高光谱遥感

高光谱遥感
高光谱遥感

(一)高光谱遥感基本概念

1、高光谱遥感特点

波段特点:波段多、波段宽度窄、不断连续数据量特点:数据量大、数据冗余增加2、波谱空间与光谱空间

光谱特征空间:以波段为维度的空间,波段增加会导致光谱空间维度增加。

波普特征空间:不同波段影像所构成的测度空间。

3、高光谱数据图谱合一的特点

高光谱数据同时反映地物的空间特征(图)和光谱特征(谱)。

(二)成像光谱仪

1、成像光谱仪的空间成像方式和光谱成像方式的含义

空间成像方式:从影像二维空间形成角度考察成像光谱仪的工作方式。

光谱成像方式:从光谱维数据形成的角度考察成像光谱仪的工作方式。

2、成像光谱仪的瞬时视场角(IFOV)仪器视场角(FOV)

瞬时视场角:以毫弧度为计量单位,所对应的地面大小被称为地面分辨单元。

仪器视场角:仪器扫描镜在空中扫过的角度,与系统平台高度决定了地面扫描幅宽。

摆扫型:单个像元凝视时间短,进一步提升光谱分辨率和信噪比较困难。

推扫型:凝视时间长,分辨率高,仪器体积小(无光机),视场角小(30°)定标量大不稳定。3、成像光谱仪的三种定标方式

共性:出于同一目的,特定情况下都是不可缺少的。

差异:处于不同阶段,考虑因素不同,入瞳辐射值获取方式不同

(实验室定标:有实验室测得,原始定标,准确度高,后续定标基础)

(机上星上定标:综合性定标,对前一项进行的修正,机上星上测得考虑搬运安装操作影响)(场地定标:入轨后实际运行情况,大面积均匀地表做参照,考虑大气传输,多通道大范围)

场地定标的常用方法:反射基法(气溶胶参数)、辐照度基法(过程)、辐亮度基法(人力)机上定标一般使用内定标法,星上定标受制于体积一般进行辐射定标(人造辐射源/太阳)

光谱定标:确定成像光谱仪增益系数和偏置量之前,必须通过光谱定标,获得成像光谱仪每个波段的中心波长和带宽。

辐射定标:确定成像光谱仪在该波长小输入辐射能与输出响应关系(增益系数和偏置量)4、空间分辨率和光谱分辨率

光谱分辨率:指探测器波长方向上的记录宽度,又称波段宽度(50%)

空间分辨率:由仪器瞬时视场角决定,地面分辨单元。

分光系统分出的色散光源再汇集到探测器上,成像光谱仪获得图像有光谱与空间分辨率。

(三)地物光谱重建

1、目的

实现从影像像元光谱特性的定量化表达。核心建立像元灰度值与光谱反射率之间的转化关系,DN-->ρ

(四)高光谱数据降维(立足于高维数据由使用目的对对数据进行选择)

1、高光谱数据的高维特征(不同于低维的分布特点)(降维原因)

信息冗余量大,超维几何体体积迅速增加,维数灾难,参数估计(样本量大),高阶统计特性(维数灾难:训练样本不足时出现的样本点数目一定时,分类精度随维度增加“先增后降”)(高阶统计特性:高维数据分类时除数据点分布绝对位置外,数据分布形状与方向更重要)(考虑均值向量分类精度随维度增加先增后减,考虑方差分类精度提升)

2、可分性准则(判据)(基于几何距离,基于概率密度)

概念:从高维数据中得到一组用来分类的特征,需要一个定量标准衡量特征对分类的有效性。特点:通过已知类别先验知识,衡量当前特征空间对类别的区分效果。

构造原则:直接体现降维后特征空间的类别可分性。(衡量概率密度重叠度)

光谱搜索:利用地物波段吸收特性进行选择(先验知识-)针对特定目的选择->包络线去除)

3、高光谱特征提取(提取是重组映射运算,选择是子集挑选)

定义:对原始光谱空间特征进行重新组合优化,取出最适合当前应用需求的新特征。

要点:维数降低,特征性能更优良,不能完全取代原始数据

4、两种主要途径

波段选择(特征选择)(穷举,启发性、随机)

特征变换(特征提取)(经典PCA,最小噪声分离,噪声适应主成分,通用光谱模式分解)

(五)光谱特征参量化

1、基本概念

目的:对高光谱曲线进行定量化表达,用数值化形式描述反射率随波长的变化特征。

地位:针对待分析对象由高光谱特征参量提取,构建分析特征集为后续处理做基础。

2、主要方法

(1)波谱特征简化表达

特点:反射率为浮点型且波段多,为提升分析效率对曲线进行简化表达,用于较粗略的波谱特征查找和匹配,提高处理效率或服务于目视判读,不适用于精细分析典型方法:光谱二值编码,地物类型序列光谱柱状图

(2)光谱吸收特征参数提取

1、光谱吸收特征参数

定位光谱吸收谷位置,量化吸收谷形状特征的参数称为光谱吸收特征参数。

2、包络线消除

定义:将光谱曲线相应波段的反射率值与包络线曲线的反射率值镜像比例换算,得到新的光谱曲线

特点:没有改变敏感波位置,可更有效地进行光谱特征数值的比较,对后续特征参数提取十分有利,曲线上形成若干吸收谷,突出反映光谱吸收特点,强化光谱曲

线形态特征,增强可识别性,有利于相近地物的区分。

(包络线:每条光谱曲线的外凸包曲线,与光谱曲线相切或相离,相当于光谱曲线外壳)

3、吸收位置:光谱吸收谷中‘反射率最低处波长。

4、吸收深度:最大吸收深度一半时的光谱带宽。

5、吸收面积:吸收谷的的面积,积分结果。

6、吸收对称性:以过吸收位置的垂线为边界,左右两边区域面积比值的常数对数。

7、光谱吸收指数:光谱上吸收谷反射率,与对应波长下非吸收基线的反射率之比。

(非吸收基线:吸收谷两谷口(肩)连线)

3、红边与红边分析(植被倒高斯模型)

(1)红边

植被在0.64μm处吸收峰的强右不对称,即在0.74μm处反射率急剧增加形成红外陡肩。

(2)红边分析

以红边起始位置和红边斜率为分析对象,建立与植被健康状况密切相关的模型。(PPT)

