m 。薄板绕竖直轴AB 以初角速度0ω转动,阻力与薄板表面垂直并与面积及速度的平方成正比,比例系数为k ,问经过多少时间后,薄板的角速度减为初角速度的一半?

解:匀质薄板的密度为m m

S ld

σ=

=,在薄板上取一矩形微元,数据如图所示。 因阻力与薄板表面垂直并与面积及速度的平方成正比,比例系数为k

又微元质量为:m

dm dS dydz ld

σ==,微元速度为:v r yi ωω=?=-

所以微元受到的阻力为:22

df k y dydzi ω=

微元对z 轴的转动惯量为2

2

z m dJ y dm y dydz ld

==

薄板对z 轴的转动惯量为:200l d z z m J dJ y dydz ld ===???微元受到的力矩为23z dM r df k y dydzk ω=?=- 薄板受到的力矩为:2

32400

1

4

l d

z z

M dM k y dydzk k ld k ω

ω==-=-?

??

据定轴转动角动量定理:z z J M ω=

代入数据得:224134md k k ld k ωω=-,分离变量:2213

4d kld dt m

ωω=- 积分得:

21

3

4kld t c m

ω

=

+,c 为积分常数 l y

dz

大学物理06刚体力学

刚体力学 1、(0981A15) 一刚体以每分钟60转绕z 轴做匀速转动(ω? 沿z 轴正方向).设某时刻刚体上一点 P 的位置矢量为k j i r ??? ? 5 4 3++=,其单位为“10-2 m ”,若以“10-2 m ·s -1”为速度单位,则该时刻P 点的速度为: (A) k j i ???? 157.0 125.6 94.2++=v (B) j i ??? 8.18 1.25+-=v (C) j i ??? 8.18 1.25--=v (D) k ?? 4.31=v [ ] 2、(5028B30) 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、 B 两滑轮的角加速度分别为A 和B ,不计滑轮轴的摩擦,则 有 (A) A =B . (B) A >B . (C) A < B . (D) 开始时 A = B ,以后 A < B . [ ] 3、(0148B25) 几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体 (A) 必然不会转动. (B) 转速必然不变. (C) 转速必然改变. (D) 转速可能不变,也可能改变. [ ] 4、(0153A15) 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度 按图 示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度 (A) 必然增大. (B) 必然减少. (C) 不会改变. (D) 如何变化,不能确定. [ ] 5、(0165A15) 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? (A) 角速度从小到大,角加速度从大到小. A M B F O F F ω O A

第五章_刚体力学_习题解答

5.1、一长为l 的棒AB ,靠在半径为r 的半圆形柱面上,如图所示。今A 点以恒定速度0v 沿水平线运动。试求:(i)B 点的速度B v ;(ii)画出棒的瞬时转动中心的位置。 解:如图,建立动直角系A xyz -,取A 点为原点。B A AB v v r ω=+? ,关键是求ω 法1(基点法):取A 点为基点,sin C A AC A CO A A v v r v v v v ωθ=+?=+=+ 即sin AC A r v ωθ?= ,AC r ω⊥ ,化成标量为 ω在直角三角形OCA ?中,AC r rctg θ= 所以200sin sin sin cos A AC v v v r rctg r θθ θωθθ === 即2 0sin cos v k r θωθ = 取A 点为基点,那么B 点的速度为: 20023 00sin [(cos )sin ] cos sin sin (1)cos B A AB v v v r v i k l i l j r v l l v i j r r θωθθθθθθ=+?=+?-+=-- 法2(瞬心法):如图,因棒上C 点靠在半圆上,所以C 点的速度沿切线方向,故延长OC ,使其和垂直于A 点速度线交于P 点,那么P 点为瞬心。 在直角三角形OCA ?中,sin OA r r θ = 在直角三角形OPA ?中,2 cos sin AP OA r r r ctg θ θθ == 02 cos ()sin A PA PA PA r v r k r j r i i v i θωωωωθ=?=?-=== ,即20sin cos v r θωθ = 取A 点为基点,那么B 点的速度为: 2002300sin [(cos )sin ] cos sin sin (1)cos B A AB v v v r v i k l i l j r v l l v i j r r θωθθθ θθ θ=+?=+?-+=-- 5.2、一轮的半径为r ,竖直放置于水平面上作无滑动地滚动,轮心以恒定速度0v 前进。求轮缘上任一点(该点处的轮辐与水平线成θ角)的速度和加速度。 解:任取轮缘上一点M ,设其速度为M v ,加速度为M a

大学物理刚体部分知识点总结

一、刚体的简单运动知识点总结 1、刚体运动的最简单形式为平行移动与绕定轴转动。 2、刚体平行移动。 ·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。 ·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能就是直线,也可能就是曲线。 ·刚体作平移时,在同一瞬时刚体内各点的速度与加速度大小、方向都相同。 3、刚体绕定轴转动。 ?刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。 ?刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。 ?角速度ω表示刚体转动快慢程度与转向,就是代数量, 。角速度也可以用矢量表示, 。 ?角加速度表示角速度对时间的变化率,就是代数量, ,当α与ω同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。角加速度也可以用矢量表示, 。 ?绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系: 。 速度、加速度的代数值为。 ?传动比。

