电冰箱制冷系统的组成、作用及种类分析

电冰箱制冷系统的组成、作用及种类分析
电冰箱制冷系统的组成、作用及种类分析

项目三

电冰箱制冷系统的组成、作用及种类

【课时安排】:8个课时

【学习目标】:

1、知识目标:了解电冰箱的种类、规格和型号。

2、能力目标:通过理论知识的学习和应用,培养综合运用能力。

3、情感目标:培养学生热爱科学,实事求是的学风和创新意识,创新精神【知识目标】:

1、电冰箱组成。

2、电冰箱制冷系统的组成、作用及种类。

【教学过程】:

知识点一:电冰箱的基本组成:

一、概述

它主要有箱体、制冷系统、电气控制系统和附件四部分组成。

二、电冰箱组成

1、箱体:电冰箱的躯体部分,且来隔热保温。箱体内空间分为冷藏和冷冻两部分。

2、制冷系统:利用制冷剂在循环过程中的吸热和放热作用,将箱内的热量转移

至箱外空气中去,使箱内温度降低,达到冷藏、冷冻食物的目的。

3、电气自动控制系统:用于保证制冷系统按照不同的使用要求自动而安全地工

作,将箱内温度控制在一定范围内以达到冷藏冷冻的目的。

4、附件:完善和适应冷藏、冷冻不同要求而设置的。

知识点二:制冷系统的组成

1)压缩机(2)冷凝器(3)干燥过滤器(4)毛细管(5)蒸发器

一、电冰箱制冷系统的制冷原理

冰箱制冷系统工作经历了四个过程:压缩、冷凝、节流和蒸发。

(1)压缩机吸入来自蒸发器中的气态制冷剂,在内部汽缸内进行压缩,形成高温高压的气态制冷剂;把压力提高到与冷凝温度相对应的冷凝压力,经高压阀门从高压排气管送入冷凝器中。

(2)进入冷凝器的高温高压气态制冷剂,沿盘管向大气环境散热,与大气环境交换热量,同时在内部由气态冷凝成液态。

(3)液态制冷剂经干燥过滤器吸收水分、滤除有形赃物,优化制冷环境,防止制冷系统冰堵和脏堵。

(4)液态制冷剂经毛细管节流,控制制冷剂的流量,控制对蒸发器的供液量;

把压力由冷凝压力降至蒸发压力,送至蒸发器内。

(5)进入蒸发器的液态制冷剂,剧烈地汽化转变成气态制冷剂,同时,沿盘管吸收大量的热量,达到制冷目的。制冷剂循环往复,以至无穷。

二、压缩机

它是制冷系统心脏。压缩机通过做功把从冰箱蒸发器吸来的低温低压制冷剂蒸汽压缩成为高温高压的制冷剂蒸汽。为制冷剂蒸汽在冷凝器中冷凝为液态提供条件。

(1)压缩机的作用:将来自蒸发器中的低压制冷剂蒸汽压缩,将压力提高到与冷凝温度相对应的冷凝压力,从而保证制冷剂蒸汽在冷凝器中常压下就能冷凝液化。即把从蒸发器吸入的低温低压制冷剂蒸汽在压缩机汽缸内压缩,形成高温高压的气态制冷剂,经高压阀门送到冷凝器中,为制冷剂蒸汽在冷凝器中冷凝提供条件。

(2)冰箱压缩机的主要类型:

常用类型有往复活塞式和旋转式两种。往复活塞式绝大多数是曲轴连杆式,少量是曲柄滑管式,斜盘式和电磁振动式更少。在无霜冰箱中旋转式压缩机使用较多(如上海上菱牌电冰箱),其优点是:体积小,重量轻,效率高,噪音小等。

A、往复活塞式压缩机:结构简单合理,零件少,工艺比较简单,主要运

动部件受力均匀,磨损、振动和噪声都较小,使用寿命较长,目前被大量地应用在电冰箱上。

B、旋转式压缩机:体积小,重量轻,结构简单,零部件少,耗电低,效

率高。同时吸气和排气,压力波动性小。

C、压缩机有两部分组成:电动机和压缩机两部分组成。

D、认识压缩机的三个连接管

往复活塞式压缩机有三个连接管:高压排气管、低压回气管和工艺管,高压排气管是较细的一根;其余两根为低压回气管和工艺管,管径较粗,二者相通,可以互换

E、压缩机的三个接线柱:压缩机有三个接线端子,即公共端子C(O),主绕组端子(运行绕组端子)M(R),启动绕组端子S。CM为主绕组,又叫运行绕组,CS副绕组,又叫启动绕组。

三、冷凝器的种类:

可分为水冷和空气冷却两种方式,冰箱主要采用空气冷却方式,空气冷却又分为自然对流冷却和强制冷却两种方式。电冰箱常用的冷凝器类型:

①百页窗式:散热效果比内藏光管式的好,但不如钢丝盘管式冷凝器的散热效

果。

②钢丝盘管式:自然冷却散热效果最好。

③内藏光管式:优点是外观漂亮,搬运方便,但换热效果最差

④翅片盘管式冷凝器:常用于冰柜和玻璃门立式电冰箱,换热效果较好。

四、干燥过滤器:

(1)干燥过滤器的作用:吸收水分和滤除制冷系统的有形杂质,防止制冷系统出

现冰堵和脏堵。大型制冷设备的干燥器和过滤器是分开的,小型制冷设备(如电冰箱)是合在一起的。

(2)干燥剂有5A型分子筛和硅胶。

(3)过滤网网孔有0.4mm的钢丝网,用于氨制冷系统;网孔有0.1mm的铜丝网,用于氟利昂制冷系统。

五、毛细管

(1)毛细管的作用:是节流阀的一种,一是节流,控制制冷剂的流量,让高温高压的制冷剂蒸汽在冷凝器中,充分完全的都变成液态制冷剂;二是减压,把压力由冷凝器压力降为蒸发压力,从而使液态制冷剂在蒸发器中(规定的低压状况下)沸腾汽化吸收大量热量;三是(双温双控电冰箱的毛细管)控制对冷冻冷藏室蒸发器的供液量。

(2)毛细管的位置:毛细管是冰箱上的节流降压装置,位于冰箱的后面下部,接在冷凝器的末端与蒸发器之间。

(3)毛细管的结构:是一根孔径很小,长度较长且多盘管状的紫铜管。在检修冰箱时,不能随意更换毛细管的孔径和长度。

(4)毛细管的特点:结构简单,无运动部件,不易故障,但毛细管不能自动调节供液量,只使用于热负荷比较稳定的家用电冰箱等小型制冷设备中。

(5)毛细管的节流控制原理:

①毛细管内径相同,管子越长,阻力越大,制冷系统高压越高.

②毛细管管长相同,内径越小,阻力越大,制冷系统高压越高.