(3)光谱倒数

光谱倒数可增强光谱曲线在坡度上的表现,光谱倒数波形分析可消除部分大气效应。

(4)光谱积分

求某一波长范围内的下覆面积,由高光谱数据得到多光谱数据。

3、光谱曲线函数模拟法

目的:为准确通过数学形式模拟部分典型地物的典型波态确定特征点位,将光谱曲线转化为数学函数进行表达。

特点:曲线平滑去噪,离散点变为稳定曲线特征点更具代表性,参数有针对性和实用意义。

(六)混合光谱分解

1、基本概念(混合以累加形式存在)

1、混合光谱:往往一个像元覆盖范围内的地表包含不同的覆盖成分,一个像元用一个信号记

录这些异质成分,形成混合像元现象,制约分类精度,这些像元称为混合像元。

2、端元与丰度:像元对应地表的地物组成成分称为端元,各成分比称为丰度。

3、混合像元分解:确定端元类型和相应丰度的过程称为混合像元解混。

4、主要成因:物质混合(线性),大气传输因素(非线性),仪器因素(非线性校准定标)。

5、混合光谱模型类型:线性模型与非线性模型(出发点相同,其他地面特征和影响因素不同)

线性、概率(二类问题)、几何光学、随机几何、模糊分析……

2、线性光谱混合模型

(1)物理学

像元混合光谱是像元内部各地物纯光谱的地物分布面积加权平均。混合像元光谱吸收反射等信息为内部端元光谱的吸收、反射强度的叠加。

(2)代数学

遥感图像所获得的像元光谱矢量是各端元光谱矢量与各端元丰度矢量的乘积。

(3)几何学

光谱特征空间中端元为基本构成元素,n个通道可解译n+1个端元

(4)适用条件

给定区域内,地表由光谱特征相对固定的地物组成,光谱变化主要由端元丰度不同产生。

(5)端元提取(以标准光谱重建(物理端元)找纯点(图像端元))

提取几何定点的端元提取(高光谱影像所有数据都包含在一端元为定点的单体内)

纯像元指数法:降维(PCA)->投影运算(各方向)->投影结果统计->确定端元(指数高概率大) 方便高效,背景知识要求高,有监督的处理方法,随机投影方向的选择有主观性

基于误差分析的端元提取(利用方根误差逐个搜索,对当前端元误差评估选择调整方向)初始端元->计算RMS->统计RMS误差最大点->形成新的端元矩阵->不断重复以上过程

(6)丰度解算(利用方程组解算,总丰度累计为1)

非限制性方法:不考虑限制因素,仅由线性关系求解(简单直接,不太精确有悖论)

限制性方法:线性关系与限制性条件综合考虑(高精度不违背物理意义,复杂)

(七)光谱匹配(像元响应光谱与地物标准光谱对比分析,确定像元类别)

1、两种运作方式

(1)从像元出发

定义:从影像像元出发,在光谱库中搜索最相似的标准光谱响应曲线,进行归类。

主要用途:影像解译,获得丰富的影像像元类别信息。

(2)从地物标准光谱出发

定义:将某种地物的标准曲线做模板与每个像元比较,记录像元相似性

主要用途:特定地物专题分析,获得较详细的地物含量信息。

2、匹配算法

(1)核心

地物标准光谱与像元光谱相似性判断,需要寻找有效的相似性衡量算法。

(汉明距离:遥感影像处理中指两等长字符串对应位置不同字符数)

(2)光谱角度匹配

以野外测量光谱(参考)与像元光谱(测试)向量的广义角夹角为基础,比较亮光谱曲线相似性。(3)交叉相关匹配

考虑参考光谱和像元光谱之间的相关系数、偏度等标准。

(八)应用(PPT植被)

高光谱遥感综述

高光谱遥感及其发展与应用综述 摘要:高光谱遥感是20世纪80年代兴起的新型对地观测技术。文中归纳了高光谱遥感技术波段多、波段宽度窄,光谱分辨率高,数据量大、信息冗余,“图谱合一”等特点,具有近似连续的地物光谱信息、地表覆盖的识别能力极大提高、地形要素分类识别方法灵活多样、地形要素的定量或半定量分类识别成为可能等优势,简单介绍了高光谱遥感在国外及国内的发展情况。在此基础上,概述了高光谱遥感在地质矿产、植被生态、大气科学、海洋、农业等领域的应用。 关键词:高光谱遥感;发展;应用 1高光谱遥感 高光谱分辨率遥感是指利用很多很窄的电磁波波段从感兴趣的物体获取有关数据。它的基础是测谱学。测谱学早在20世纪初就被用于识别分子和原子及其结构,20世纪80年代才开始建立成像光谱学。它是在电磁波谱的紫外、可见光、近红外和中红外区域,获取许多非常窄且光谱连续的图像数据的技术。成像光谱仪为每个象元提供数十至数百个窄波段光谱信息,能产生一条完整而连续的光谱曲线。 1.1高光谱遥感的特点 (1)波段多,波段宽度窄。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。与传统的遥感相比,高光谱分辨率的成像光谱仪为每一个成像象元提供很窄的(一般<10nm) 成像波段,波段数与多光谱遥感相比大大增多,在可见光和近红外波段可达几十到几百个,且在某个光谱区间是连续分布的,这不只是简单的数量的增加,而是有关地物光谱空间信息量的增加。 (2)光谱响应范围广,光谱分辨率高。成像光谱仪响应的电磁波长从可见光延伸到近红外,甚至到中红外。成像光谱仪采样的间隔小,光谱分辨率达到纳米级,一般为10nm左右。精细的光谱分辨率反映了地物光谱的细微特征。 (3)可提供空间域信息和光谱域信息,即“谱像合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。在成像高光谱遥感中,以波长为横轴,灰度值为纵轴建立坐标系,可以使高光谱图像中的每一个像元在各通道的灰度值都能产生1 条完整、连续的光谱曲线,即所谓的“谱像合一”。(4)数据量大,信息冗余多。高光谱数据的波段众多,其数据量巨大,而且由于相邻波段的相关性高,信息冗余度增加。 (5)数据描述模型多,分析更加灵活。高光谱影像通常有三种描述模型:图像模型、光谱模型与特征模型。 1.2高光谱的优势 高光谱遥感的光谱分辨率的提高,使地物目标的属性信息探测能力有所增强。因此,较之全色和多光谱遥感,高光谱遥感有以下显著优势: (1)蕴含着近似连续的地物光谱信息。高光谱影像经过光谱反射率重建,能获取地物近似连续的光谱反射率曲线,与地面实测值相匹配,将实验室地物光谱分析模型应用到遥感过程中。 (2)地表覆盖的识别能力极大提高。高光谱数据能够探测具有诊断性光谱吸收特征的物质,能够准确区分地表植被覆盖类型、道路的铺面材料等。