二. 转动定律转动惯量 转动定律 力矩相同,若转动惯量不同,产生的角加速度不同 与牛顿定律比较: 转动惯量 刚体绕给定轴的转动惯量J 等于刚体中每个质元的质量与该质元到转轴距离的平方的乘积之总与。 定义式质量不连续分布 质量连续分布 物理意义 转动惯量就是描述刚体在转动中的惯性大小的物理量。 它与刚体的形状、质量分布以及转轴的位置有关。 计算转动惯量的三个要素:

(1)总质量; (2)质量分布; (3)转轴的位置 (1) J 与刚体的总质量有关 几种典型的匀质刚体的转动惯量 平行轴定理与转动惯量的可加性 1) 平行轴定理 设刚体相对于通过质心轴线的转动惯量为Ic,相对于与之平行的另一轴的转动惯量为I,则可以证明I 与Ic 之间有下列关系 2c I I md =+ 2)转动惯量的可加性 对同一转轴而言,物体各部分转动惯量之与 等于整个物体的转动惯量。 三 角动量 角动量守恒定律 2 c I I md =+

大学物理刚体力学基础习题思考题及答案

习题5 5-1.如图,一轻绳跨过两个质量为 m 、半径为r 的均匀圆盘状定滑轮,绳的两端 分别挂着质量为2m 和m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,两个定 滑轮的转动惯量均为 mr 2 / 2,将由两个定滑轮以及质量为 2m 和m 的重物组成 的系统从静止释放,求重物的加速度和两滑轮之间绳的力。 解:受力分析如图,可建立方程: 广 2mg T 2 2ma ① T1 mg ma ② J (T 2 T)r J ③ (T T 1)r J ④ 虹 a r , J mr 2/2 ⑤ 联立,解得:a 1g, T 4 上,设开始时杆以角速度 °绕过中心O 且垂直与桌面的轴转动,试求: (1)作 用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。 解:(1)设杆的线密度为: d f dmg gd x, 微元摩擦力矩:d M g xd x , (2)根据转动定律 M J J 马, t 有: 0 Mdt Jd dt 1 . -mglt 1 [2 —m l 0, . . t _oL 4 12 3 g 或利用: M t J J 0,考虑到 0, J 1 | 2 一 ml , 12 有:t ol 。 11 a mg 5-2.如图所示,一均匀细杆长为 l ,质量为m ,平放在摩擦系数为 的水平桌面 一小质元dm dx,有微元摩擦力: 考虑对称性, l_ M 2 2 有摩擦力 矩: gxdx 1

5-3.如图所示,一个质量为m的物体与绕在定滑轮上的绳子相联,绳子的质量 可以忽略,它与定滑轮之间无滑动。假设定滑轮质量为M、半径为 R,其转动惯量为MR2/2,试求该物体由静止开始下落的过程中, 下落速度与时间的关系。 解:受力分析如图,可建立方程: r mg T ma ① * TR J ② —, 1 ~2 — k a R , J — mR —-③ 2 2mg Mmg 联立,解得:a ------------ — , T ----------- —, 考虑到a四,.?. v dv 「旦—dt,有:v dt 0 0 M 2m M 2m 5-4.轻绳绕过一定滑轮,滑轮轴光滑,滑轮的质量为M /4,均匀分布在其边缘上,绳子A端有一质量为M的人抓住了绳端,而在绳的另一端B系了一质量为M /4的重物,如图。已知滑轮对O 轴的转动惯量J MR2 /4 ,设人从静止开始以相对绳匀速向上爬时,绳与滑轮间无相对滑动,求B端重物上升的加速度? 解一: 分别对人、滑轮与重物列出动力学方程 Mg T1Ma A人 T2M 4g M 心 a B物 4 T1R T2R J滑轮 由约束方程:a A a B R 和J MR2/4,解上述方程组 得到a —. 2 解二: 选人、滑轮与重物为系统,设 U为人相对绳的速度,V为重

刚体力学作业

刚体力学作业 班级:_____________ 姓名:_____________ 学号:_____________ 日期:__________年_______月_______日 成绩:_____________ 一、选择题 1. 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有 (A) βA =βB . (B) βA >βB . (C) βA <βB . (D) 开始时βA =βB ,以后βA <βB . [ ] 2. 几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体 (A) 必然不会转动. (B) 转速必然不变. (C) 转速必然改变. (D) 转速可能不变,也可能改变. [ ] 3. 关于刚体对轴的转动惯量,下列说法中正确的是 (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B )取决于刚体的质量和质量的空间分布,与轴的位置无关. (C )取决于刚体的质量、质量的空间分布和轴的位置. (D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关. [ ] 4. 一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量 为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. [ ] 5. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将 两臂收回,使转动惯量减少为 3 1J 0.这时她转动的角速度变为 (A) 3 1ω0. (B) ()3/1 ω0. (C) 3 ω0. (D) 3 ω0. [ ] 6. 如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为2 31 ML .一 质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 2 1,则此时棒的角速度应为 (A) ML m v . (B) ML m 23v . (C) ML m 35v . (D) ML m 47v . [ ] 7. 一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统 O v 2 1 v 俯视图

