基于FPGA的DDC(数字下变频)设计与实现
基于FPGA的软件无线电DDC设计

1.学位论文韩学涛基于软件无线电的数字下变频技术研究2008
软件无线电的中心思想是:构造一个具有开放性、标准化、模块化的通用硬件平台,将各种功能用软件来完成,并使宽带A/D和D/A尽可能靠近天线,以研制出具有高度灵活性、开放性的新一代无线通信系统。但由于受A/D和DSP芯片处理速度的限制,目前的软件无线电接收机大多采用增加数字下变频环节的方案,以降低射频或中频信号的采样速率,满足DSP芯片实时处理的要求。数字下变频技术已成为当今软件无线电接收机不可或缺的一部分,是软件无线电接收机研制的核心技术之一。
该方案基于数字下变频技术,主要由功率放大器、抗混叠滤波器、A/D转换器、下变频处理器、数字锁相环、FPGA和DSP等部分组成。本文对该电路方案的组成部分进行初步的介绍,尤其对其中最重要的下变频处理器HSP50214B作了较深入的研究,主要内容包括下变频处理器的基本特征、框架结构、各主要部分原理及在设计中的应用。文中着重对在系统中起重要作用的FPGA模块的主要功能进行了深入探讨,并最终完成了VHDL语言的实现。
(3)针对本文所设计的数字下变频实现方案,结合某基于软件无线电技术设计的数字通信系统中数字下变频的实际需要,完成了各个功能模块的仿真研究和硬件仿真测试,并对测试结果进行了分析。
基于FPGA实现的数字下变频,能充分体现软件无线电系统高的灵活性和宽的适应性,本文所设计的数字下变频系统有一定的通用性。
6.期刊论文任跃.李健.高和亮.REN Yue.LI Jian.GAO He-liang软件无线电中的数字下变频技术研究-山东理工
8.期刊论文秦明伟.李德建.姚远程.QIN Ming-wei.LI De-jian.YAO Yuan-cheng软件无线电数字下变频及抽取技
基于FPGA的数字下变频器的设计与应用

s Pd h s p fqe y dMd dn 1 r g adf 1酗 . 七 u Oi i a l r u c a e ya c e n o e P n g m 吨 e n n g h m a n g n n 丁e 幼re r e etho g h be d e i fmd i b ead d i I e se i en l ae n vl n r i t a n t i t F ls cv c o s r y e Og o g s P l a b o g . l a Tu i ps et iP e t 诫d b d d i 11 r i r a o 七s s o i o m l n h e a w t g I e v b e n t i l b m e ie n i hd t F c e s a e d b da s Pn t o n s m i e a P sa l h 移 g
程性和灵活性,从而满足不同的工程设计需求。
本文章首先阐述了软件无线电中关键的数字信号处理技术,包括中频处理中
的下变频技术、 抽取技术以 及带通采样技术。 利用 M J A 八I B的 s u 完成了 il mi k n
对系统 设 仿 验证了 计的 确 之后用Qa s 进行了 的 计与 真, 设 正 性. utl x l o 基于FG PA
朋dh es P. sg P o d i m t dt w o D C nt i id c n lh e i T ・ 姗 e g e ,h h1 D f co s v e a a U no D s n h e o e o i d id n o ay 苗 m l n dr ce t m n u t lP et e e v卜胡dO a 笙dt t m dl ir ‘ 飞 n s m e e st Pi r 叮 o h ou b r 认 e g J e ela y
基于FPGA的多相DDC设计与实现