③电冰箱上的毛细管是经过多次实测得到的管长管径数据的,不能任意更改。

六、蒸发器

是一种将冰箱内热量传递给制冷剂并使液态制冷剂剧烈汽化的热交换器。

(1)蒸发器的作用:蒸发器是让低压液态制冷剂在内部转变为气态制冷剂的换热器。把毛细管送来的过冷低压制冷剂液体,经吸收箱内食物物品和空气的热量后沸腾汽化为饱和蒸气,达到制冷的目的。蒸发器进行的汽化现象是沸腾汽化现象,不是慢慢的蒸发汽化现象。

(2)蒸发器的主要类型:

①铝复合板式:多用于直冷式单门电冰箱和双门电冰箱冷藏室和冷冻室,直接

围成冷藏室和冷冻室,直接吸收箱内热量而制冷。

②管板式:双门直冷式电冰箱多采用这种蒸发器,电冰箱发生内漏故障维修时,

大多数采用管板式蒸发器。

③翅片盘管式蒸发器:多用于间冷式冰箱。强迫对流。

④单脊翅片式:常用于直冷式电冰箱冷藏室。

⑤层架抽屉(盘管)式蒸发器:常用于格架抽屉式直冷式冰箱的冷冻室。

蒸发器制造要考虑润滑油的回流,尽量做到上进下出,冷藏室和冷冻室哪个在上,毛细管就先进入哪一个。

【布置作业】:1、压缩机的分类有哪些?

2、影响冷凝器散热的因素有哪些?

3、影响蒸发器传热的因素有哪些?

4、毛细管的作用是什么?

5、干燥过滤器的作用是什么?

【课后小结】:本节的几个重点都很重要,在高考中常出各种题,所以一定要注意。特别是电冰箱的各种组成的作用和分类。学生对于本节很感兴趣,

尤其是常用电冰箱组成的介绍,让学生观察都很喜欢。

冰箱制冷系统设计说明书word版本

冰箱制冷系统设计说 明书

冰箱制冷系统设计说明书1.冰箱设计步骤

图1 BCD-348W/H电冰箱制冷系统图 2.冰箱的总体布置 2.1箱体设计要求及形式 电冰箱箱体设计的优劣,直接影响使用性能、外观、耐久性制造成本和市场销售。在进行设计时,要求造型别致、美观大方。除色调要与家庭家具协调外,还必须考虑占地面积小内容积大,宽度、深度与高度的比例合理,有稳定感等。冰箱箱体尺寸见表1。 表1箱体尺寸

2.2箱体外表面温度校核和绝热层厚度 设计箱体的绝热层时,可预先参照国内外冰箱的有关资料设定其厚度,并计算出箱体表面温度t w 。如果箱体外表面温度t w 低于露点温度t d ,则会在箱体表面发生凝露现象,因此箱体表面温度必须高于露点温度,一般t w > t d +0.2 )(i o o o W t t a K t t -- = (1) 国家标准GB8059.1规定,电冰箱在进行凝露实验时 亚温带SN 、温带N 气候条件下,露点温度为19±0.5℃ 亚热带ST 、热带T 气候条件下,露点温度为27±0.5℃ t o t i

在t w > t d 的前提下,计算箱体的漏热量Q 1,并用下面的公式校验绝热层的厚度 1 21) (Q t t A w w -= λδ (2) 1w t ----冰箱外壁温度,℃ 2w t ----冰箱内壁温度,℃ λ-----绝热层导热系数,w/(m.k) A -----传热面积,m 2 校验计算的厚度在设定厚度基础上进行修正,反复计算,直到合理为止。 3.冰箱热负荷计算 总热负荷Q=Q 1+Q 2+Q 3 Q 1---- 箱体的漏热量 Q 2---- 门封漏热量 Q 3---- 除露管漏热量 (1)箱体的漏热量Q 1 由于箱体外壳钢板很薄,而其导热系数很大,所以钢板热阻很小,可忽略不计。内胆多用塑料ABS 成型,热阻较大,可将其厚度一起计入隔热层,箱体的传热可以看做单层平壁的传热。 )(1i o t t KA Q -= (3) (4) 其中:K —— 传热系数,W/m 2·℃; A —— 传热面积,m 2 ; i o a a K 111 ++= λδ

空调工作原理及电路控制详解

空调工作原理及电路控制详解 近年来,我国空调器产业的发展十分迅猛,2000年我国空调行业的生产规模便已经发展到1800万台左右,2003年度我国家用空调器行业的总生产能力已超过4000万台,2004年度这一数据已经扩大到了5500万台。目前,中国的空调器产量已占世界总产量的3/5左右,中国已成为名副其实的空调器制造大国,也正在逐渐成为全球空调器生产基地。在过去的五年中,中国空调器行业的工业总产值和销售收入都经历了持续的增长,其中2001年度、2003年度和2004年度的增长尤为显着。 此外,近年来,百户城市居民家庭的空调器拥有量每年都有显着提高。空调拥有量在各地区差异较大。随着国内市场的扩大, 中国的空调器出口也在连年迅速增长,空调器出口额占家电产品出口总额的份额也在不断提高。2002年度、2003年度和2004年度我国空调产品的出口保持了十分强劲的增长势头,其中2003年度国内空调企业的出口额首次突破千万台大关,超过了1400台。2004年度国内空调器企业的出口量更是超过了2300万台,与国内销量形成了齐头并进的格局。这篇文章的主要目的是希望能够大力推动SPMC65系列芯片的应用,并根据国家标准验证其性能,走进国内各家电生产厂家。 1 空调工作原理 (1)制冷原理 图 1-1空调制冷原理 空调制冷原理如图 1?1所示,空调工作时,制冷系统内的低压、低温制冷剂蒸汽被压缩机吸入,经压缩为高压、高温的过热蒸汽后排至冷凝器;同时室外侧风扇吸入的室外空气流经冷凝器,带走制冷剂放出的热量,使高压、高温的制冷剂蒸汽凝结为高压液体。高压液体经过节流毛细管降压降温流入蒸发器,并在相应的低压下蒸发,吸取周围热量;同时室内侧风扇使室内空气不断进入蒸发器的肋片间进行热交换,并将放热后的变冷的气体送向室内。如此,室内外空气不断循环流动,达到降低温度的目的。 (2)制热原理

电冰箱制冷系统的组成、作用及种类

项目三 电冰箱制冷系统的组成、作用及种类 【课时安排】:8个课时 【学习目标】: 1、知识目标:了解电冰箱的种类、规格和型号。 2、能力目标:通过理论知识的学习和应用,培养综合运用能力。 3、情感目标:培养学生热爱科学,实事求是的学风和创新意识,创新精神【知识目标】: 1、电冰箱组成。 2、电冰箱制冷系统的组成、作用及种类。 【教学过程】: 知识点一:电冰箱的基本组成: 一、概述 它主要有箱体、制冷系统、电气控制系统和附件四部分组成。 二、电冰箱组成 1、箱体:电冰箱的躯体部分,且来隔热保温。箱体内空间分为冷藏和冷冻两部分。 2、制冷系统:利用制冷剂在循环过程中的吸热和放热作用,将箱内的热量转移 至箱外空气中去,使箱内温度降低,达到冷藏、冷冻食物的目的。 3、电气自动控制系统:用于保证制冷系统按照不同的使用要求自动而安全地工 作,将箱内温度控制在一定范围内以达到冷藏冷冻的目的。 4、附件:完善和适应冷藏、冷冻不同要求而设置的。 知识点二:制冷系统的组成 1)压缩机(2)冷凝器(3)干燥过滤器(4)毛细管(5)蒸发器