大学物理刚体力学基础习题思考题及答案

大学物理刚体力学基 础习题思考题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2 习题5 5-1.如图,一轻绳跨过两个质量为m 、半径为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 2和m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,两个定滑轮的转动惯量均为2/2mr ,将由两个定滑轮以及质量为m 2和m 的重物组成的系统从静止释放,求重物的加速度和两滑轮之间绳内的张力。 解:受力分析如图,可建立方程: ma T mg 222=-┄① ma mg T =-1┄② 2()T T r J β-=┄③ βJ r T T =-)(1┄④ βr a = ,2/2J mr =┄⑤ 联立,解得:g a 41=,mg T 8 11= 。 5-2.如图所示,一均匀细杆长为l ,质量为m ,平放在摩擦系数为μ的水平桌面上,设开始时杆以角速度0ω绕过中心O 且垂直与桌面的轴转动,试求:(1)作用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。 解:(1)设杆的线密度为:l m =λ,在杆上取一小质元dm d x λ=,有微元摩擦 力: d f dmg gd x μμλ==, 微元摩擦力矩:d M g xd x μλ=, 考虑对称性,有摩擦力矩: 20124 l M g xd x mgl μλμ==?; (2)根据转动定律d M J J dt ωβ==,有:000t Mdt Jd ωω-=??, T

3 2011412mglt m l μω-=-,∴03l t g ωμ=。 或利用:0M t J J ωω-=-,考虑到0ω=,2112J ml = , 有:03l t g ωμ=。 5-3.如图所示,一个质量为m 的物体与绕在定滑轮上的绳 子相联,绳子的质量可以忽略,它与定滑轮之间无滑动。 假设定滑轮质量为M 、半径为R ,其转动惯量为2/2MR , 试求该物体由静止开始下落的过程中,下落速度与时间的 关系。 解:受力分析如图,可建立方程: m g T ma -=┄① βJ TR =┄② a R β= ,212 J mR =┄③ 联立,解得:22mg a M m =+,2Mmg T M m =+, 考虑到dv a dt =,∴0022v t mg dv dt M m =+??,有:22mg t v M m =+。 5-4.轻绳绕过一定滑轮,滑轮轴光滑,滑轮的质量为 4/M ,均匀分布在其边缘上,绳子A 端有一质量为M 的 人抓住了绳端,而在绳的另一端B 系了一质量为4/M 的 重物,如图。已知滑轮对O 轴的转动惯量4/2MR J =, 设人从静止开始以相对绳匀速向上爬时,绳与滑轮间无 相对滑动,求B 端重物上升的加速度? 解一:

大学物理-力学考题

一、填空题(运动学) 1、一质点在平面内运动, 其1c r = ,2/c dt dv =;1c 、2c 为大于零的常数,则该质点作 运动。 2.一质点沿半径为0.1=R m 的圆周作逆时针方向的圆周运动,质点在0~t 这段 时间内所经过的路程为4 2 2t t S ππ+ = ,式中S 以m 计,t 以s 计,则在t 时刻质点的角速度为 , 角加速度为 。 3.一质点沿直线运动,其坐标x 与时间t 有如下关系:x=A e -β t ( A. β皆为常数)。则任意时刻t 质点的加速度a = 。 4.质点沿x 轴作直线运动,其加速度t a 4=m/s 2,在0=t 时刻,00=v ,100=x m ,则该质点的运动方程为=x 。 5、一质点从静止出发绕半径R 的圆周作匀变速圆周运动,角加速度为β,则该质点走完半周所经历的时间为______________。 6.一质点沿半径为0.1=R m 的圆周作逆时针方向的圆周运动,质点在0~t 这段时间内所经过的路程为2t t s ππ+=式中S 以m 计,t 以s 计,则t=2s 时,质点的法向加速度大小n a = 2/s m ,切向加速度大小τa = 2/s m 。 7. 一质点沿半径为0.10 m 的圆周运动,其角位移θ 可用下式表示3 2t +=θ (SI). (1) 当 2s =t 时,切向加速度t a = ______________; (2) 当的切向加速度大小恰为法向加速度 大小的一半时,θ= ______________。 (rad s m 33.3,/2.12) 8.一质点由坐标原点出发,从静止开始沿直线运动,其加速度a 与时间t 有如下关系:a=2+ t ,则任意时刻t 质点的位置为=x 。 (动力学) 1、一质量为kg m 2=的质点在力()()N t F x 32+=作用下由静止开始运动,若此力作用在质点上的时间为s 2,则该力在这s 2内冲量的大小=I ;质点在第 s 2末的速度大小为 。