基于FPGA的多相DDC设计与实现摘要:雷达数字接收机中往往存在前端ADC输出的高速数据流与后端DSP的低吞吐率之间难以匹配的问题。
因此,本文从工程角度出发,给出了一种基于现场可编程门阵列(FPGA,Field Programmable Gate Array)的数字下变频设计方案,通过对中频信号分为4相处理以及对FIR滤波器、NCO模块进行优化,在得到有效信号的同时可以节省部分资源。
关键词:DDC;FPGA;FIR滤波器;NCO;0 引言为了提高雷达系统的作用距离和分辨力,数字阵列雷达必须具有较大的时宽和带宽,同时也就需要较高的采样率。
这就推动着高速采样器件的不断发展,使中频采样甚至射频直接采样成为可能。
然而,高速采样器件与数字信号处理器件的处理速度往往不在一个量级,很大程度上限制了电子侦察系统的发展。
目前,解决这一问题的通用方法是:高频模拟信号先进行模拟下变频至中频,AD采样中频信号,然后通过数字下变频技术,使高速率的中频信号变为低速率的基带信号,提供给后端进行数字信号处理。
同时,FPGA因其开发成本低、研发周期短、灵活方便等优点,成为复杂的数字电路或器件开发的必备手段。
因此,本文介绍一种基于FPGA的多相DDC技术,将高速率的中频信号进行多相DDC处理变为低速率的基带信号。
1 多相DDC的设计1.1DDC基本架构数字下变频(Digital Down Converter-DDC)是指将数字中频信号下变频至零中频且使数据率降至适宜DSP处理的过程。
其基本架构如图1所示,主要由数字混频器、数字控制振荡器(Numerically Controlled Osillator-NCO)、FIR滤波器以及抽取等部分构成。
图1 DDC基本架构示意图NCO产生正交本振信号送入数字混频器中,对A/D采样得到的中频信号进行混频处理,处理结果传入FIR滤波器以滤除谐波分量以及带外信号,再经过抽取模块降低数据率。
1.2多相DDC架构本实验中采用的A/D转换芯片为AD9680,有效位数14位,采样率设置为800M,中心频率为600M,传输方式采用204b协议。
软件无线电数字下变频技术研究及FPGA实现

软件无线电数字下变频技术研究及FPGA实现发布时间:2011-1-18 发布人:21世纪电子网软件无线电的核心思想是以模块化、标准化的硬件功能单元构建一个具有高度灵活性、开放性的通用硬件平台,将高速、宽带的A/D、D/A尽可能地靠近天线,通过软件编程的方式实现通信系统的各种功能,从而屏蔽不同通信系统的差异,实现多个通信系统的互通与兼容。
数字下变频DDC(Digitial Down Conversion)是软件无线电接收系统构成的核心,它主要是把A/D技术应用于中频信号,通过软件编程实现混频、抽取和滤波等信号处理功能,以数字化方式将中频信号搬移至基带并同时降低数据速率。
1 软件无线电数字下变频系统构建与仿真1.1 数字下变频系统参数的确定系统构建时,主要参考了GSM标准的各项参数,系统输入中频信号采用频率为246 MHz、带宽为200 kHz、频偏为50 kHz的MSK调制信号,下变频后输出速率要求为1 MS/s。
根据带通信号采样定理,本系统采样率定为24 MHz。
采样后原中频信号将在6 MHz处有一个频谱镜像,从而可以取本振频率为6 MHz来完成数字混频的功能。
数字下变频后采样率还需完成从24 MHz到1 MHz 的转变即抽取滤波器需要对数字混频后输出的信号进行24倍的抽取。
1.2 下变频系统结构设计由以上确定的数字下变频系统各项参数可知,系统需要对数字下变频后的信号进行24倍的抽取。
本文选择了抽取滤波器四级级联的实现结构。
其中第一级CIC滤波器实现6倍抽取;第二级CIC补偿滤波器对CIC滤波器输出的信号进行补偿,并实现2倍抽取;第三级HB滤波器完成2倍抽取任务;第四级FIR滤波器不进行抽取,而是进一步低通滤波以增强输出信号的效果。
这样就构造了如图1所示的软件无线电数字下变频系统。
1.3 抽取滤波器系统的实现M、D分别为CIC滤波器的抽取倍数和微分延迟因子。
可见其阻带衰减较差,难以满足一般的应用需要。
基于FPGA的高速数字下变频系统设计