高光谱遥感技术的介绍及应用

高光谱遥感技术的介绍及应用. 高光谱遥感技术的介绍及应用 在20世纪,人类的一大进步是实现了太空对地观测,即可以从空中和太空对人 类赖以生存的地球通过非接触传感器的遥感进行观测。最近几十年,随着空间技术、计算机技术、传感器技术等与遥感密切相关学科技术的飞速发展,

遥感正在进入一个以高光谱遥感技术、微波遥感技术为主要标志的时代。本文 简要介绍了高光谱遥感技术的特点、发展状况及其在一些领域的应用。 1 高光谱遥感简介 1.1高光谱遥感概念 所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段(通常 <10nm)从感兴趣的物体获取有关数据;与之相对的则是传统的宽光谱遥感,通常>100nm,且波段并不连续。高光谱图像是由成像光谱仪获取的,成像光谱仪 为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。它使本来在宽波段遥感中不可探测的物质,在高光谱中能被探测。 高光谱遥感技术是近些年来迅速发展起来的一种全新遥感技术,它是集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体的综合性技术。在成像过程中,它利用成像光谱仪以纳米级的光谱分辨率,以几十或几百个波段同时对地表地物像,能够获得地物的连续光谱信息,实现了地物空间信息、辐射信息、光谱信息的同步获取,因而在相关领域具有巨大的应用价值和广阔的发展前景。 1.2高光谱遥感数据的特点

同其他常用的遥感手段相比 ,成像光谱仪获得的数据具有以下特点: 1)、多波段、波段宽度窄、光谱分辨率高。波段宽度 < 10 nm ,波段数较多光谱遥感(由几个离散的波段组成)大大增多,在可见光和近红外波段可达几十到几百个。如 AVIRIS在 0. 4~214 波段范围内提供了224 个波段。研究表明许多这是传统的多光谱等。40 nm~20地物的吸收特征在吸收峰深度一半处 的宽度为 遥感技术所不能分辨的(多光谱遥感波段宽度在 100~200 nm 之间),而高光 谱遥感甚至光谱分辨率更高的超光谱遥感却能对地物的吸收光谱特征进行很好的识别,这使得过去以定性、半定量的遥感向定量遥感发展的进程被大大加快。另外,在成像高光谱遥感中,以波长为横轴,灰度值为纵轴建立坐标系,可以 使高光谱图像中的每一个像元在各通道的灰度值都能产生一条完整、连续的光谱曲线,即所谓的“谱像合一”,它是高光谱成像技术的一大特点。 2)、由于波段众多,波段窄且连续,相邻波段具有很高的相关性,使得高光数据

高光谱遥感技术及发展

遥感技术与系统概论 结课作业 高光谱遥感技术及发展

高光谱遥感技术及发展 摘要:经过几十年的发展,无论在遥感平台、遥感传感器、还是遥感信息处理、遥感应用等方面,都获得了飞速的 发展,目前遥感正进入一个以高光谱遥感技术、微波遥感技 术为主的时代。本文系统地阐述了高光谱遥感技术在分析技 术及应用方面的发展概况,并简要介绍了高光谱遥感技术主 要航空/卫星数据的参数及特点。 关键词:高光谱,遥感,现状,进展,应用 一、高光谱遥感的概念及特点 遥感是20 世纪60 年代发展起来的对地观测综合性技术,是指应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术[1]。所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段(通常<10nm)从感兴趣的物体获取有关数据;与之相对的则是传统的宽光谱遥感,通 常>100nm,且波段并不连续。高光谱图像是由成像光谱仪获取的,成像光谱仪为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。它使本来在宽波段遥感中不可

探测的物质,在高光谱中能被探测。 同其它传统遥感相比,高光谱遥感具有以下特点: ⑴波段多。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。 ⑵光谱分辨率高。成像谱仪采样的间隔小,一般为10nm 左右。精细的光谱分辨率反映了地物光谱的细微特征。 ⑶数据量大。随着波段数的增加,数据量呈指数增加[2]。 ⑷信息冗余增加。由于相邻波段的相关性高,信息冗余度增加。 ⑸可提供空间域信息和光谱域信息,即“图谱合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。近二十年来,高光谱遥感技术迅速发展,它集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体,已成为当前遥感领域的前沿技术。 二、发展过程 自80 年代以来,美国已经研制了三代高光谱成像光谱仪。1983 年,第一幅由航空成像光谱仪

高光谱遥感

高光谱遥感

? ? ? ?
高光谱遥感的基本概念 高光谱遥感器及平台简介 高光谱遥感技术 高光谱应用概况

高光谱遥感的基本概念
? 高光谱分辨率(简称为高光谱)遥感或成像光 谱遥感技术的发展是过去二十年中人类在对地 观测方面所取得的重大技术突破之一,是当前 遥感的前沿技术。它是指利用很多很窄的电磁 波波段获取许多非常窄且光谱连续的图像数据 的技术,融合了成像技术和光谱技术,准实时 地获取研究对象的影像和每个像元的光谱分布。

国际遥感界认为光谱分辨率在10-1λ数量级范围内的为多 光谱(Multispectral),这样的遥感器在可见光和近红外光谱区 只有几个波段,如美陆地卫星TM和法国SPOT卫星等; 光谱分 辨率在10-2λ的遥感信息称之为高光谱(Hyperspectral)遥感。由 于其光谱分辨率高达纳米(nm)数量级,往往具有波段多的特 点,即在可见到近红外光谱区其光谱通道多达数十甚至超过 100以上。随着遥感光谱分辨率的进一步提高,在达到10-3λ 时,遥感即进入了超高光谱(Ultraspectral)阶段 、
光谱区域(nm) : 400 700 1100 2500 5500 14000
VIS VNIR
PIR
MIR
Sunlight 光谱分辨率 波段数 多光谱 高光谱 5-10 100-200 Δλ/λ 0.1 0.01 VNIR 50-100 5-20
IRT
MIR 100-200 10-50
IRT 1000-2000 100-500