大学物理06刚体力学

刚体力学 1、(0981A15) 一刚体以每分钟60转绕z 轴做匀速转动(ω?沿z 轴正方向).设某时刻刚体上一点P 的位置矢量为k j i r ???? 5 4 3++=,其单位为“10-2 m ”,若以“10-2 m ·s -1”为速度单位, 则该时刻P 点的速度为: (A) k j i ???? 157.0 125.6 94.2++=v (B) j i ??? 8.18 1.25+-=v (C) j i ??? 8.18 1.25--=v (D) k ?? 4.31=v [ ] 2、(5028B30) 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮 挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为A 和B ,不计滑轮轴的摩擦,则有 (A) A =B . (B) A >B . (C) A <B . (D) 开始时A =B ,以后A <B . [ ] 3、(0148B25) 几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零, 则此刚体 (A) 必然不会转动. (B) 转速必然不变. (C) 转速必然改变. (D) 转速可能不变,也可能改变. [ ] 4、(0153A15) 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度 (A) 必然增大. (B) 必然减少. (C) 不会改变. (D) 如何变化,不能确 定. [ ] 5、(0165A15) 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? (A) 角速度从小到大,角加速度从大到小. (B) 角速度从小到大,角加速度从小到大. (C) 角速度从大到小,角加速度从大到小. (D) 角速度从大到小,角加速度从小到大. [ ] 6、(0289A10) 关于刚体对轴的转动惯量,下列说法中正确的是 (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B )取决于刚体的质量和质量的空间分布,与轴的位置无关. (C )取决于刚体的质量、质量的空间分布和轴的位置. (D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关. A M B F O F F ω O A

第七章 刚体力学习题及解答

第七章刚体力学习题及解答 7.1.1 设地球绕日作圆周运动.求地球自转和公转的角速度为多少rad/s?估算地球赤道上一点因地球自转具有的 线速度和向心加速度.估算地心因公转而具有的线速度和向心加速度(自己搜集所需数据). 解: 7.1.2 汽车发动机的转速在12s内由1200rev/min增加到3000rev/min.(1)假设转动是匀加速转动,求角加速度.(2)在此时间内,发动机转了多少转? 解: ( 1) ( 2)

所以转数 = 7.1.3 某发动机飞轮在时间间隔t内的角位移为 球 t时刻的角速度和角加速度. 解: 7.1.4 半径为0.1m的圆盘在铅直平面内转动,在圆盘平面内建立坐标系,原点在轴上.x和y轴沿水平和铅直向上的方向.边缘上一点A当t=0时恰好在x轴上,该点的角坐标满足 求(1)t=0时,(2)自t=0开始转时,(3)转过时,A点的速度和加速度 在x和y轴上的投影. 解:

( 1) ( 2)时, 由 ( 3)当时,由

7.1.5 钢制炉门由两个各长1.5m的平行臂AB和CD支承,以角速度逆时针转动, 求臂与铅直时门中心G的速度和加速 度. 解: 因炉门在铅直面内作平动,门中心 G的速度、加速度与B或D点相同。所以: 7.1.6 收割机拔禾轮上面通常装4到6个压板.拔禾轮一边旋转,一边随收割机前进.压板转到下方才发挥作用,一方面把农作物压向切割器,另一方面把切割下来的作物铺放在收割台上,因此要求压板运动到下方时相对于作物的速度与收割机前进方向相反. 已知收割机前进速率为 1.2m/s,拔禾轮直径1.5m,转速22rev/min,求压板运动到最低点挤压作物的速度. 解: 取地面为基本参考系,收割机为运动参考系。

