第5讲8086微处理器基本结构
8086处理办法器结构

生产工艺:不同的生产工艺对CPU的功耗和工作频率有较大影响,生产 工艺越先进CPU功耗越低,工作频率越高。
TF(Trap Flag)
跟踪标志
TF=1 CPU单步运行; TF=0 CPU正常运行;
跟踪程序进行调试 控
IF(Interrupt Enable Flag)
中断允许 IF=1 CPU接受外部中断; 标志 IF=0 CPU不接受外部中断;
控制可屏蔽中断
制 标
DF(Direction Flag)
方向标志
反映CPU最近一次运算结果的一些状况。 数据暂存寄存器:协助ALU完成运算,暂存参加运算的数据,
如从内存读入的数据。 通用寄存器:用于存放参与运算的数据或数据在内存中的偏
移地址。 EU控制电路:负责接收从BIU指令队列中取来的指令,经
指令译码后形成定时控制信号,对EU各部件实现特定的控 制操作。
将取指令部件与执行指令部件分开,使它们可以并行工 作,从而实现并行流水线,提高系统运行速度; 对内存空间分段管理,利用16位段基址和16位段内偏移 地址实现对1MB空间的寻址; 设有两种工作模式,分别支持单处理器工作和多处理器 工作; 基本指令执行时间为0.3μs~0.6μs。
8086处理办法器结构
辅助进行BCD码运 算调整
零标志
ZF=1运算结果为零; ZF=0运算结果不为零;
判断运算结果是否 为零或相等
符号标志
8086微处理器微处理器的基本结构8086

对某些I/O操作DX可用来存放I/O的端口地址(口地址 256)。
例: 例:
MUL BX IN AL , DX
; (AX)(BX)(DX)(AX)
(2)地址指针与变址寄存器: 段起始地址
SP、BP、SI、DI 四个16位寄存器。
以字为单位在运算过程中存放操作数,
…
经常用以在段内寻址时提供偏移地址。
寄存器组 AH AL AX BH BL BX CH CL CX DH DL DX
SI DI BP SP
运 算 器
(3) 如果在执行指令的过程中,
需要访问内存或I/O端口, EU
EU会请求BIU去完成存取操作。
PSW标志 寄存器
DS
BIU
ES
地
SS
址
CS
加
法
IP
器
数据暂存器
指
总线
令
接口
队
控制
列
电路
指令译码器
1、通用寄存器 (1)数据寄存器
AX、BX、CX、DX 作为通用寄存器。
用来暂存计算过程中所用到的操作数,结果或其它信息。 访问形式:可以用16位的访问;
或者可以用字节(8位)形式访问, 它们的高8位记作 : AH 、 BH 、 CH 、 DH 。 它们的低8位记作 : AL 、BL 、CL 、DL 。
二、8086/8088的编程结构 编程结构:
指从程序员和使用者的角度看到的结构。 与芯片内部的物理结构和实际布局有区别。
某CPU芯片内部实物图
12
8086 编程结构:
1. 总线接口部件BIU (Bus Interface Unit)
→ 运输部门
2. 执行部件EU
第二章 8086微处理器

第二章8086/8088微处理器及其系统结构内容提要:1.8086微处理器结构:CPU内部结构:总线接口部件BIU,执行部件EU;CPU寄存器结构:通用寄存器,段寄存器,标志寄存器,指令指针寄存器;CPU引脚及其功能:公用引脚,最小模式控制信号引脚,最大模式控制信号引脚。
2.8086微机系统存储器结构:存储器地址空间与数据存储格式;存储器组成;存储器分段。
3.8086微机系统I/O结构4.8086最小/最大模式系统总线的形成5.8086CPU时序6.最小模式系统中8086CPU的读/写总线周期7.微处理器的发展学习目标1.掌握CPU寄存器结构、作用、CPU引脚功能、存储器分段与物理地址形成、最小/最大模式的概念和系统组建、系统总线形成;2.理解存储器读/写时序;3.了解微处理器的发展。
难点:1.引脚功能,最小/最大模式系统形成;2.存储器读/写时序。
学时:8问题:为什么选择8088/8086?•简单、容易理解掌握•与目前流行的P3、P4向下兼容,形成x86体系•16位CPU目前仍在大量应用思考题1、比较8086CPU与8086CPU的异同之处。
2、8086CPU从功能上分为几部分?各部分由什么组成?各部分的功能是什么?3、CPU的运算功能是由ALU实现的,8086CPU中有几个ALU?是多少位的ALU?起什么作用?4、8086CPU有哪些寄存器?各有什么用途?标志寄存器的各标志位在什么情况下置位?5、8086CPU内哪些寄存器可以和I/O端口打交道,它们各有什么作用?6、8086系统中的物理地址是如何得到的?假如CS=2400H,IP=2l00H,其物理地址是多少?思考题1.从时序的观点分析8088完成一次存储器读操作的过程?2.什么是8088的最大、最小模式?3.在最小模式中,8088如何产生其三总线?4.在最大模式中,为什么要使用总线控制器?思考题1.试述最小模式下读/写总线周期的主要区别。
8086微处理器-指令系统思维导图,脑图