高光谱遥感技术的介绍及应用

高光谱遥感技术的介绍及应用在20世纪,人类的一大进步是实现了太空对地观测,即可以从空中和太空对人类赖以生存的地球通过非接触传感器的遥感进行观测。最近几十年,随着空间技术、计算机技术、传感器技术等与遥感密切相关学科技术的飞速发展,遥感正在进入一个以高光谱遥感技术、微波遥感技术为主要标志的时代。本文简要介绍了高光谱遥感技术的特点、发展状况及其在一些领域的应用。 1 高光谱遥感简介 1.1高光谱遥感概念 所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段(通常<10nm)从感兴趣的物体获取有关数据;与之相对的则是传统的宽光谱遥感,通常>100nm,且波段并不连续。高光谱图像是由成像光谱仪获取的,成像光谱仪为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。它使本来在宽波段遥感中不可探测的物质,在高光谱中能被探测。 高光谱遥感技术是近些年来迅速发展起来的一种全新遥感技术,它是集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体的综合性技术。在成像过程中,它利用成像光谱仪以纳米级的光谱分辨率,以几十或几百个波段同时对地表地物像,能够获得地物的连续光谱信息,实现了地物空间信息、辐射信息、光谱信息的同步获取,因而在相关领域具有巨大的应用价值和广阔的发展前景。 1.2高光谱遥感数据的特点 同其他常用的遥感手段相比,成像光谱仪获得的数据具有以下特点: 1)、多波段、波段宽度窄、光谱分辨率高。波段宽度< 10 nm ,波段数较多光谱遥感(由几个离散的波段组成)大大增多,在可见光和近红外波段可达几十到几百个。如A VIRIS在0. 4~214 波段范围内提供了224 个波段。研究表明许多地物的吸收特征在吸收峰深度一半处的宽度为20~40 nm。这是传统的多光谱等

高光谱遥感复习总结

1.高光谱分辨率遥感:用很窄(0.01波长)而连续的光谱通道对地物持续遥感成像的技术。在可见光、近红外、短波红外和热红外波段其光谱分辨率高达纳米(nm)数量级,通常具有波段多的特点,光谱通道数多达数十甚至数百个以上,而且各光谱通道间往往是连续的。 2.高光谱遥感特点:波段多,数据量大;光谱范围窄(高光谱分辨率);在成像范围内连续成像;信息冗余增加 3. 高光谱遥感的发展趋势(1)遥感信息定量化(2)“定性”、“定位”一体化快速遥感技术 4.光谱特征的产生机理:在绝对温度为0K以上时,所有物体都会发射电磁辐射,也会吸收、反射其他物体发射的辐射。高光谱遥感准确记录电磁波与物质间的这种作用随波长大小的变化,通过反映出的作用差异,提供丰富的地物信息,这种信息是由地物的宏观特性和微观特性共同决定的。宏观特性:分布、粗糙度、混杂微观特性:物质结构 6.典型地物反射:水体的反射主要在蓝绿光波段,其他波段吸收都很强,特别到了近红外波段,吸收就更强,所以水体在遥感影像上常呈黑色。 植被的反射波谱特征:①可见光波段有一个小的反射峰,位置在0.55um处,两侧 0.45um(蓝)和0.67um(红)则有两个吸收带。这一特征是叶绿素的影响。②在近红外波段(0.7-0.8um)有一反射的“陡坡”(被称为“红边”),至1.1um附近有一“峰值”,形成植被的独有特征。这一特征由于植被结构引起。③在中红外波段(1.3-2.5um) ,反射率大大下降,特别以1.45um和1.95um为中心是水的吸收带,形成低谷。 土壤:由于土壤反射波谱曲线呈比较平滑的特征,所以在不同光谱段的遥感影像上,土壤的亮度区别不明显.自然状态下土壤表面的反射率没有明显的峰值和谷值,一般来讲土质越细反射率越高,有机质含量越高和含水量越高反射率越低,此外土类和肥力也会对反射率产生影响。 6.野外光谱测量的影响因素(1)大气透射率(2)水蒸气3)风(4)观测几何 7.地面光谱的测量方法:实验室测量,野外测量 8.垂直与野外测量的区别:垂直测量:为使所有数据能与航空、航天传感器所获得的数据进行比较,一般情况下测量仪器均用垂直向下测量的方法,以便与多数传感器采集数据的方向一致。由于实地情况非常复杂,测量时常将周围环境的变化忽略,认为实际目标与标准板的测量值之比就是反射率之比。 野外测量(非垂直测量):在野外更精确的测量是测量不同角度的方向反射比因子。 凝视时间:探测器的瞬时视场角扫过地面分辨单元的时间称为凝视时间(dwell time)。探测器的凝视时间在数值上等于行扫描时间除以每行的像元个数。凝视时间越长,进入探测器的能量越多,光谱响应越强,图像信噪比越高。 光谱图像立方体:空间平面:O-XY平面;线光谱平面:O-XZ,O-YZ平面 9.高光谱遥感图像数据表达:A.光谱图像立方体 B.二维光谱曲线 C. 三维光谱曲面 10.空间成像方式:(1)摆扫型成像光谱仪:定义:它由光机左右摆扫和飞行平台向前运动完成二维空间成像,其线列探测器完成每个瞬时视场像元的光谱维获取。原理:45斜面的扫描镜,电机进行360旋转,旋转水平轴与遥感平台前进方向平行,扫描镜扫描运动方向与遥感平台运动方向垂直,光学分光系统形成色散光源再汇集到探测器上,这样成像光谱仪所获取的图像就具有了两方面的特性:光谱分辨率与空间分辨率。 (2)推扫型成像光谱仪:定义:采用一个面阵探测器,其垂直于运动方向在飞行平台向前运动中完成二维空间扫描;平行于平台运动方向,通过光栅和棱镜分光,完成光谱维扫描。它的空间扫描方向就是遥感平台运动方向。原理:垂直于运动方向完成空间维扫描,平行于运动方向完成光谱维扫描。 (3)两者的优缺点:摆扫型成像光谱仪的优点:A.FOV 大;B.探测元件定标方便,数据稳

高光谱实验报告三

实验三(数据处理) 姓名:郜庆科学号:2012303200109 一、实验过程(描述实验的主要步骤,列出主要方法) 【1】、回归分析 利用Excel中自带的回归分析工具对数据进行回归分析,得到结果如表所示: 回归统计 Multiple R 0.999999 R Square 0.999998 Adjusted R Square 0.999996 标准误差 1.59E-05 观测值20 方差分析 df SS MS F Significance F 回归分析7 0.001234 0.000176 695553.4 1.12E-32 残差12 3.04E-09 2.53E-10 总计19 0.001234 Coefficients 标准误差t Stat P-value Lower 95% Upper 95% 下限 95.0% 上限 95.0%