大学物理试题库刚体力学 Word 文档

第三章 刚体力学 一、刚体运动学(定轴转动)---角位移、角速度、角加速度、线量与角量的关系 1、刚体做定轴转动,下列表述错误的是:【 】 A ;各质元具有相同的角速度; B :各质元具有相同的角加速度; C :各质元具有相同的线速度; D :各质元具有相同的角位移。 2、半径为0.2m 的飞轮,从静止开始以20rad/s 2的角加速度做定轴转动,则t=2s 时,飞轮边缘上一点的切向加速度τa =____________,法向加速度n a =____________,飞轮转过的角位移为_________________。 3、刚体任何复杂的运动均可分解为_______________和 ______________两种运动形式。 二、转动惯量 1、刚体的转动惯量与______________ 和___________________有关。 2、长度为L ,质量为M 的均匀木棒,饶其一端A 点转动时的转动惯量J A =_____________,绕其中心O 点转动时的转动惯量J O =_____________________。 3、半径为R 、质量为M 的均匀圆盘绕其中心轴(垂直于盘面)转动的转动惯量J=___________。 4、两个匀质圆盘A 和B 的密度分别是A ρ和B ρ,若B A ρρ>,但两圆盘的质量和厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为A J 和B J 则:【 】 (A )B A J J >; (B )B A J J < (C )B A J J = (D )不能确定 三、刚体动力学----转动定理、动能定理、角动量定理、角动量守恒 1、一长为L 的轻质细杆,两端分别固定质量为m 和2m 的小球,此系统在竖直平面内可绕过中点O 且与杆垂直的水平光滑固定轴(O 轴)转 动.开始时杆与水平成60°角,处于静止状态.无初转速地释放以后, 杆球这一刚体系统绕O 轴转动.系统绕O 轴的转动惯量J = ___________.释放后,当杆转到水平位置时,刚体受到的合外力矩M =____ __;角加速度β= ____ __. 2、一个能绕固定轴转动的轮子,除受到轴承的恒定摩擦力矩M r 外,还受到恒定外力矩M 的作用.若M =20 N ·m ,轮子对固定轴的转动惯量为J =15 kg ·m 2.在t =10 s 内,轮子的角速度由ω =0增大到ω=10 rad/s ,则M r =_______. 3、【 】银河系有一可视为物的天体,由于引力凝聚,体积不断收缩。设它经过一万年体积收缩了1%,而质量保持不变。则它的自转周期将______;其转动动能将______ (A )减小,增大; (B)不变,增大; (C) 增大,减小; (D) 减小,减小 4、【 】一子弹水平射入一竖直悬挂的木棒后一同上摆。在上摆的过程中,一子弹和木棒为系统(不包括地球),则总角动量、总动量及总机械能是否守恒?结论是: (A )三者均不守恒; (B )三者均守恒;

大学物理习题及解答(刚体力学)

1 如图所示,质量为m 的小球系在绳子的一端,绳穿过一铅直套管,使小球限制在一光滑水平面上运动。先使小球以速度0v 。绕管心作半径为r D 的圆周运动,然后向下慢慢拉绳,使小球运动轨迹最后成为半径为r 1的圆,求(1)小球距管心r 1时速度大小。(2)由r D 缩到r 1过程中,力F 所作的功。 解 (1)绳子作用在 小球上的力始终通过中 心O ,是有心力,以小球 为研究对象,此力对O 的 力矩在小球运动过程中 始终为零,因此,在绳子缩短的过程中,小球对O 点的角动量守恒,即 1 0L L = 小球在r D 和r 1位置时的角动量大小 1100r mv r mv = 1 00r r v v = (2)可见,小球的速率增大了,动能也增大了,由功能定理得力所作的功 ??????-=-=-=1)(21 2 1)(21 2 1212102020210202021r r mv mv r r mv mv mv W

2 如图所示,定滑轮半径为r ,可绕垂直通过轮心的无摩擦水平轴转动,转动惯量为J ,轮上绕有一轻绳,一端与劲度系数为k 的轻弹簧相连,另一端与质量为m 的物体相连。 物体置于倾角为θ的光滑斜面上。 开始时,弹簧处于自然长度,物体速度为零,然后释放物体沿斜面下 滑,求物体下滑距离l 时, 物体速度的大小。 解 把物体、滑轮、弹簧、 轻绳和地球为研究系统。在 物体由静止下滑的过程中,只有重力、弹性力作功,其它外力和非保守内力作功的和为零,故系统的机械能守恒。 设物体下滑l 时,速度为v ,此时滑轮的角速度为ω 则 θωsin 2121210222mgl mv J kl -++= (1) 又有 ωr v = (2) 由式(1)和式(2)可得 m r J kl mgl v +-=22 sin 2θ