一、电冰箱制冷系统的制冷原理 冰箱制冷系统工作经历了四个过程:压缩、冷凝、节流和蒸发。 (1)压缩机吸入来自蒸发器中的气态制冷剂,在内部汽缸内进行压缩,形成高温高压的气态制冷剂;把压力提高到与冷凝温度相对应的冷凝压力,经高压阀门从高压排气管送入冷凝器中。 (2)进入冷凝器的高温高压气态制冷剂,沿盘管向大气环境散热,与大气环境交换热量,同时在内部由气态冷凝成液态。 (3)液态制冷剂经干燥过滤器吸收水分、滤除有形赃物,优化制冷环境,防止制冷系统冰堵和脏堵。 (4)液态制冷剂经毛细管节流,控制制冷剂的流量,控制对蒸发器的供液量; 把压力由冷凝压力降至蒸发压力,送至蒸发器内。 (5)进入蒸发器的液态制冷剂,剧烈地汽化转变成气态制冷剂,同时,沿盘管吸收大量的热量,达到制冷目的。制冷剂循环往复,以至无穷。 二、压缩机

空调原理图及空调制冷原理

空调原理图及空调制冷原理,制热原理介绍 空调原理图如附图所示,图中虚线表示制冷状态,实线表示制热状态 制冷过程 制冷时压缩机高压出口经过四通阀1-2到热交换器进行热交换,使过热蒸汽逐渐变成饱和蒸汽,进而变成饱和液体或过冷液体。通过毛细管节流降压后的制冷剂液体(混有饱和蒸汽)---到室外机截止阀(也称高压阀)进入室内机热交换器(蒸发器),从周围介质吸热蒸发成气体,实现制冷。在蒸发过程中,制冷剂的温度和压力保持不变。从蒸发器出来的制冷剂已成为干饱和蒸汽或稍有过热度的过热蒸汽了。物质由液态变成气态时要吸热,这就是空调制冷。室内机回气:回气管到室外机经由截止阀(也称低压阀或维修阀)进入消音器--四通阀4-3到压缩机低压回气侧完成制冷循环。 制热过程:实线表示制热状态 制热时四通阀开闭状态与制冷是正好相反,流经的顺序是: 压缩机高压出口经四通阀1---4到消音器---截止阀(也称低压阀或维修阀)---室内机热交换器---回到室外机截止阀(也称高压阀)---毛细管---热交换器---四通阀2---3到储液器---压缩机低压侧。 室外机的热交换器上的温度传感器(热敏电阻)用于制冷时检测热交换器的管道温度,如果温度异常升高则可计算出管道压力,进而把温度异常信号送给控制板。 室外机的室外温度传感器(热敏电阻)主要用来检测室外环境温度。 室内机热交换器温度传感器(热敏电阻)检测热交换器温度,如制冷或制热时在一定时间内热交换器温度达不到所规定的管温,传感器会把不正常信号送给控制板进行分析,例如系统内制冷剂不足或无制冷剂,室内机管温就不正常,传感器会把不正常信号送给控制板,控制板做出停处理,进而保护压缩机,避免压缩机长时间高温运转。因为压缩机长时间高温是极有可能被烧毁的。 空调制冷原理图空调系统 室外机结构图片

电冰箱的组成

冰箱由哪几部分构成 (2010-02-23 19:50:22) 转载▼ 电冰箱主要由箱体、门体、制冷系统、电气系统及附件五部分组成。 一.箱体和门体 箱体、门体根据不同的温度要求组成若干间室,与外界空气隔绝并分别保持一定低温。箱体、门体由箱壳、箱胆、门壳、门胆等结构件和绝热材料组成。 1. 箱壳、门壳一般由0.4-0.8mm的冷轧钢板作成,表面经磷化与喷塑(或喷漆)处理。为了美观,门壳多用彩板,有的冰箱已经使用拉丝板。 2.箱胆、门胆一般用厚1.2-5mm的ABS板或HIPS板经真空成型作成。箱胆也有用铝板作成的,这种箱胆强度比塑料好,但耐腐蚀性不如塑料。 3.隔热层 过去冰箱的隔热层都用玻璃棉充填,现在冰箱隔热层都用聚氨酯发泡塑料。聚氨酯发泡塑料是在异氰酸酯、聚醚的聚合反应中,加入发泡剂发泡而成。 发泡剂过去都采用R11,这种发泡剂对大气层的臭氧层有较大的破坏作用。现在的发泡剂逐渐改为R141b或环戊烷,这两种发泡剂都是环保发泡剂。 4.门铰链 箱体和门体由门铰链联接在一起。单门电冰箱有上、下两个铰链,双门电冰箱有上、中、下三个铰链。门铰链上一般都加一个限位机构和一个自锁机构。 5.门封条 为防止冰箱内冷气外泄和外界热气侵入,在门体的内壁四周装有磁性门封条,依靠磁条的磁力,将门封与箱体铁皮紧紧吸住。门封条是用软质聚氯乙烯挤塑成条,将磁性胶条穿入塑料门封条的空心管里,四角热粘合而成。康佳冰箱的门封条基本都可以进行拆卸,方便清洗。 二.制冷系统 电冰箱的制冷系统由压缩机、冷凝器、干燥过滤器、毛细管、和蒸发器组成,制冷系统利用制冷剂的循环进行热交换,将冰箱内的热量转移到冰箱外的空气中去,达到使冰箱内降温的目的。 1.压缩机 家用电冰箱用压缩机一般为全封闭压缩机。它的全称为“电冰箱用全封闭型电动机-压缩机”,它实际是将压缩机与电动机全部密封在机壳内。 (1)压缩机的作用 压缩机是制冷循环系统的“心脏”,它的作用是在电动机的带动下,输送和压缩制冷剂蒸气,使制冷剂在系统中进行制冷循环。当压缩机电动机带动曲轴作旋转运动时,连杆将旋转运动转化为活塞的往复式运动。活塞在气缸中所作的往复运动,可分为吸气、压缩、排气和膨胀四

冷柜制冷系统设计分析

1、制冷系统原理介绍 一般制冷机的制冷原理压缩机的作用是把压力较低的蒸汽压缩成压力较高的蒸汽,使蒸汽的体积减小,压力升高。压缩机吸入从蒸发器出来的较低压力的工质蒸汽,使之压力升高后送入冷凝器,在冷凝器中冷凝成压力较高的液体,经节流阀节流后,成为压力较低的液体后,送入蒸发器,在蒸发器中吸热蒸发而成为压力较低的蒸汽,再送入压缩机的入口,从而完成制冷循环。压缩制冷系统循环见下图1-1。 单级蒸汽压缩制冷系统,是由制冷压缩机、冷凝器、蒸发器和节流阀四个基本部件组成。它们之间用管道依次连接,形成一个密闭的系统,制冷剂在系统中不断地循环流动,发生状态变化,与外界进行热量交换。 液体制冷剂在蒸发器中吸收被冷却的物体热量之后,汽化成低温低压的蒸汽、被压缩机吸入、压缩成高压高温的蒸汽后排入冷凝器、在冷凝器中向冷却介质(水或空气)放热,冷凝为高压液体、经节流阀节流为低压低温的制冷剂、再次进入