8086微处理器指令系统数据传送数据传送指令可完成寄存器与寄存器之间、寄存器与存储器之间以及寄存器与I/O 端口之间的字节或字传送,它们共同的特点是不影响标志寄存器的内容通用数据传送指令MOV 传送指令格式: MOV 目标,源指令功能:将源操作数(一个字节或一个字)传送到目标操作数。
源操作数可以是8/16位通用寄存器、段寄存器、存储器中的某个字节/字或者是8/16 位的立即数。
堆栈操作指令后进先出的规则存取信息堆栈指针信息存入堆栈时,堆栈指针将自动减量,并将信息存入堆栈指针所指出的存储单元当需要从堆栈中取出信息时,也将从堆栈指针所指出的存储单元读出信息,并自动将堆栈指针增量堆栈指针始终指向堆栈中最后存入信息的那个单元栈顶不断移动、动端堆栈区的另一端则是固定不变的栈底PUSH 入栈指令格式: PUSH 源指令功能:将源操作数压入堆栈。
源操作数可以是16 位通用寄存器、段寄存器或者是存储器中的数据字。
P38 例 2.12POP 出栈指令格式: POP 目标指令功能:将堆栈中当前栈顶和次栈顶中的数据字弹出送到目标操作数。
目标操作数可以是16 位通用寄存器、段寄存器或者是存储单元。
P39 例 2.13XCHG 交换指令1格式: XCHG 目标,源指令功能:将源操作数与目标操作数(一个字节或一个字)相互交换位置。
源操作数可以是通用寄存器或存储单元。
目标操作数只允许是通用寄存器。
P39 例 2. 14XLAT 换码指令2目标地址传送指令这是一类专用于传送地址码的指令,可用来传送操作数的段地址或偏移地址LEA 有效地址送寄存器指令格式: LEA 目标,源指令功能:将源操作数的有效地址EA 传送到目标操作数。
源操作数必须是存储器操作数。
目标操作数必须是16位通用寄存器。
LDS 指针送寄存器和DS指令格式: LDS 目标,源指令功能:从源操作数所指定的存储单元中取出某变扯的地址指针(共4 个字节),将其前两个字节(即变量的偏移地址)传送到目标操作数,后两个字节(即变量的段地址)传送到DS 段寄存器中。
8086CPU结构介绍及基础知识

分段管理的特点: ①起始点可浮动; ②可分开或重叠; ③实际地址由段地址、段内偏移地址组成; ④段首地址必须能被16整除
• 2、物理地址的形成
逻辑地址:存储器的任一个逻辑地址由段基址和偏移地址组成,程序设计时采 用。
•
段基址:偏移地址
物理地址:存储器的绝对地址,从00000~FFFFFH,它是由逻辑地址变换而来。
二、8086CPU的内部结构 8086CPU内部按功能可分为两部分: 1、BIU(总线接口部件) 功能:地址形成、取指令、指令排队、
读/写操作数、总线控制 2、EU(执行部件) 功能:指令译码、指令执行
组成部件见下页图
8086CPU的内部组成
执行单元(EU)
总线接口单元(BIU)
1、BIU ①段寄存器
例2-2
• 将5394H与-777FH两数相加,并说明其标志位状态
•
0101 0011 1001 0100
•+
1000 1000 1000 0001
•
1101 1100 0001 0101
• 运算结果:-23EBH
• 标志位:CF=0,DF=0,AF=0
•
ZF=0,SF=1,OF=0
控制标志位的名称和定义如下:
三寄存器结构目的变址寄存器destinationindexsidibpspax累加器accumulatorbx基数寄存器basecx计数寄存器countdx数据寄存器dataahbhchdhalblcldlipflagsdsessscs数据段寄存器datasegment附加段寄存器extrasegment堆栈段寄存器stacksegment代码段寄存器codesegment标志寄存器flags指令指针寄存器instructionpointer变址寄存器段寄存器控制寄存器通用寄存器源变址寄存器sourceindex基址指针寄存器basepointer堆栈指针寄存器stackpointer指针寄存器数据寄存器8086cpu寄存器组1通用寄存器组?常用来存放参与运算的操作数或运算结果?特殊用途见p25表212指针和变址寄存器?可作通用寄存器存放一般操作数或运算结果?作指针和变址寄存器用于存放某段地址偏移量3段寄存器?用于存放逻辑段的段基地址4指令指针和标志位寄存器?ip存放下一条指令在现行代码段中的偏移地址由biu自动修改
微机原理 复习8086