刚体力学基础 习题 解答

衡水学院 理工科专业 《大学物理B 》 刚体力学基础 习题 命题教师:郑永春 试题审核人:张郡亮 一、填空题(每空1分) 1、三个质量均为m 的质点,位于边长为a 的等边三角形的三个顶点上。此系统对通过三角形中心并垂直于三角形平面的轴的转动惯量J 0=__ ma 2 _,对通过三角形中心且平行于其一边的轴的转动惯量为J A =__ 12 ma 2 _,对通过三角形中心与一个顶点的轴的转动惯量为J B =__ 2 1ma 2 。 2、两个质量分布均匀的圆盘A 与B 的密度分别为ρA 与ρB (ρA >ρB ),且两圆盘的总质量与厚度均相同。设两圆盘对通过盘心且垂直于盘面的轴的转动惯量分别为J A 与J B ,则有J A < J B 。 3、 一作定轴转动的物体,对转轴的转动惯量J =3、0 kg ·m 2,角速度ω0=6、0 rad/s.现对物体加一恒定的制动力矩M =-12 N ·m,当物体的角速度减慢到ω=2、0 rad/s 时,物体已转过了角度?θ=__ 4、0rad 4、两个滑冰运动员的质量各为70 kg,均以6、5 m/s 的速率沿相反的方向滑行,滑行路线间的垂直距离为10 m,当彼此交错时,各抓住一10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量L =__2275 kg·m 2·s 1 _;它们各自收拢绳索,到绳长为5 m 时,各自的速率υ =__13 m·s 1_。 5、有一质量均匀的细棒,可绕垂直于棒的一端的水平轴转动。如将此棒放在水平位置,然后任其下落,则在下落过程中的角速度大小将 变大 ,角加速度大小将 变小 。 二、单项选择题(每小题2分) ( A )1、有两个力作用在一个有固定转轴的刚体上,下列说法正确的就是: A 、这两个力都平行于轴作用时,它们对轴的合力矩一定就是零; B 、这两个力都垂直于轴作用时,它们对轴的合力矩一定就是零; C 、当这两个力的合力为零时,它们对轴的合力矩也一定就是零; D 、当这两个力对轴的合力矩为零时,它们的合力也一定就是零。 ( C )2、一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J ,绳下端挂一物体。物体所受重力为P ,滑轮的角加速度为α.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度α将 A 、不变; B 、变小; C 、变大; D 、如何变化无法判断。 ( C )3、关于刚体的转动惯量,下列说法中正确的就是 A 、只取决于刚体的质量,与质量的空间分布与轴的位置无关; B 、取决于刚体的质量与质量的空间分布,与轴的位置无关; C 、取决于刚体的质量、质量的空间分布与轴的位置; D 、只取决于转轴的位置,与刚体的质量与质量的空间分布无关。 ( C )4、一人造地球卫星到地球中心O 的最大距离与最小距离分别就是R A 与R B .设卫星对应的角动量分别就是L A 、L B ,动能分别就是E KA 、E KB ,则应有 A 、L B > L A ,E KA = E KB ; B 、L B < L A ,E KA = E KB ; C 、L B = L A ,E KA < E KB ; D 、L B = L A , E KA > E KB . ( C )5、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图1射来两个质量 相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内, 则子弹射入后的瞬间,圆盘的角速度ω O M m m

大学物理第3章 刚体力学习题解答

第3章 刚体力学习题解答 3.13 某发动机飞轮在时间间隔t 内的角位移为 ):,:(43s t rad ct bt at θθ-+=。求t 时刻的角速度和角加速度。 解:23 212643ct bt ct bt a d d -==-+== ω θβω 3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转? 解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。显然,汽车前进的速度就是驱动轮边缘的线速度, 909.0/2212Rn Rn v ππ==,所以: min /1054.1/1024.93426.014.3210 166909.02909.013 rev h rev n R v ?=?===????π 3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。 解:设圆柱体长为h ,则半径为r ,厚为dr 的薄圆筒的质量dm 为: 2..dm h r dr ρπ= 对其轴线的转动惯量dI z 为 232..z dI r dm h r dr ρπ== 2 1 2222112..()2 r z r I h r r dr m r r ρπ== -? 3.17 如题3-17图所示,一半圆形细杆,半径为 ,质量为 , 求对过细杆二端 轴的转动惯量。 解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过 轴的转动惯量为 1 2 mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端 轴的转动惯量为:21 4 AA I mR '=

刚体力学习题解答

第三章习题解答 3.13 某发动机飞轮在时间间隔t内的角位移为 。求t时刻的角速度和角加速度。 解: 3.14桑塔纳汽车时速为166km/h,车轮滚动半径为0.26m,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转? 解:设车轮半径为R=0.26m,发动机转速为n1, 驱动轮转速为n2, 汽车速度为v=166km/h。显然,汽车前进的速度就是驱动轮边缘的线速度,,所以: 3.15 如题3-15图所示,质量为m的空心圆柱体,质量均匀分布,其内外半径为r1和r2,求对通过其中心轴的转动惯量。 解:设圆柱体长为h ,密度为,则半径为r,厚为dr的薄圆筒的质量dm 为: 对其轴线的转动惯量为

3.17 如题3-17图所示,一半圆形细杆,半径为 ,质量为 ,求对过细杆二端 轴的转动惯量。 解:如图所示,圆形细杆对过O轴且垂直于圆形细杆所在平面的轴的转动惯量为mR2,根据垂直轴定理和问题的对称性知:圆形细杆对过 轴的转动惯量为mR2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端 轴的转动惯量为: 3.18 在质量为M,半径为R的匀质圆盘上挖出半径为r的两个圆孔,圆孔中心在半

径R的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动 惯量。 解:大圆盘对过圆盘中心o且与盘面垂直的轴线(以下简称o轴)的转动惯量为 .由于对称放置,两个小圆盘对o轴的转动惯量相等,设为I’,圆盘质量的面密度σ=M/πR2,根据平行轴定理, 设挖去两个小圆盘后,剩余部分对o轴的转动惯量为I” 3.19一转动系统的转动惯量为I=8.0kgm2,转速为ω=41.9rad/s,两制 动闸瓦对轮的压力都为392N,闸瓦与轮缘间的摩擦系数为μ=0.4,轮半径为r=0.4m,问从开始制动到静止需多长时间? 解:由转动定理: 制动过程可视为匀减速转动, 3.20一轻绳绕于r=0.2m的飞轮边缘,以恒力F=98N拉绳,如题3-20图