蒸发器吸热汽化,达到循环制冷的目的。这样,制冷剂在系统中经过蒸发、压缩、冷凝、节流四个基本过程完成一个制冷循环。 在制冷系统中,蒸发器、冷凝器、压缩机和节流阀是制冷系统中必不可少的四大件,这当中蒸发器是输送冷量的设备。制冷剂在其中吸收被冷却物体的热量实现制冷。压缩机是心脏,起着吸入、压缩、输送制冷剂蒸汽的作用。冷凝器是放出热量的设备,将蒸发器中吸收的热量连同压缩机功所转化的热量一起传递给冷却介质带走。节流阀对制冷剂起节流降压作用、同时控制和调节流入蒸发器中制冷剂液体的数量,并将系统分为高压侧和低压侧两大部分。实际制冷系统中,除上述四大件之外,常常有一些辅助设备,如电磁阀、分配器、干燥器、集热器、易熔塞、压力控制器等部件组成,它们是为了提高运行的经济性,可靠性和安全性而设置的。 2、冷柜制冷系统设计 2.1、冷柜制冷系统设计的内容和流程 制冷系统设计的主要内容是落实一款产品的整个制冷系统,需明确压缩机、蒸发器、冷凝器等一系列制冷件,但也要考虑其它零件,如感温导管、连接管等。简单来说,就是制冷人员要将整个制冷系统考虑一遍,并在明细表中确定下来。需要考虑的大原则是零件尽量通用,产品设计零件数量少,零件规格通用化,加工设备(包括外协厂制作加工)尽量少,生产效率高。 针对冷柜系统焊点要尽可能少,简单产品不超过10个焊点,最多不超过15个。压缩机物料号需技术副总审批,通用化高的制冷件物料审批需部长级审批,

电冰箱的制冷系统

§3.4 电冰箱的制冷系统(抽真空、充注制冷剂等) 一、教学目标 1、掌握电冰箱制冷系统各部件的结构及作用。 2、掌握电冰箱制冷系统维修工具(双表修理阀、真空泵)的使用方法。 3、掌握电冰箱制冷系统抽真空、充注制冷剂的方法和操作。 二、工具器材 1、制冷压缩机 2、双表修理阀 3、真空泵 4、电冰箱模型 5 、制冷剂R12 三、相关理论知识 1、制冷压缩机 (1 )制冷压缩机的分类 压缩机主要类型有:活塞式、旋转式和涡旋式三种。根据压缩机和电动机连接方式的不同,活塞式制冷压缩机可分为开启式、半封闭式和全封闭式三种。电冰箱制冷系统使用的压缩机属于全封闭式压缩机。其中比较典型的是往复活塞式压缩机。往复活塞式压缩机又可分为连杆式、滑管式、电磁式三种。 (2 )全封闭式压缩机的特点压缩机与电动机共用一主轴,安装在利用弹簧悬吊的钢制机壳内,机壳采用焊接密封。从其外形看,封闭的外壳有三根铜管(即吸气管、排气管、工艺管)和一个电动机的电源接线盒(如图3.4-1 所示)。 全封闭式压缩机与开启式、半封闭式压缩机相比,结构更紧凑,重量更轻,噪音更小,制冷剂不易泄漏,日常维护工作量很小,特别适用于家庭小型制冷装置。

图3.4-1全封闭式压缩机外形图 (3 )往复活塞式压缩机的内部结构简介 1)机械部分 用专用工具打开压缩机顶盖,看见压缩机内部的机械部分,如图 3.4-2所示。 图3.4-2压缩机内部的机械部分 2)压缩机的电动机 小型压缩机的电动机大多是单相电动机,其绕组由启动绕组和运转绕组两部分构成, 常启动绕组较细、运转绕组较粗。共有3个引出线端子:R、S、C,如图3.4-3所示。

电冰箱的制冷系统(抽真空、充注制冷剂等)

§3.4电冰箱的制冷系统(抽真空、充注制冷剂等) 一、教学目标 1、掌握电冰箱制冷系统各部件的结构及作用。 2、掌握电冰箱制冷系统维修工具(双表修理阀、真空泵)的使用方法。 3、掌握电冰箱制冷系统抽真空、充注制冷剂的方法和操作。 二、工具器材 1、制冷压缩机 2、双表修理阀 3、真空泵 4、电冰箱模型 5、制冷剂R12 三、相关理论知识 1、制冷压缩机 (1)制冷压缩机的分类 压缩机主要类型有:活塞式、旋转式和涡旋式三种。根据压缩机和电动机连接方式的不同,活塞式制冷压缩机可分为开启式、半封闭式和全封闭式三种。电冰箱制冷系统使用的压缩机属于全封闭式压缩机。其中比较典型的是往复活塞式压缩机。往复活塞式压缩机又可分为连杆式、滑管式、电磁式三种。 (2)全封闭式压缩机的特点 压缩机与电动机共用一主轴,安装在利用弹簧悬吊的钢制机壳内,机壳采用焊接密封。从其外形看,封闭的外壳有三根铜管(即吸气管、排气管、工艺管)和一个电动机的电源接线盒(如图3.4-1所示)。 全封闭式压缩机与开启式、半封闭式压缩机相比,结构更紧凑,重量更轻,噪音更小,制冷剂不易泄漏,日常维护工作量很小,特别适用于家庭小型制冷装置。

图3.4-1全封闭式压缩机外形图(3)往复活塞式压缩机的内部结构简介 1) 机械部分 用专用工具打开压缩机顶盖,看见压缩机内部的机械部分,如图3.4-2所示。 图3.4-2压缩机内部的机械部分 2) 压缩机的电动机 小型压缩机的电动机大多是单相电动机,其绕组由启动绕组和运转绕组两部分构成,通常启动绕组较细、运转绕组较粗。共有3个引出线端子:R、S、C,如图3.4-3所示。

冷柜制冷系统设计分析

冷柜制冷系统设计分析 Prepared on 22 November 2020

1、制冷系统原理介绍 一般制冷机的制冷原理的作用是把压力较低的蒸汽压缩成压力较高的蒸汽,使蒸汽的体积减小,压力升高。压缩机吸入从蒸发器出来的较低压力的工质蒸汽,使之压力升高后送入冷凝器,在冷凝器中冷凝成压力较高的液体,经节流后,成为压力较低的液体后,送入蒸发器,在蒸发器中吸热蒸发而成为压力较低的蒸汽,再送入压缩机的入口,从而完成制冷循环。压缩制冷系统循环见下图1-1。 单级蒸汽压缩制冷系统,是由、、蒸发器和四个基本部件组成。它们之间用管道依次连接,形成一个密闭的系统,制冷剂在系统中不断地循环流动,发生状态变化,与外界进行热量交换。 液体制冷剂在蒸发器中吸收被冷却的物体热量之后,汽化成低温低压的蒸汽、被压缩机吸入、压缩成高压高温的蒸汽后排入冷凝器、在冷凝器中向冷却介质(水或空气)放热,冷凝为高压液体、经节流阀节流为低压低温的制冷剂、再次进入蒸发器吸热汽化,达到循环制冷的目的。这样,制冷剂在系统中经过蒸发、压缩、冷凝、节流四个基本过程完成一个制冷循环。 在制冷系统中,蒸发器、冷凝器、压缩机和是制冷系统中必不可少的四大件,这当中蒸发器是输送冷量的设备。制冷剂在其中吸收被冷却物体的热量实现制冷。压缩机是心脏,起着吸入、压缩、输送制冷剂蒸汽的作用。冷凝器是放出热量的设备,将蒸发器中吸收的热量连同压缩机功所转化的热量一起传递给冷却介质带走。节流阀对制冷剂起节流降压作用、同时控制和调节流入蒸发器中制冷剂液体的数量,并将系统分为高压侧和低压侧两大部分。实际制冷系统中,除上述四大件之外,常常有一些辅助设备,如、分配器、、、易熔塞、等部件组成,它们是为了提高运行的经济性,可靠性和安全性而设置的。