Intercept 0.000105 8.39E-05 1.249767 0.23521 -7.8E-05 0.000288 -7.8E-05 0.000288 X Variable 1 -2E-06 1.82E-06 -1.11978 0.284721 -6E-06 1.93E-06 -6E-06 1.93E-06 X Variable 2 -5.43968 0.149242 -36.4486 1.17E-13 -5.76485 -5.1145 -5.76485 -5.1145 X Variable 3 30.00856 0.835847 35.90199 1.39E-13 28.18741 31.82972 28.18741 31.82972 X Variable 4 -67.1698 1.881489 -35.7003 1.49E-13 -71.2692 -63.0704 -71.2692 -63.0704 X Variable 5 77.08559 2.136489 36.08049 1.32E-13 72.43058 81.7406 72.43058 81.7406 X Variable 6 -46.8141 1.298246 -36.0595 1.32E-13 -49.6427 -43.9854 -49.6427 -43.9854 X Variable 7 13.32797 0.35499 37.54468 8.19E-14 12.55451 14.10143 12.55451 14.10143 从回归统计表中可以得到其相关系数R值为0.999999,所以表明自变量与因变量之间有很大的相关性。R平方为复决定系数,上述复相关系数R的平方。用来说明自变量解释因变量y 变差的程度,以说明因变量y的拟合效果。此案例中的复决定系数为0.99998,表明用用自变 量可解释因变量变差的99.98%,该值越大,模型拟合效果很好。调整后的复决定系数R2,该 值为0.999996,说明自变量能说明因变量y的99.99%,因变量y的0.0001%要由其他因素来 解释。 方差分析表中的Significance F(F显著性统计量)的P值为1.12E-32,明显小于显著性水平 0.05,所以说该回归方程回归效果显著,方程中至少有一个回归系数显著不为0。 在回归参数表中,可以得到各个X的回归系数和相关性等。 【2】、使用Excel的作图功能绘制冠层的光谱曲线,波长作为x轴,反射率作为y轴。

高光谱应用研究综述

浙江师范大学 研究生课程论文封面 课程名称:遥感理论与技术 开课时间: 2014-2015年第一学期 学院地理与环境科学学院学科专业自然地理学 学号2014210580 姓名张勇 学位类别全日制硕士 任课教师陈梅花 交稿日期2015年1月21日 成绩 评阅日期 评阅教师 签名 浙江师范大学研究生学院制

高光谱遥感应用研究综述 张勇 (浙江师范大学地理环境与科学学院,浙江金华321004) 摘要:高光谱遥感是近二十年发展起来的谱像和一的遥感前沿技术。虽然发展时间不长,但由于其本身的特点,使其获得了广泛的重视和应用。本文阐述了高光谱遥感的特点、优势,以及在航空及航天领域的发展情况,列举了几种典型高光谱成像仪的光学系统原理和主要技术指标。在此基础上,概述了高光谱遥感在植被生态、大气环境、地质矿产、海洋、军事等领域的应用情况。最后对高光谱遥感发展趋势提出了几点建议,包括低反射率目标遥感、高信噪比、高空间分辨率及宽覆盖范围等方面。 关键字:高光谱遥感;应用;成像光谱以;研究综述 Conclusion application of hyperspectral remote sensing Zhang Yong (Geography and environmental sciences, Zhejiang Normal University, Jinhua 321004) Abstract:Hyperspectral remote sensing, developed in the late twenty years, is the advanced technology of remote sensing. Because of its characters, Hyperspectral Remote Sensing has been attached importance to and used widly. The characteristics and advantages of hyperspectral remote sensing, and development situation are presented in the fields of aviation and aerospace. Several typical hyperspectral imager optical system principle and the main technical indicators are particularized. At the same time, the applications with hyperspectral remote sensing in vegetation ecology, atmospheric science ,geology and mineral resources, marine and military fields are summarized. The suggestions for the future development trend of hyperspectral remote sensing are given in the end,including the remote sensing of low reflectivity target, high signal-to-noise ratio, high spatial resolution and wide coverages. Keywords: hyperspectral remote sensing;application;imaging spectrometer 1 引言 遥感是20世纪60年代发展起来的对地观测综合性技术,是指应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术[1]。经过几十年的发展,无论在遥感平台、遥感传感器、还是遥感信息处理、遥感应用等方面,都获得了飞速的发展,目前遥感正进入一个以高光谱遥感技术、微波遥感技术为主的时代。本文系统地阐述了高光谱遥感技术在分析技术及应用方面的发展概况,并简要介绍了高光谱遥感技术主要航空/卫星数据的参数及特点。 1.1高光谱遥感简介 高光谱遥感技术又称为成像光谱技术,是指利用很多很窄的电磁波波段从感兴趣的物体

高光谱遥感实验

高光谱遥感实验 实验一高光谱遥感数据 一. 分别使用AVIRIS和Hyperion数据,如何针对植被、水体等不同 地物进行假彩色合成选择合适的波段? 根据彩色合成原理,可选择同一目标的单个多光谱数据合成一幅彩色图像,当合成图像的红绿蓝三色与三个多光谱段相吻合,这幅图像就再现了地物的彩色原理,就称为真彩色合成。 假彩色合成又称彩色合成。根据加色法或减色法,将多波段单色影像合成为假彩色影像的一种彩色增强技术。合成彩色影像常与天然色彩不同,且可任意变换,故称假彩色影像。 下面以ETM影像为例,进行真彩色合成,详细步骤如下: 1.在ERDAS IMAGINE 2010中加载ETM影像etmsubsrt.img。 图一.添加ETM影像数据

2.由ETM影像数据的基本参数中,RGB三色数据如下 故分别选取1、2、3波段作为蓝、绿、红三色进行真彩色合成,结果如下 图二.ETM影像真彩色合成 图中绿色为植被,蓝色为水体。 3.对ETM影像数据的基本参数进行分析,选取对水体、植被

有特征三个波段进行假彩色合成。因为ETM影像中波段2, 即绿色波段可用于分辨植被,波段,3,即红色波段处于叶 绿素吸收区域,可用于观测植被效果好,波段4,即近红 外波段,可以从植被中区分出水体,故分别选取波段2、3、 4作为蓝、绿、红三色进行假彩色合成。 图三.ETM影像假彩色合成 图中深蓝色为植被,浅蓝色和红色为水体。 使用AVIRIS和Hyperion数据,针对植被、水体等不同地物进行假彩色合成的步骤如上,其中,使用AVIRIS数据进行假彩色合成时选取波段50、31、20作为红绿蓝三色进行假彩色合成