地址 数据
CLK DEN VCC 8284 RES 外部复位信号 RESET RDY MN/MX CLK RESET READY 8086 BHE A19~A16 AD15~AD0 INTR S0 S1 S2
பைடு நூலகம்
INTA AMWC DT/R AIOWC ALE MRDC MWTC IORC 8288 IOWC BHE AB 存储器 8286 T OE DB I/O接口
• 8086指令队列的作用是什么? 答:作用是:在执行指令的同时从内存 中取了一条指令或下几条指令,取来的指 令放在指令队列中这样它就不需要象以往 的计算机那样让CPU轮番进行取指和执行的 工作,从而提高CPU的利用率。
EU
指令队列
BIU
8086CPU内部寄存器有哪几种?各自的特点 和作用是什么? 8086CPU有14个16位寄存器和8个8位寄 存器,可分为: 数据寄存器;指针和变址寄存器;段寄 存器;指令指针寄存器;标志寄存器。
• 为了实现寻址1MB存储器空间,8086CPU将 1MB的存储空间分成若干个逻辑段进行管理, 4个16位的段寄存器来存放每一个逻辑段的 段起始地址。
• 已知堆栈段寄存器(SS)=2400H,堆栈指 针(SP)=1200H,计算该堆栈栈顶的实际 地址,并画出堆栈示意图。 • (SS)=2400H,(SP)=1200H ;PA=(SS)×10H+(SP)= 2400H×10H +1200H = 25200H。
8086CPU 重新启动后,从何处开始执行指 令? • 答:重新启动后,CS=FFFFH,IP=0000H,故 从物理地址为FFFF0H 的位置开始执行指令 。
8086 系统中存储器采用什么结构?用 什么信号来选中存储体?
• 答:8086 系统中,存储器采用分体结构,1MB 的 存储空间分成两个存储体:偶地址存储体和奇地 址存储体,各为512KB。 • 使用A0 和BHE 来区分两个存储体。当A0=0 时,选 中偶地址存储体,与数据总线低8位相连,从低8 位数据总线读/写一个字节。当BHE =0 时,选中奇 地址存储体,与数据总线高8 位相连,从高8 位数 据总线读/写一个字节。 • 当A0=0,BHE =0 时,同时选中两个存储体,读/写 一个字。
微机原理第三章:8086微处理器结构

4.8086 和8088 二者的指令系统完全兼容
(1)有24 种寻址方式,具有乘、除法指令等。 (2)取指令和执行指令的操作并行运行,运行速度大大提高。
(3)具有最小模式和最大模式,应用领域宽广,适应性强。
(4)可方便地和数据处理器8087、I/O 处理器8089 或其它处理器 组成多处理机系统,提高数据处理能力和输人输出能力。
代码段寄存器 CS 标 志 寄 存 器
数据段寄存器 DS
堆栈段寄存器 SS
附加段寄存器 ES
由于8086/8088 CPU 可直接寻址的存储器空间是1M字节,直接寻址需要 20位地址码,而所有的内部寄存器都是16位的,用这些寄存器只能寻址 64K字节,为此需要采取分段技术来解决这个问题。
表3.1
通用寄存器的隐含使用
程序调试过程中。
3.1.2 8086/8088 的寄存器结构
四、指令指针寄存器 IP ★ 16 位的指令指针寄存器 IP 用来存放将要执行的下一条 指令在代码段中的偏移地址。 ★ 在程序运行过程中,BIU 可修改 IP 中的内容,使它始终 指向将要执行的下一条指令。 ★ 程序不能直接访问 IP,但可通过某些指令修改 IP 内容。 ★ 如遇到转移类指令,则将转移目标地址送人IP中,以实 现程序的转移。
★ 规则字的读/写操作可以一次完成。由于两个存储体上的地址
线 A19~A1 是连在一起的,只要使 A0=0,BHE=0,就可 以实现一次在两个存储体中对一个字的读/写操作。 ★ 读写的是从奇地址开始的字(高字节在偶体中,低字节在奇体 中),这种字的存放规则称为“非规则字”或“非对准字”。 ★ 非规则字的读/写,需要两次访问存储器才能完成。 第一次访问存储器读/写奇地址中的字节;
三、标志寄存器 FR
8086-8088CPU系统结构