冰箱制冷系统设计说明书

冰箱制冷系统设计说明书1.冰箱设计步骤

图1 BCD-348W/H电冰箱制冷系统图 2.冰箱的总体布置 2.1箱体设计要求及形式 电冰箱箱体设计的优劣,直接影响使用性能、外观、耐久性制造成本和市场销售。在进行设计时,要求造型别致、美观大方。除色调要与家庭家具协调外,还必须考虑占地面积小容积大,宽度、深度与高度的比例合理,有稳定感等。冰箱箱体尺寸见表1。 表1箱体尺寸 2.2箱体外表面温度校核和绝热层厚度 设计箱体的绝热层时,可预先参照国外冰箱的有关资料设定其厚度,并计算出箱体表面温度t w。如果箱体外表面温度t w低于露点温度t d,则会在箱体表面发生凝露现象,因此箱体表面温度必须高于露点温度,一般t w > t d+0.2 t o t i

)(i o o o W t t a K t t --= (1) 国家标准GB8059.1规定,电冰箱在进行凝露实验时 亚温带SN 、温带N 气候条件下,露点温度为19±0.5℃ 亚热带ST 、热带T 气候条件下,露点温度为27±0.5℃ 在t w > t d 的前提下,计算箱体的漏热量Q 1,并用下面的公式校验绝热层的厚度 121)(Q t t A w w -= λδ (2) 1w t ----冰箱外壁温度,℃ 2w t ----冰箱壁温度,℃ λ-----绝热层导热系数,w/(m.k) A -----传热面积,m 2 校验计算的厚度在设定厚度基础上进行修正,反复计算,直到合理为止。 3.冰箱热负荷计算 总热负荷Q=Q 1+Q 2+Q 3 Q 1---- 箱体的漏热量 Q 2---- 门封漏热量 Q 3---- 除露管漏热量 (1)箱体的漏热量Q 1 由于箱体外壳钢板很薄,而其导热系数很大,所以钢板热阻很小,可忽略不计。胆多用塑料ABS 成型,热阻较大,可将其厚度一起计入隔热层,箱体的传热可以看做单层平壁的传热。 )(1i o t t KA Q -= (3) (4) 其中:K —— 传热系数,W/m 2·℃; A —— 传热面积,m 2 ; t o ——箱体外空气温度,℃; t i ——箱体空气温度,℃ αo ——箱外空气对箱体外表面的表面换热系数,W/m 2·℃; αi ——箱体表面对箱空气的表面换热系数,W/m 2·℃; i o a a K 111++=λδ

3-电冰箱系统设计

3 冰箱制冷系统设计 冰箱制冷系统的设计基本思路和顺序是:先根据要求确定箱体尺寸,然后根据箱体尺寸确定热负荷,根据热负荷和其他发热元件可以确定冰箱的基本能耗,并依次确定压缩机,同时可以确定蒸发器和冷凝器两大主要传热设备,最后才是确定节流元件和制冷剂充注量。当然,计算设计不可能是很准确的,最后还需要通过试验和不断的调试来使系统运行达到最优化。 保温层设计 3.1.1 保温层设计方法 冰箱保温层厚度是设计的重点,关键是产品的成本与性能,而保温层的设计需要考虑的因素包括: ①不同的市场和不同的能耗要求; ②产品的不同风格和设计特点; . ③市场对发泡料的限制条件; ④产品成本的综合对比选择; ⑤产品的市场要求:全球性、区域性、特殊客户; ⑥产品的未来发展考虑。 冰箱保温层厚度是设计的重点,在设计中总会与不同部门发生冲突,当然要求的厚度越薄越好,这样成本低,容积大,但由于技术的能力有限制的,在能耗达到一定的水平时,厚度也不是可以薄到想要的程度,因此在厚度的设计方面存在选择是否合理的问题。 目前冰箱箱体都采用硬质聚氨脂整体发泡作绝热层,其绝热性能好,适于流水线大批量生产,发泡后的箱体内外壳被粘接成刚性整体,结构坚固,内外壳厚度可以适当降低,无须对箱体做防潮处理,年久也不会吸湿而使热导率增大。 电冰箱绝大多数为立式结构。箱体结构的发展过程,大致分为四个阶段:5 0年代以前主要是厚壁箱体(厚度为60~65mm);60年代是薄壁箱体(厚度30~3 5mm);70年代是薄壁双温双门;80年代以后世界上趋于采用中等壁厚箱体(厚度为40~45mm),并以箱背式冷凝器的三门三温或双门双温自然对流冷却(即直冷

冰箱冷藏室温度智能控制系统

- . - 目录 摘要 (1) 1 引言 (1) 2 设计思路 (2) 2.1 设计任务 (2) 2.2 设计的理论基础 (2) 2.3 冰箱的系统组成 (2) 2.3.1 蒸汽式压缩机电冰箱 (2) 2.3.2 直冷式电冰箱 (3) 2.4 总体设计方案选择 (3) 2.5 方案总体介绍 (4) 3 硬件系统设计 (4) 3.1 系统总体结构 (4) 3.2 温度采集模块 (5) 3.2.1 温度采集模块的选择 (5) 3.2.2 DS18B20测温电路 (6) 3.2.3 测量数据的比较 (7) 3.3 单片机系统及液晶模块 (7) 3.3.1 微处理器(单片机) (7) 3.3.2 显示电路的设计 (8) 3.4 输出控制模块 (9) 4 软件设计 (9) 4.1 主程序流程框图 (10) 4.2 DS18B20工作的流程图 (12) 5 调试与实验 (12) 5.1 使用说明 (12) 5.1.1 Keil单片机模拟仿真 (12) 5.2 功能测试 (14) 5.2.1 温度测量分辨率 (14) 5.3 晶振的选择 (14) 附录1 硬件原理图 (15)

冰箱冷藏室温度智能控制系统 摘要:本智能温度控制主要由温度采集模块、液晶显示模块、单片机智能控制模块和输出控制模块组成。此次设计相比于传统的冰箱温度控制器,温度信号更加精确,利用单片机控制冷藏室温度在1℃~5℃之间,当温度低于1℃,继电器不工作;当温度高于5℃,继电器开始工作,并且利用液晶显示冷藏室温度的变化。 关键词:温度采集;液晶显示;温度控制 1 引言 随着集成电路的发展,单片机的功能也越发的多样。单片机因为他本是的诸多优点,比如功能强、体积小、可靠性高、开发的周期短,成为各种检测控制方面被广泛应用的元器件,在电子工业生产中变为不可缺少的存在,特别是在我们日常的生活生产中也发挥了很多的作用[1]。而在日常生活中,冰箱已经成了家庭生活中不可缺少的一部分,就此对于冰箱的性能要求也越来越高。在这其中冰箱的智能温度控制是现今市场上冰箱重要选择。 现在市面上的冰箱大多都包含着两部分,分别是冷藏室和冷冻室。其中冷藏室用于冷藏食物,要求有一定的保鲜作用,不可冻伤食物;冷冻室一般用于对食物的冷冻作用。 现代信息技术的三大基础是信息采集(即传感器技术)、信息传输(通用技术)和信息处理(计算机技术)。目前信息技术中前端的产品就是传感器,而其中被广泛应用在工业生产、科学研究方面的传感器就是温度传感器,在这些领域中温度传感器的应用是位于各种传感器的第一位[2]。 智能温度传感器最早是出现在20世纪90年代的中期,在其内部就应用了A/D转换器,但他测量的温度X围比较低,而且也只有1℃的分辨率。到了21世纪以后,智能温度传感器正在迅速的朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向发展[3]。 传统电冰箱的温度一般是由冷藏室控制。冷藏室、冷冻室之间不同的温度是通过调节蒸发器在两室的面积大小来实现的,温度的调节完全是依靠压缩机的开停来控制。但是影响冰箱内部温度的因素有很多种:如放到冰箱内的食物