大学物理刚体部分知识点总结

一、刚体的简单运动知识点总结 1.刚体运动的最简单形式为平行移动和绕定轴转动。 2.刚体平行移动。 ·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。 ·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。 ·刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。 3.刚体绕定轴转动。 ?刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。 ?刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。 ?角速度ω表示刚体转动快慢程度和转向,是代数量,。角速度也可以用矢量表示,。 ?角加速度表示角速度对时间的变化率,是代数量,,当α与ω同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。角加速度 也可以用矢量表示,。 ?绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系: 。 速度、加速度的代数值为。 ?传动比。

二.转动定律转动惯量 转动定律 力矩相同,若转动惯量不同,产生的角加速度不同 与牛顿定律比较: 转动惯量 刚体绕给定轴的转动惯量J 等于刚体中每个质元的质量与该质元到转轴距离的平方的乘积之总和。 定义式质量不连续分布 质量连续分布 物理意义 转动惯量是描述刚体在转动中的惯性大小的物理量。 它与刚体的形状、质量分布以及转轴的位置有关。

计算转动惯量的三个要素: (1)总质量; (2)质量分布; (3)转轴的位置 (1) J 与刚体的总质量有关 几种典型的匀质刚体的转动惯量 平行轴定理和转动惯量的可加性 1) 平行轴定理 设刚体相对于通过质心轴线的转动惯量为Ic ,相对于与之平行的另一轴的转动惯量为I ,则可以证明I 与Ic 之间有下列关系 2c I I md =+ 2)转动惯量的可加性 对同一转轴而言,物体各部分转动惯量之和 等于整个物体的转动惯量。 2 c I I m d =+

刚体力学习题答案

第三章 刚体力学习题答案 3-1 如图3-1示,一轻杆长度为2l ,两端各固定一小球,A 球质量为2m ,B 球质量为m , 杆可绕过中心的水平轴O 在铅垂面内自由转动,求杆与竖直方向成θ角时的角加速度. 解:系统受外力有三个,即A ,B 受到的重力和轴的支撑作用力,轴的作用力对轴的力臂为零,故力矩为零,系统只受两个重力矩作用. 以顺时针方向作为运动的正方向,则A 球受力矩为正,B 球受力矩为负,两个重力的力臂相等为s i n d l θ=,故合力矩为 2s i n s i n s i n M m g l m g l m g l θθθ =-= 系统的转动惯量为两个小球(可视为质点)的转动惯量之和 222 23J m l m l m l =+= 应用转动定律 M J β= 有:2 s i n 3m g l m l θβ = 解得 sin 3g l θ β= 3-2 计算题3-2图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为 M ,半径为r ,在绳与轮边缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设1m =50kg,2m =200kg,M =15kg,r =0.1m. 解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对 1m ,2m 运用牛顿定律,有 a m T g m 222=- ① a m T 1 1= ② 对滑轮运用转动定律,有 图 3-1 图3-2

β)2 1(2 1 2Mr r T r T =- ③ 又, βr a = ④ 联立以上4个方程,得 22 12 s m 6.72 15 20058.92002-?=++?=++=M m m g m a 3-3 飞轮质量为60kg,半径为0.25m,当转速为1000r/min 时,要在5s 内令其制动,求制动 力F ,设闸瓦与飞轮间摩擦系数μ=0.4,飞轮的转动惯量可按匀质圆盘计算,闸杆尺寸如图所示. 解:以飞轮为研究对象,飞轮的转动惯量21 2 J mR = ,制动前角速度为1000260ωπ=?rad/s ,制动时角加速度为t ω β-=- 制动时闸瓦对飞轮的压力为N F ,闸 瓦与飞轮间的摩擦力f N F F μ=,运用转动定律,得 2 1 2 f F R J m R ββ-== 则 2N mR F t ω μ= 以闸杆为研究对象,在制动力F 和飞轮对闸瓦的压力N F -的力矩作用下闸杆保持平衡,两力矩的作用力臂分别为(0.500.75) l =+m 和=0-50m ,则有 10N F l Fl -= 11 0.50600.252100015720.500.7520.4560 N l l m R F F l lt ω π μ ???===?=+???N 图3-3