ERDAS遥感软件教程-高光谱图像处理实验

九、高光谱图像处理 高光谱分辨率遥感(Hyperspectral Remote Sensing),简称高光谱遥感,是在电磁波的紫外、可见光、近红外和中红外波段范围内,获取许多非常窄且光谱连续的影像数据的技术。常规遥感的波段宽度一般大于50nm,并且波段在电磁波谱上不连续,所有波段加起来并不能覆盖可见光到热红外的整个波普范围,而光谱遥感成像光谱仪可以提供数十个甚至数百个很窄的波段(波段宽度一般小于10nm)来接受信息,且能够产生一条连续完整的光谱曲线(V ane and Goetz,1933),光谱覆盖从可见光到红外光的全部电磁波范围,因此其信息量是无法探测的,而高光谱传感器极窄的波段宽度,足够识别这些地物特征。高光谱遥感凭借着其明显的技术优势,在各领域展现出广阔的应用前景。目前已广泛应用于地质矿产调查、植被研究、环境监测、土壤调查、农作物估产、大气科学等领域中。 高光谱图像具有以下特点: (1)波段多,光谱分辨率高,光谱间相关性强。 (2)空间分辨率高。高的光谱分辨率和空间分辨率是遥感技术发展的两个方向,这两个方向有趋于统一的趋势。 (3)由于波段多,狭窄且连续,使得高光谱数据量巨大、数据冗余严重。 一些常规遥感图像处理分析方法仍可用于高 光谱影像。但由于高光谱图像波段多、广谱分辨 率大、数据量大等特点,常规的遥感图像处理方 法并不完全适合高光谱图像处理,对它的处理需 要一些特殊的方法和技术。 ERDAS IMAGINE9.2提供了一个高光谱分析 工具,是高光谱数据的分析简单化、自动化。本 章主要介绍高光谱分析工具中的各个功能,这些 功能都在Interpreter图标下的Basic HyperSpectral Tools工具中(图9.1)。本例使用 的示例数据是一幅1995年美国内华达州某地的 AVIRS图像,从波段172~221,共50个波段, 文件格式为img,存放在chp\tutor\ex_hyper.img (图9.2)。 图9.1Basic HyperSpectral Tools工具

高光谱遥感的发展与应用_张达

第11卷 第3期2 013年6月光学与光电技术 OPTICS &OPTOELECTRONIC  TECHNOLOGYVol.11,No.3  June,2013收稿日期 2012-09-29; 收到修改稿日期 2012-12- 13作者简介 张达(1981-) ,男,博士,副研究员,硕士生导师,主要从事空间光学遥感仪器的研制、空间光学成像,以及光谱探测技术方面的研究。E-mail:zhangda@ciomp .ac.cn基金项目 国防预研基金(SA050),国家863高技术研究发展计划(2010AA1221091001) ,吉林省科技发展计划(201101079 )资助项目文章编号:1672-3392(2013)03-0067- 07高光谱遥感的发展与应用 张 达 郑玉权 (中国科学院长春光学精密机械与物理研究所,吉林长春130033) 摘要 阐述了高光谱遥感的特点、优势,以及在航空及航天领域的发展情况,列举了几种典型高光谱成像仪的光学系统原理和主要技术指标。在此基础上, 概述了高光谱遥感在植被生态、大气环境、地质矿产、海洋、军事等领域的应用情况。最后对高光谱遥感发展趋势提出了几点建议,包括低反射率目标遥感、高信噪比、高空间分辨率及宽覆盖范围等方面。关键词 高光谱遥感;发展;应用;成像光谱仪中图分类号 TP70 文献标识码 A 1 引 言 遥感技术是20世纪60年代发展起来的对地 观测综合性技术[1] ,随着20世纪80年代成像光谱 技术的出现, 光学遥感进入了高光谱遥感阶段。从20世纪90年代开始, 高光谱遥感已成为国际遥感技术研究的热门课题和光电遥感的最主要手段。 高光谱遥感技术作为对地观测技术的重大突破[ 2] ,其发展潜力巨大。 高光谱遥感实现了遥感数据图像维与光谱维信息的有机融合,在光谱分辨率上有巨大优势,是遥感发展的里程碑。随着高光谱遥感技术的日趋成熟,其应用领域也日益广泛,已渗透到国民经济的各个领域,如环境监测、资源调查、工程建设等,对于推动经济建设、社会进步、环境的改善和国防建设起到了重大的作用。本文主要阐述高光谱遥感的特点、优势以及在航空及航天领域的发展情况,概括了高光谱遥感在植被生态、大气环境、地质矿产, 海洋军事等领域的应用情况。2 高光谱遥感特点与优势 高光谱遥感是高光谱分辨率遥感(Hypersp ec-tral Remote Sensing) 的简称[3] ,它是在电磁波谱的紫外、可见光、近红外、中红外和热红外波段范围 内,获取许多非常窄且光谱连续的影像数据的技 术,是在传统的二维遥感的基础上增加了光谱维,形成的一种独特的三维遥感。对大量的地球表面物质的光谱测量表明, 不同的物体会表现出不同的光谱反射和辐射特征,这种特征引起吸收峰和反射峰的波长宽度在5~50nm左右,其物理内涵是不同的分子、 原子和离子的晶格振动,引起不同波长的光谱发射和吸收,从而产生了不同的光谱特征。运用具有高光谱分辨率的仪器,通过获取图像上任何一个像元或像元组合所反映的地球表面物质的光谱特性, 经过后续数据处理,就能达到快速区分和识别地球表面物质的目的[ 4] 。高光谱遥感的成像光谱仪具有光谱分辨率高(5~10nm),光谱范围宽(0.4μm~2.5μm) 的显著特点,可以分离成几十甚至数百个很窄的波段来接收信息, 所有波段排列在一起能形成一条连续的完整的光谱曲线,光谱的覆盖范围从可见光、近红外到短波红外的全部电磁辐射波谱范围。高光谱数据是一个光谱图像的立方体,其空间图像维描述地表二维空间特征,其光谱维揭示图像每一像元的光谱曲线特征,由此实现了遥感数据图像维与光谱 维信息的有机融合[ 5] 。高光谱遥感在光谱分辨率方面的巨大优势,使得空间对地观测时可获取众多连续波段的地物光谱图像, 从而达到直接识别地球表面物质的目的。地物光谱维信息量的增加为遥感对地观测、地物识别及地理环境变化监测提供了