空调制冷制热工作原理图

空调制冷制热工作原理图 作为现代家庭调节室内温度的重要电器,空调在家居生活中扮演着至关重要的角色。目前,我国大部分家庭用户都是采用的冷暖两用型空调,空调制冷制热原理,实际上就是制冷剂在制冷系统内循环, 将热量从一个地方转移到另一个地方的过程,其中,制冷剂能携带、 转移热量,实现空气各种形态的转变。下面,我们将分别介绍空调的 制冷与制热原理。 空调制冷制热原理-制冷循环原理 空调器通电后,制冷系统内制冷剂的低压蒸汽被压缩机吸入并压 缩为高压蒸汽后排至冷凝器;同时轴流风扇吸入的室外空气流经冷凝器,带走制冷剂放出的热量,使高压制冷剂蒸汽凝结为高压液体。高 压液体经过过滤器、节流机构后喷入蒸发器,并在相应的低压下蒸发,吸取周围的热量;同时贯流风扇使空气不断进入蒸发器的肋片间进行 热交换,并将放热后变冷的空气送向室内。如此室内空气不断循环流动,达到降低温度的目的。

空调制冷制热原理图 空调制冷制热原理-空调制热循环 除了制冷,冷暖两用空调还可以制热。其实简单得说,空调制热 循环就是将制冷过程颠倒了过来,当然颠倒过来也不是那么容易的, 还需要额外增加一些部件,并且这样还会影响到空调的工作效率。空调制热有个比较大的缺陷,在0度以下,空调制热能力会大大的下降,普通空调在零下5度以后基本停止工作。变频空调稍微好一些,可以达到零下15度以内正常工作,再低也无能为力了,所以有些空调在 制热上加入了电热辅助,也就是装上了电热丝,就像某些取暖器一样,这样双管齐下,制热效果会更好。 普通方式制热的空调叫做热泵型,带有电热丝的叫做电热辅助

型。电热辅助型虽然效果要好过单纯热泵型,但是由于电热丝的能效比只能达到1:1,所以其耗电量也是巨大。为了节省耗电量,一般空调都会把电热丝的功率作的很小,基本上只有其制热量的10%。 本文由舒适100网编辑部整理发布

直冷电冰箱制冷系统优化设计探析

直冷电冰箱制冷系统优化设计探析 李刚蔡颖玲张凤林王军车景顺摘要:冷冻室蒸发器采用多层换热片的复合立体结构,在S型制冷盘管壁外侧固定套装翅片,增加冷冻室顶部和低部两个高温区制冷量。将冷冻室按1:1划分出变温室,通过其中温度传感器控制双稳态电磁阀通断实现制冷剂回路切换,将变温室按冷冻、软冷冻、冷藏使用,也可关闭。通过横、竖盘管混排结构的丝管式冷凝器设计,借助制冷系统压缩机、冷凝器、蒸发器负荷匹配及其与毛细管制冷剂流量匹配,通过防凝露管走向及位置设计、蒸发器管道位置及走向布置和回气换热器设计,研制的BCD-186CHS直冷电冰箱最大负荷日耗电0.39度,在变温室为节能状态时耗电在0.35度以下,最低达0.31度。关键词:热工学优化设计理论分析直冷电冰箱制冷系统1前言电冰箱发展速度很快,我国电冰箱的产量由1991年的470万台增加到2001年的1349万台,平均年增长11.1%[1]。而电冰箱的耗电量占家用电器总耗电量的32%[2],所以,节能降耗和环保是电冰箱研发工作的重要课题,而蒸发器和冷凝器的传热能力、软冷冻及变温技术优化设计则是关键因素。2蒸发器的优化设计研制采取了以下措施。第一,减小冷藏、冷冻两蒸发器的面积比差值,在总面积一定情况下,尽量加大冷藏室蒸发器的面积,采用

大内径蒸发管、增加蒸发管长度及双管并行排列结构等,保证在低温或高温环境下有最佳的开停比,从而保证在一定环境温度下耗电最少。第二,设计高效蒸发器。冷冻室蒸发器是由从上到下依次排列多个换热层片和连接所有换热层片的连接管组成的复合立体式结构[3],换热层片由多个并列S型制冷盘管构成,且在其盘管壁外侧固定套装翅片,大大增加了制冷盘管与空气间接触面积,如图1示。该蒸发器在不改变电冰箱结构情况下,大幅度增加冷冻室蒸发面积,增加冷冻室顶部和低部两个高温区制冷量,使其快速达到规定要求,缩短压缩机工作时间,大幅降低能耗。冷藏室采用导热粘接胶膜将压扁铜管紧紧粘在传热铝板上,并通过高粘合双面胶粘贴在冷藏室内胆上,增强传热效果。第三,合理安排蒸发器位置和制冷剂走向。据箱内自然对流情况,制冷剂流向采用逆流式换热,毛细管和回气管采用较长的并行锡焊或热塑工艺等,以提高换热效果。第四,通过理论计算和试验相结合方法,合理匹配蒸发器与冷凝器的传热面积,努力减小冰箱工作系数,避免过低蒸发压力和过高冷凝压力,达节能目的。3 冷凝器优化设计在优化冷凝器设计中除合理增大冷凝面积外,还应充分考虑以下几点:3.1 设计横、竖盘管混排结构冷凝器:在冷凝器内为制冷剂气液两相状态,分析冷凝器中制冷剂流态变化和内、外部换热条件,横排管冷凝器的换热系数比竖排管冷凝器增加3倍以上,为加强流体扰动,破坏流动边界层,采用横、竖盘管相结合走