1.2 8086/8088寄存器结构及用途
1.1.3 指针寄存器和变址寄存器
▲指针寄存器:
♣ SP:堆栈指针寄存器 ♣ BP:基址指针寄存器
▲变址寄存器:
♣ SI:源变址寄存器 ♣ DI:目的变址寄存器
汇编语言程序设计
8086/8088CPU系统结构
• 1.1 Intel8086/8088微处理器的结构 • 1.2 8086/8088寄存器结构及其用途 • 1.3 8086的存储器组织
• 1.4 堆栈
1.1 Intel8086/8088微处理器的结构
• 1.1.1 8086微处理器的结构
8086微处理器由两大部分组成: ♣ 执行部件EU ♣ 总线接口部件BIU 其内部结构如图(P20 图1.1)
1.3 8086的存储器组织
• 1.3.2 存储器的分段结构
◆8086CPU的寻址能力为:220=1MB; ◆8086CPU的内部寄存器为16位,直接 寻址:216=64KB; ◆在8086系统中引入逻辑段的概念:把 的地址空间划分为任意个逻辑段,长度 为64KB。
1.3 8086的存储器组织
• 1.3.3 物理地址和逻辑地址
▲是CPU与外部存储器、I/O设备的接口;
▲BIU由以下几部分组成: ♣16位指令指针寄存器IP; ♣指令队列; ♣4个16位段寄存器CS、DS、ES、
SS; ♣20位地址加法器; ♣总线控制部件。
1.1.1 8086微处理器的结构
• 3. BIU和EU的管理
▲二者处于并行的工作状态和重叠的工 作方式; ▲相互配合,协调工作; ▲充分利用总线实现最大限度的信息传 输,提高了程序的执行速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章
80X86微处理器与汇编语言
地球物理与信息工程学院
80X86微处理器-学习目标
内部结构组成、指令队列、流水线 通用寄存器、标志寄存器、控制寄存器 存储管理机制、数据在内存中存放、分段
及段寄存器和偏移地址的约定组合关系
微处理器的引脚功能、工作模式
时钟周期、机器周期、指令周期
2.1 8086/8088微处理器
SUBOUT PROC PUSH DX MOV DL,AL MOV AH,2 INT 21H POP DX RET SUBOUT ENDP
功 能:从标准输 出设备(一般为屏 幕)输出一个字符 入口参数:输出的 字符的ASCII码送 寄存器AL 出口参数:在屏幕 上显示单个字符:
GND AD14/A14 AD13/A13 AD12/A12 AD11/A11 AD10/A10 AD9/A9 AD8/A8 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 NMI INTR CLK GND提高篇-总线时序
BIU、EU并行工作,当一条指令正执行时,可以同 时取出多条指令在指令队列中排队,指令执行完 毕, 可立即执行下一条指令,免去CPU等待时间。
指令预取与指令执行的重叠操作,称之为流水线
作业。这是 80x86 微处理器的特点。
2.1.2寄存器组
1.通用寄存器 AX、BX、CX 和 DX 2.指针和变址寄存器 SP、BP、SI和DI 3.段寄存器 ES、DS、SS和ES 4.指令指针寄存器 IP 5.标志寄存器 Flag AF ZF SF OF IF TF
2.13存储器管理
所谓分段技术就是把 1 MB 的存储空间分成若干个逻 辑段, 每一个逻辑段容量 <=4 KB, 段内地址连续 , 段 与段之间相互独立 , 可以 分别寻址
2.13存储器管理
2.1.4 中断管理
1中断和中断源 (1)外部中断
(2)内部中断
2中断向量表及中断处理 (1)INT 21H (2)INT 20H
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20
8086/8088 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21
VCC(5V) AD15/A15 A16/S3 A17/S4 A18/S5 A19/S6 /BHE/S7 HIGH(SSO) MN//MX /RD HOLD(/RQ//GT0) HLDA(/RQ//GT1) /WR(/LOCK) M//IO(/S2) DT//R(/S1) /DEN(/S0) ALE(QS0) /INTA(QS1) /TEST READY RESET