高光谱在遥感技术的应用

高光谱在遥感技术的应用 高光谱遥感技术(Hyperspectral Remote Sensing)的兴起是20世纪80年代遥感技术发展的主要成就之一.作为当前遥感的前沿技术,高光谱遥感在光谱分辨率上具有巨大的优势。,随着高光谱遥感技术的日趋成熟,其应用领域也日益广泛。本文主要阐述高光谱遥感的特点和主要应用。 1 高光谱遥感 孙钊在《高光谱遥感的应用》中提到,高光谱遥感是在电磁波谱的可见光、近红外、中红外和热红外波段范围内,利用成像光谱仪获取许多非常窄的光谱连续的影像数据的技术。 [1]高光谱遥感具有较高的光谱分辨率,通常达到10~2λ数量级。[2] 1.1 高光谱遥感特点 综合多篇关于高光谱的期刊文章,总结高光谱具有如下特点: (1)波段多,波段宽度窄。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。[3]与传统的遥感相比,高光谱分辨率的成像光谱仪为每一个成像象元提供很窄的(一般<10nm) 成像波段,波段数与多光谱遥感相比大大增多,在可见光和近红外波段可达几十到几百个,且在某个光谱区间是连续分布的,这不只是简单的数量的增加,而是有关地物光谱空间信息量的增加。[4] (2)光谱响应范围广,光谱分辨率高。成像光谱仪响应的电磁波长从可见光延伸到近红外,甚至到中红外。[5]成像光谱仪采样的间隔小,光谱分辨率达到纳米级,一般为10nm 左右。精细的光谱分辨率反映了地物光谱的细微特征。 (3)可提供空间域信息和光谱域信息,即“谱像合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。在成像高光谱遥感中,以波长为横轴,灰度值为纵轴建立坐标系,可以使高光谱图像中的每一个像元在各通道的灰度值都能产生1 条完整、连续的光谱曲线,即所谓的“谱像合一”。 (4)数据量大,信息冗余多。高光谱数据的波段众多,其数据量巨大,而且由于相邻波段的相关性高,信息冗余度增加。 (5)数据描述模型多,分析更加灵活。高光谱影像通常有三种描述模型:图像模型、光谱模型与特征模型。 1.2 高光谱遥感的优势 高光谱遥感的光谱分辨率的提高,使地物目标的属性信息探测能力有所增强。因此,较之全色和多光谱遥感,高光谱遥感有以下显著优势:

高光谱,多光谱及超光谱

1、光谱分辨率 光谱分辨率spectral resolution 定义1:遥感器能分辨的最小波长间隔,是遥感器的性能指标。遥感器的波段划分得越细,光谱的分辨率就越高,遥感影像区分不同地物的能力越强。 定义2:多光谱遥感器接收目标辐射信号时所能分辨的最小波长间隔。 光谱分辨率指成像的波段范围,分得愈细,波段愈多,光谱分辨率就愈高,现在的技术可以达到5~6nm(纳米)量级,400多个波段。细分光谱可以提高自动区分和识别目标性质和组成成分的能力。 传感器的波谱范围,一般来说识别某种波谱的范围窄,则相应光谱分辨率高。 举个例子:可以分辨红外、红橙黄绿青蓝紫紫外的传感器的光谱分辨率就比只能分辨红绿蓝的传感器的光谱分辨率高。 一般来说,传感器的波段数越多波段宽度越窄,地面物体的信息越容易区分和识别,针对性越强。 2、什么是高光谱,多光谱及超光谱 高光谱成像是新一代光电检测技术,兴起于2O世纪8O年代,目前仍在迅猛发展巾。高光谱成像是相对多光谱成像而言,通过高光谱成像方法获得的高光谱图像与通过多光谱成像获取的多光谱图像相比具有更丰富的图像和光谱信息。如果根据传感器的光谱分辨率对光谱成像技术进行分类,光谱成像技术一般可分成3类。 (1)多光谱成像——光谱分辨率在delta_lambda/lambda=0.1mm数量级,这样的传感器在可见光和近红外区域一般只有几个波段。 (2)高光谱成像——光谱分辨率在delta_lambda/lambda=0.01mm数量级,这样的传感器在可见光和近红外区域有几十到数百个波段,光谱分辨率可达nm 级。 (3)超光谱成像——光谱分辨率在delta_lambda/lambda =O.001mm=1nm数量级,这样的传感器在可见光和近红外区域可达数千个波段。 众所周知,光谱分析是自然科学中一种重要的研究手段,光谱技术能检测到被测物体的物理结构、化学成分等指标。光谱评价是基于点测量,而图像测量是基于空间特性变化,两者各有其优缺点。因此,可以说光谱成像技术是光谱分析

高光谱遥感实习报告

高光谱遥感实习报告 目录 一.数据预处理 (2) 1. 数据说明 (2) 2.数据转换 (3) 2.FLAASH大气校正 (4) 3.图像裁剪 (7)

二.光谱识别与地物分析 (8) 1.波段相关性分析 (8) 2.MNF变换 (8) 3.端元提取 (10) 3.1 2-D散点图法 (10) 3.2基于PPI的端元提取(N维散点图法) (13) 三.实习心得 (19) 一.数据预处理 1.数据说明 环境与灾害监测预报小卫星星座A、B星(简称环境小卫星,简写HJ-1A /1B)于2009

年3月30日开始正式交付使用,HJ-1-A星搭载了CCD相机和超光谱成像仪(HSI),HJ-1-B 星搭载了CCD相机和红外相机(IRS)。HJ-1A /1B卫星是继我国继气象、海洋、国土资源卫星之后一个全新的民用卫星。卫星投入使用后,对自然灾害、生态破坏、环境污染进行大范围、全天候、全天时的动态监测,对灾害和环境质量进行快速和科学评估,提高灾害和环境信息的观测、采集、传送和处理能力,为紧急救援、灾后救助及恢复重建和环境保护工作提高科学依据。 HSI 对地成像幅宽为50 km, 星下点像元地面分辨率为100 m,115个波段,工作谱段:459~ 956nm。具有30度侧视能力和星上定标功能。HJ-1数据应用于自然灾害、生态环境之前,需要进行几何及光谱方面的预处理。ENVI在数据读取、图像配准、精确大气校正等方面提供了非常好的工具。 2.数据转换 目前,网上免费获取的HJ-1A /1B卫星CCD和HSI影像的分发的格式主要有两种:CCD 为Geotiff,每一个波段为一个Geotiff文件,并提供一个元数据说明(.XML); HSI为HDF5格式,也提供一个元数据说明(.XML)。 使用HJ-1数据读取补丁,启动ENVI->File->Open External File->HJ-1->HJ-1A /1B Tools工具。直接读取CCD、HIS、IRS数据,之后选择Basic Tools->Convert Data(BSQ,BIL,BIP),将刚才生成的文件转成BIL储存顺序的文件。至此,已经将HSI数据转成BIL储存顺序、带有中心波长信息、波段宽度信息的ENVI格式文件。 图1.1 HJ-1A /1B Tools面板