电冰箱的结构和工作原理

电冰箱的结构和工作原理 一、电冰箱的结构 外形 组成部件 电冰箱由箱体、制冷系统、控制系统和附件构成。在制冷系统中,主要组成有压缩机、冷凝器、蒸发器和毛细管节流器四部分,自成一个封闭的循环系统。控制系统中主要有温控器、热继电器、过载保护器、门碰开关等。 二、工作原理 系统里充灌了一种叫“氟里昂12(CF2Cl2,国际符号R12)”的物质作为制冷剂。R12在蒸发器里由低压液体汽化为气体,吸收冰箱内的热量,使箱内温度降低。变成气态的R12被压缩机吸入,靠压缩机做功把它压缩成高温高压的气体,再排入冷凝器。在冷凝器中R12不断向周围空间放热,逐步凝结成液体。这些高压液体必须流经毛细管,节流降压才能缓慢流入蒸发器,维持在蒸发器里继续不断地汽化,吸热降温。就这样,冰箱利用电能做功,借助制冷剂R12的物态变化,把箱内蒸发器周围的热量搬送到箱后冷凝器里去放出,如此周而复始不断地循环,以达到制冷目的 三、故障维修检查三要素 (一)看 1、看制冷系统各管路是否有断裂,各焊接点处是否有泄漏,如有泄漏,必有油渍出现。 2、看压缩机吸、排气(高、低压)压力值是否正常。 3、看蒸发器和回气管挂霜情况。如冷冻蒸发器只挂有一部分霜或不结霜均属于不正常现象。(冷藏蒸发器不能照次判断) 4、注意冷藏室或冷冻室的降温速度,若降温速度比正常运转时显著减慢,则属不正常现象。 5、看冰箱主控制板的各种显示状态。 6、看冰箱放置的环境。 7、看冰箱门封、箱体、台面、保温层状态和保温环境。 (二)听 1、听压缩机运转时的各种声音全封闭机组出现“嗡嗡”的声音是电机不能正常启动的过负荷声音。“嘶嘶”声是压缩机内高压管断裂发出的高压气流声,“咯咯”声是压缩机内吊簧断裂后发出的撞击声。压缩机正常运转时,一般都会发出轻微但又均匀的“嗡嗡”的电流振动声。如出现“通通”声,是压缩机液击声,即有大量制冷剂湿蒸气或冷冻机油进入气缸。“当当”声是压缩机内部金属撞击声,这响声说明内部运动部件有松动(注意与开停时撞缸声区别) 2、听蒸发器里气体流动在压缩机工作的情况下打开箱体门,侧耳细听蒸发器内的气流声,“嘶嘶嘶”并有流水似的声音是蒸发器内制冷剂循环的正常气流声。如没有流水声,则说明制冷剂已渗漏。蒸发器内没有流水声、气流声、说明过滤器或毛细管有堵塞,与堵、漏区别。 3、听温控器、启动继电器、主控板继电器、电磁阀换向声音是否正常。 (三)摸 1、摸压缩机运转时的温度,压缩机正常运转时,温度不会升高太多,一般不超过90°(长时间运转可能会超过此值) 2、压缩机正常运转5~10分钟后,摸冷凝器的温度,其上部温度较高,下部温度较低(或右边温度高,左边温度低,视冷凝器盘管形式而异),说明制冷剂在循环。若冷凝器不

中央空调系统原理图

中央空调系统原理图 中央空调系统主要由制冷机、冷却水循环系统、冷冻水循环系统、风机盘管系统和冷却塔组成。各部分的作用及工作原理如下: 制冷机通过压缩机将制冷剂压缩成液态后送蒸发器中与冷冻水进行热交换,将冷冻水制冷,冷冻泵将冷冻水送到各风机风口的冷却盘管中,由风机吹送达到降温的目的。经蒸发后的制冷剂在冷凝器中释放出热量成气态,冷却泵将冷却水送到冷却塔上由水塔风机对其进行喷淋冷却,与大气之间进行热交换,将热量散发到大气中去。 中央空调系统部分组成: 冷冻水循环系统该部分由冷冻泵、室内风机及冷冻水管道等组成。从主机蒸发器流出的低温冷冻水由冷冻泵加压送入冷冻水管道(出水),进入室内进行热交换,带走房间内的热量,最后回到主机蒸发器(回水)。室内风机用于将空气吹过冷冻水管道,降低空气温度,加速室内热交换。冷却水循环部分 该部分由冷却泵、冷却水管道、冷却水塔及冷凝器等组成。冷冻水循环系统进行室内热交换的同时,必将带走室内大量的热能。该热能通过主机内的冷媒传递给冷却水,使冷却水温度升高。冷却泵将升温后的冷却水压入冷却水塔(出水),使之与大气进行热交换,降低温度后再送回主机冷凝器(回水)。 主机主机部分由压缩机、蒸发器、冷凝器及冷媒(制冷剂)等组成,其工作循环过程如下: 首先低压气态冷媒被压缩机加压进入冷凝器并逐渐冷凝成高压液体。在冷凝过程中冷媒会释放出大量热能,这部分热能被冷凝器中的冷却水吸收并送到室外的冷却塔上,最终释放到大气中去。随后冷凝器中的高压液态冷媒在流经蒸发器前的节流降压装置时,因为压力的突变而气化,形成气液混合物进入蒸发器。冷媒在蒸发器中不断气化,同时会吸收冷冻水中的热量使其达到较低温度。最后,蒸发器中气化后的冷媒又变成了低压气体,重新进入了压缩机,如此循环往复。

毕业设计-电冰箱的制冷控制系统

前言 众所周知,电冰箱是现代家庭中必不可少的家用电器。而目前我国市场销售的冰箱大多采用传统的机械式温控,其控制精度差,功能单一,控制方式简单难以满足冰箱发展的要求。随着经济的发展和人民生活水平的进一步提高,人们对多功能的发展要求越来越高。由于单片机性能好,控制功能强,工作可靠,成本低等优点,现在已经在家电产品中得到了广泛的应用。面临国内电冰箱发展的现状,在技术上还与其他发达国家有一定的差距,我们在原有的基础上对电冰箱进行了一定的改进,使其适应当代个性时尚、节能环保、智能高端、精确温控的发展方式,使人们体验闻所未闻的个性化感受,快捷与原汁原味不再是梦想。新一代产品在控制上还增加了人工智能,使家电性能更优异,使用更方便可靠。 本次设计基于大量的市场调查和理论研究。首先,我对传统电冰箱控制系统进行了分析。调查了10多个品牌的电冰箱的控制系统,研究了他们制冷的优缺点,吸收了一些比较好的设计思想。其后,我又查阅了大量的资料文献,其中最多的是国内外最新发表的关于制冷方面的论文,丰富了我们的理论依据。然后,根据我拥有的材料用单片机实现电冰箱控制系统的硬件设计,最后在硬件设计的基础上实现了其软件设计。 第1章电冰箱系统概述 1.1 单片机概述 自从1971年微型计算机问世以来,随着大规模集成电路技术的进一步发展,导致微型计算机正向两个方向发展:一是高速度、高性能、大容量的高档微型计算机及其系列化,向大、中型计算机挑战;另一个是稳定可靠、小而廉、能适应各种领域需要的单片机。 单片机是指把中央处理器、随机存储器、只读存储器、定时器/计数器以及I/O 接口电路等主要部件集成在一块半导体芯片上的微型计算机。虽然单片机只是一个芯片,但从组成和功能上看,它已经具有了微型计算机系统的含义,从某种意义上来说,一块单片机就是一台微型计算机。

BCD-550WT间冷式家用冰箱制冷系统设计

题目:直冷式冰箱课程设计 学生姓名:王登超 学号:120302132 学院:海运与港航建筑工程学院班级:A12建环 指导教师:韩志

目录 1 电冰箱的总体布置 (3) 2 电冰箱的热负荷计算 (4) Q (4) 2.1冷冻室热负荷F Q (5) 2.2冷藏室热负荷R 2.3箱体外表面凝露校核 (6) 3制冷循环热力计算 (7) 3.1 制冷系统的压焓图 (7) 3.2制冷系统的额定工况 (7) 3.3热物性参数列表 (8) 3.4.循环各性能指标计算 (8) 4 冷凝器设计计算 (9) 5 蒸发器设计计算 (14) 6压缩机热力计算及选型 (21) 7毛细管的计算及选型 (23) 8参考文献 (24)