《大学物理学》第二章 刚体力学基础 自学练习题

第二章 刚体力学基础 自学练习题 一、选择题 4-1.有两个力作用在有固定转轴的刚体上: (1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3)当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4)当这两个力对轴的合力矩为零时,它们的合力也一定是零; 对上述说法,下述判断正确的是:( ) (A )只有(1)是正确的; (B )(1)、(2)正确,(3)、(4)错误; (C )(1)、(2)、(3)都正确,(4)错误; (D )(1)、(2)、(3)、(4)都正确。 【提示:(1)如门的重力不能使门转动,平行于轴的力不能提供力矩;(2)垂直于轴的力提供力矩,当两个力提供的力矩大小相等,方向相反时,合力矩就为零】 4-2.关于力矩有以下几种说法: (1)对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度; (2)一对作用力和反作用力对同一轴的力矩之和必为零; (3)质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同。 对上述说法,下述判断正确的是:( ) (A )只有(2)是正确的; (B )(1)、(2)是正确的; (C )(2)、(3)是正确的; (D )(1)、(2)、(3)都是正确的。 【提示:(1)刚体中相邻质元间的一对内力属于作用力和反作用力,作用点相同,则对同一轴的力矩和为零,因而不影响刚体的角加速度和角动量;(2)见上提示;(3)刚体的转动惯量与刚体的质量和大小形状有关,因而在相同力矩的作用下,它们的运动状态可能不同】 3.一个力(35)F i j N =+v v v 作用于某点上,其作用点的矢径为m j i r )34(??? -=,则该力对 坐标原点的力矩为 ( ) (A )3kN m -?v ; (B )29kN m ?v ; (C )29kN m -?v ; (D )3kN m ?v 。 【提示:(43)(35)430209293 5 i j k M r F i j i j k k k =?=-?+=-=+=v v v v v v v v v v v v v 】 4-3.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴 转动,如图所示。今使棒从水平位置由静止开始自由下落,在棒摆 到竖直位置的过程中,下述说法正确的是:( ) (A )角速度从小到大,角加速度不变; (B )角速度从小到大,角加速度从小到大;

第三章 刚体力学 南京大学出版社 习题解答

第三章 习题解答 3.13 某发动机飞轮在时间间隔t 内的角位移为 ):,:(43s t rad ct bt at θθ-+=。求t 时刻的角速度和角加速度。 解:23 212643ct bt ct bt a d d -==-+== ω θβω 3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转? 解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。显然,汽车前进的速度就是驱动轮边缘的线速度, 909.0/2212Rn Rn v ππ==,所以: min /1054.1/1024.93426.014.3210 166909.02909.013 rev h rev n R v ?=?===????π 3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。 解:设圆柱体长为h ,密度为ρ,则半径为r ,厚为dr 的薄圆筒的质量dm 为: 2..dm h r dr ρπ= 对其轴线的转动惯量OO dI '为 232..OO dI r dm h r dr ρπ'== 2 1 222 2112..()2 r OO r I h r r dr m r r ρπ'== -? 3.17 如题3-17图所示,一半圆形细杆,半径为 ,质量为 ,求对过细杆二端 轴 的转动惯量。 解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2, 根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过轴的转动惯量为1 2mR 2, 由转动惯量的可加性可求得:半圆形细杆对过细杆二端 轴的转动惯量为: 21 4 AA I mR '= 3.18 在质量为M ,半径为R 的匀质圆盘上挖出半径为r 的两个圆孔,圆孔中心在半径R 的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。 解:大圆盘对过圆盘中心o 且与盘面垂直的轴线(以下简称o 轴)的转动惯量为

华理工大学大学物理习题之刚体力学习题详解

习题三 一、选择题 1.一根长为l 、质量为M 的匀质棒自由悬挂于通过其上端的光滑水平轴上。现有一质量为m 的子弹以水平速度v 0射向棒的中心,并以v 0/2的水平速度穿出棒,此后棒的最大偏转角恰为90?,则v 0的大小为 [ ] (A ; (B ; (C (D ) 22 163M gl m 。 答案:A 解: 11122 , 1122 J J J J Mg l ωωωω=+?? ?=??? 22211, 243l ml J m J Ml ??=== ??? 0012/2v v l l ω==,0021/21 /22 v v l l ωω===,111121 ()2J J J J ωωωω-= = 21122J Mgl ω=, 2 112J J Mgl J ω?? ?= ??? , 22 114J Mgl J ω= 2 2 202244143v ml l Mgl Ml ?? ???=?,Mgl M v m =?2 02163,2202 163M v gl m =,所以 3 40gl m M v = 2.圆柱体以80rad/s 的角速度绕其轴线转动,它对该轴的转动惯量为24kg m ?。在恒力矩作用下,10s 内其角速度降为40rad/s 。圆柱体损失的动能和所受力矩的大小为 [ ] (A )80J ,80N m ?; (B )800J ,40N m ?;(C )4000J ,32N m ?;(D )9600J ,16N m ?。 答案:D 解:800=ω,40=ω,10=t ,4J = 2201122k E J J ωω-?= - 2 2011()4(64001600)9600(J)22 k E J ωω?=-=??-= M 恒定,匀变速,所以有 0t ωωα=-,0t ωω α-= ,08040 416N m 10 M J J t ωω α--==? =? =? 3.一个转动惯量为J 的圆盘绕一固定轴转动,初角速度为0ω。设它所受阻力矩与转动角速度成正比M k ω=- (k 为正常数)。

相关文档
最新文档