高光谱遥感数据处理基础

泛函分析概括 高光谱遥感应用中,如何度量光谱间的相似性一直高光谱图象处理的核心问题,因而我们有必要先交代下度量空间的一些概念。 度量空间:所谓度量空间,就是指对偶(,)X d ,其中X 是一个集合,d 是X 上的一个度量(或X 上的距离函数),即d 是定义在X X ?上且对所有,,X ∈x y z 满足以下四条公理的函数: (1) d 是实值、有限和非负的。 (2) 当且仅当=x y 时,(,)0d =x y 。 (3) (,)(,)d d =x y y x (对称性)。 (4) (,)(,)(,)d d d ≤+x y x z z y (三角不等式)。 度量空间给出来空间中元素“距离”的度量,因而使得空间中的元素可比较。但是,仍需要在空间中引入代数结构,使得元素之间可进行代数运算。因而,这里需要引入线性空间。 线性空间:所谓域(K R 或C)上的线性空间是指一个非空集合X ,且其元素,,x y (称为矢量)关于X 和K 定义了两种代数运算。这两种运算分别叫做矢量的加法与标量的乘法。 矢量的加法是,对于X 中的每一对矢量(,)x y ,与其相联系的一个矢量+x y ,叫做矢量之和。按这种方式它还具有下述性质:矢量加法是可交换的和可结合的,即对所有矢量都有 ()()+=+++=++x y y x x y z x y z 此外存在零矢量,X ∈0并对每个矢量x ,存在有-x ,使得对一切矢量有 ()+=+-=x 0x x x 0 矢量与标量的乘法是,对于每个矢量x 和每个标量α,与其相联系的一个矢量αx ,叫做α与x 之积。按这种方式对一切,x y 和标量,,αβ具有

()()1αβαβ==x x x x 和分配律 ()()ααααβαβ+=++=+x y x y x x y 在很多情况下因为线性空间X 上定义了度量d ,所以X 同时也是一个度量空间。然而,如果X 的代数结构与度量没有什么关系的话,我们就不能指望把代数的概念和度量的概念结合在一起。为了保证X 的代数性质与几何性质有如此的关系,我们首先需要引入一个辅助的所谓“范数”的概念,其中要用到线性空间的代数运算。然后再用范数诱导出我们希望的度量d ,这一想法就导出了赋范空间的概念。简单的说,赋范空间把线性空间的代数结构和其作为度量空间的度量紧密结合在一起。 赋范空间:所谓赋范空间X ,就是指在其上定义了范数的线性空间X 。而所谓线性空间X 上的范数,就是指定义在X 上的一个实值函数,它在X ∈x 的值记为x ,并且具有如下性质: (1)0≥x (2)0=?=x x 0 (3)αα=x x (4)+≤+x y x y 其中,x y 是X 中的任意矢量,α为任意标量。 巴拿赫空间:所谓巴拿赫空间就是完备的赋范空间(这里的完备性是按范数定义的度量来衡量的,见下面公式) (,)d =-x y x y ,X ∈x y 此度量叫做由范数所诱导的度量。 由范数所诱导的度量具备以下基本性质: 引理(平移不变性):在赋范空间X 上,由范数诱导的度量d ,对所有的,X ∈x y 及每个标量α,都满足

高光谱遥感影像的光谱匹配算法研究概要

https://www.360docs.net/doc/9a9850741.html, 中国科技论文在线高光谱遥感影像的光谱匹配算法研究 蔡燕1,梅玲2作者简介:蔡燕,(1984-),女,硕士研究生,主要研究方向:高光谱遥感 通信联系人:梅玲,(1984-),女,助理工程师,主要研究方向:水文地质. E-mail: meilingcumt@https://www.360docs.net/doc/9a9850741.html, (1. 中国矿业大学环境与测绘学院,江苏徐州 221008; 2. 江苏煤炭地质勘探四队,南京 210046) 摘要:在高光谱遥感影像处理中,光谱匹配技术是高光谱地物识别的关键技术之一。本文主要围绕光谱匹配算法的研究展开,分析讨论了常用的几种光谱匹配技术的特点,根据先验知识建立了多种地物标准光谱库,并将其读入程序存储,基于Visual C++平台实现了最小距离匹配,光谱角度匹配,四值编码匹配法,最后基于混淆矩阵对分类图像进行精度比较分析并对三种编码匹配法进行比较。 关键词:高光谱;光谱匹配;最小距离匹配;光谱角度匹配;四值编码 中图分类号:TP751 The Study on the Spectral Matching Technique of hyperspectral romote sensing Cai Yan1, Mei Ling2 (1. School Of Environment Science and Spatial Informatics China University of Mining and Technology, JiangSu XuZhou 221008;

2. JiangSu Geological Prospecting Team Four, NanJing 210046 Abstract: In the hyperspectral image processing, the spectral match technique is one of key techniques to identify and classify materials in the image. This paper addresses some issues of spectral matching methods. Several algorithms are analyzed and compared, such as minimum distance matching, spectral angle mapping and quad-encoding. According to the prior knowledge, standard spectral library including typical land-cover types is built, which is stored and used for spectral matching. All of work is done in the programming environment of Visual C++. Finally, the experimental results are tested and compared when classification accuracies are computed based on confusion matrixes. Keywords:hyperspectral; spectral match; minimum distance matching; spectral angle mapping; quad-encoding 0 引言 高光谱遥感技术的发展和广泛应用是20世纪最具有标志性的科学技术成就之一,与传统的多光谱遥感技术相比,高光谱分辨率遥感的核心特点是图谱合一,即能获取目标的连续窄波段的图像数据[1]。高光谱遥感信息的分析处理集中于光谱 维上进行图像信息的展开和定量分析。 高光谱影像分类与地物识别是建立在传统的遥感图像分类算法基础之上,结合高光谱数据特点,对高光谱图像数据进行目标识别,是对遥感图像基本分类方法的扩展与延伸。高光谱遥感影像有着很高的光谱分辨率,且光谱通道连续,因此对于影像中的任一像元均能获取一条平滑而完整的光谱曲线,将其与地物波谱库中的光谱曲线进行匹配运算,实现地物识别与定量反演[2-4]。光谱匹配技术是成像光谱地物识别的关键技术之一,主要通过对地物光谱与参考光谱的匹配或地物光谱与数据库的比较,求算他们之间的相似性或差异性,突出特征谱段,有小提取光谱维信息,以便对地物特征进行详细分析[5]。本文紧紧围绕光谱匹配的算法分析了最小 距离法,光谱角度匹配法,以及四值编码法,进行精度分析与方法比较。

相关文档
最新文档