1 电冰箱的总体布置 设计条件: ○1使用环境条件:冰箱周围环境温度a t=32℃,相对湿度?=75±5%。 ○2箱内温度:冷冻室不高于-18℃,冷藏室平均温度m t=5℃。 ○3箱内有效容积:总容积为550L,其中冷冻室为185L,冷藏室为365L。 ○4箱体结构:外形尺寸为736mm×890mm×1770mm(宽×深×高)。绝热层用聚氨酯发泡,其厚度根据理论计算和冰箱厂的实践经验选取,其值如表1所示,箱体结构图如图1所示。 图1 箱体结构图

2 电冰箱的热负荷计算 2.1冷冻室热负荷F Q 1)冷冻室箱体漏热量F Q 1 因为通过箱体结构形成热桥的漏热量c Q 不用计算,所以冷冻室箱体漏热量只包括箱体隔热层漏热量a Q 和通过箱门与门封条漏热量b Q 两部分。冷藏室箱体漏热量R Q 1的计算也如此。 ○ 1箱体隔热层漏热量a Q 箱体隔热层漏热量按式)(21t t KA Q a -=计算,式中 计算时箱外空气对箱体外表面传热系数1α取11.3W/(K m ?2),箱内壁表面对空气的表面传热系数2α取1.16W/(K m ?2),隔热层材料的热导率λ取0.03W/(K m ?)。各传热面的传热量计算见表2。 W W Q a 126.80644.5738.9142.10953.14005.34644.5=+++++= ○ 2通过箱门与门封条漏热量b Q W W Q Q a b 019.12126.8015.015.0=?== 冷冻室箱体漏热量为 W W Q Q Q b a F 145.92019.12126.801=+=+= 2)冷冻室开门漏热量F Q 2 电冰箱冷冻室内容积B v 取0.1853m ,开门次数为每小时两次,

冰箱制冷系统设计说明书

冰箱制冷系统设计说明书1.冰箱设计步骤 图1 BCD-348W/H电冰箱制冷系统图

2.冰箱的总体布置 2.1箱体设计要求及形式 电冰箱箱体设计的优劣,直接影响使用性能、外观、耐久性制造成本和市场销售。在进行设计时,要求造型别致、美观大方。除色调要与家庭家具协调外,还必须考虑占地面积小容积大,宽度、深度与高度的比例合理,有稳定感等。冰箱箱体尺寸见表1。 表1箱体尺寸 2.2箱体外表面温度校核和绝热层厚度 设计箱体的绝热层时,可预先参照国外冰箱的有关资料设定其厚度,并计算出箱体表面温度t w。如果箱体外表面温度t w低于露点温度t d,则会在箱体表面发生凝露现象,因此箱体表面温度必须高于露点温度,一般t w > t d+0.2 ) ( i o o o W t t a K t t- - =(1) 国家标准GB8059.1规定,电冰箱在进行凝露实验时 亚温带SN、温带N气候条件下,露点温度为19±0.5℃ 亚热带ST、热带T气候条件下,露点温度为27±0.5℃ 在t w > t d的前提下,计算箱体的漏热量Q1,并用下面的公式校验绝热层的厚度 t o t i

1 21) (Q t t A w w -= λδ (2) 1w t ----冰箱外壁温度,℃ 2w t ----冰箱壁温度,℃ λ-----绝热层导热系数,w/(m.k) A -----传热面积,m 2 校验计算的厚度在设定厚度基础上进行修正,反复计算,直到合理为止。 3.冰箱热负荷计算 总热负荷Q=Q 1+Q 2+Q 3 Q 1---- 箱体的漏热量 Q 2---- 门封漏热量 Q 3---- 除露管漏热量 (1)箱体的漏热量Q 1 由于箱体外壳钢板很薄,而其导热系数很大,所以钢板热阻很小,可忽略不计。胆多用塑料ABS 成型,热阻较大,可将其厚度一起计入隔热层,箱体的传热可以看做单层平壁的传热。 )(1i o t t KA Q -= (3) (4) 其中:K —— 传热系数,W/m 2·℃; A —— 传热面积,m 2 ; t o ——箱体外空气温度,℃; t i ——箱体空气温度,℃ αo ——箱外空气对箱体外表面的表面换热系数,W/m 2·℃; αi ——箱体表面对箱空气的表面换热系数,W/m 2·℃; λ ——绝热层的导热系数,W/m 2·℃; δ —— 箱体各绝热层的厚度,m 注:1当室风速为0.1-0.15m/s 时,αo 可取3.5-11.6 W/m 2·℃ 2箱空气为自然对流(直冷冰箱)时,αi 可取0.6-1.2 W/m 2·℃ 3间冷冰箱,由于箱风速大,αi 可取17-23 W/m 2·℃ i o a a K 111++=λδ

电冰箱的制冷工作原理

电冰箱的制冷工作原理(图) 与普通人的感觉完全不同,冰箱并不是“制造冷气的机器”,而是一种用来吸收食品中的热量的装置。它利用称为“制冷剂”的液体,将食品中的的热量“抽取”出来并转移到冰箱外面。致冷剂通过冰箱的一系列装置流动,主要包括3个基本的部件:压缩机、冷凝器和蒸发器,并不断重复同一个制冷循环(近似卡诺循环)。 除少数环保冰箱外,现在普通家用冰箱的制冷剂大多还是氟利昂(主要是二氯二氟甲烷),它储存在冰箱的专用容器中。当冰箱开始运转时,电动机带动压缩机开始工作,吸入处于低压和常温状态下的氟利昂蒸气,将其压缩成为高温高压为(约为10几个大气压)的蒸气。 这些处于高温高压状态下的氟利昂蒸气离开压缩机后被送往冷凝器。冷凝器是一种被多次弯曲的管子,称为“蛇形管”,一般是被安装在冰箱背后。由于进入冷凝器的氟利昂蒸气的温度比室温要高,热量就通过蛇形管的管壁向外散发,这样氟利昂蒸气的温度就降低了并从气态冷凝为液态,随后它离开冷凝器流向蒸发器。蒸发器由另一个蛇形管构成,同冰箱的内部接触。这个蛇形管比冷凝器的蛇形管要细一些,因此氟利昂的流动速度就加快了,随之而来的就是压力骤然下降。这符合所谓的伯努利原理。 由于在蒸发器中压力急剧降低,氟利昂便剧烈蒸发,从液态变为气态,伴随这一过程的是温度降低。由于热量总是从较热的物体向较冷的物体上转移,所以冰箱中较热的食物就将热量转移到流动着氟利昂气体的蛇形管上,从而达到制冷的目的。 上述过程完成之后,制冷剂──氟利昂气体又“整装待发”,以便重新被压缩机“吸收”,从而开始下一个循环过程。 由于氟利昂会破坏臭氧层,现在已经被逐渐淘汰,改用其他的制冷剂,但它们制冷的原理是一样的。 冰箱主要有两处类型。一种是像家用冰箱那样的立式冰箱,另一种是通常为商店采用的柜式冰箱即冰柜。柜式冰箱用起来不太方便,但比前一种效率更高。事实上,每次打开家用冰箱的门时,由于冷空气比重大,大量量冷空气会向下流动并被热空气替代。但这种现象是不会在柜式冰箱上发生的,而且柜式冰箱的优点还在于它很少有除霜的必要。

相关文档
最新文档