基于FPGA的高速数字下变频系统设计摘要:基于FPGA设计了一高速数字下变频系统,在设计中利用并行NCO和多相滤波相结合的方法有效的降低了数据的速率,以适合数字信号处理器件的工作频率。
为了进一步提高系统的整体运行速度,在设计中大量的使用了FPGA中的硬核资源DSP48。
Xilinx ISE14.4分析报告显示,电路工作速度可达360MHz。
最后给出了在Matlab和ModelSim中仿真的结果,验证了各个模块以及整个系统的正确性。
数字下变频(Digital Down Conversion,DDC)是软件无线电系统的关键模块之一,其可将高频数据流信号变成易于后端数字信号处理器(Digital Signal Processor,DSP)设备实时处理的低频数据流信号。
在数字下变频实现中,随着信号采样率的不断提高,数据率也会相应的提高,但是实际应用中随着数据速率的不断提高,数据处理器件(如FPGA)的处理速度会无法满足要求而不能正常工作,从而带来了数字信号处理的瓶颈问题。
本设计就是以多路并行NCO技术为基础,研究了如何在FPGA中用多路并行采样数据的方式来解决数据处理器件无法提供高速率的匹配信号的问题,并给出了高速DDC实现的架构和仿真结果。
1 数字下变频基本原理数字下变频主要由频谱搬移和抽取两部分组成,如图1所示,其中频谱搬移包含数控振荡器(Numerically Controlled Oscillators,NCO)、乘法器和低通滤波器(LPF,Low Pass Filter);抽取包含抽取滤波器(LPF2)和D倍的抽取,LPF2是为了限制信号的频谱,以免抽取后发生混叠。
模拟信号经过A/D转换后分成两路信号,一路信号和NCO输出的正弦信号相乘(同相分量),一路和NCO输出的余弦信号相乘(正交分量),之后经过低通滤波器(LPF1)将高频分量滤除,然后信号经过抽取滤波以降低速率,最终输出的两路信号就可以送往后续的数字信号处理器中做进一步的处理。
基于FPGA的数字下变频设计与实现

基于FPGA的数字下变频设计与实现在扩频通信中,数字下变频(DDC)是一种很重要的技术,它包括数字混频器、数控振荡器以及数字滤波器三部分。
而传统的DDC 大多采用专用芯片,虽然其外围电路简单、功能实现容易控制,但其大部分功能已经固化,存在兼容性较差、产品开发灵活性低、后续升级困难等缺陷。
本文利用FPGA 运算快速、易于升级等优点,在简化算法的基础上,用最短的时间进行混频滤波得到两路相交信号。
用Verilog 语言对整个下变频进行行为描述建模,并给出相应的仿真综合结果。
1 正交下变频方案理论分析因为DDC 的数据流是采样信号的速率,DSP 处理芯片很难完成高频实时处理任务,而且FPGA 中通常有大容量ROM 资源,满足查找表所需ROM 资源,所以更适合用FPGA 实现数字正交下变频。
数字正交下变频是借助数控振荡器NCO 通过查找表的方式产生本地正交载波信号,与输入信号进行正交混频,经过低通滤波得到I―Q基带信号。
图1 为其方案框图。
接收机收到的高频信号表达式为:式中,为接收信号的幅值,d(t)为数据信息的波形,c(t)为伪码波形,fc=891 MHz,fd=18.176 MHz 为信号频偏,n(t)为高斯白噪声。
根据带通采样定理,引入单位冲激函数δ(t)构成冲激函数P(t):输入信号为x(t),其傅里叶变换为x(ω),则用fS 抽样后得到抽样信号可表示为:由傅里叶变换性质得到XS(ω),可表示为:由式(5)可知,A/D 采样使信号频谱发生了周期延拓。
中心频率fC=891 MHz(如图2)经带通欠采样后将信号频谱搬移至fO=18.533 MHz。
fO 是fC 除以fS 后的余数。
这样A/D 采样实现了一个下变频功能。
tips:感谢大家的阅读,。
数字下变频基于FPGA的软件设计与实现

数字下变频基于FPGA的软件设计与实现【摘要】雷达的数字下变频功能主要是将天线接收到的中频回波信号通过A/D变换后,进行数字下变频处理,转为两路I/Q基带数据。
本文主要设计了一种基于FPGA的数字下变频方法,通过对数字控制振荡器(NCO)及低通滤波器(FIR)的设计及实现,完成了对于不同频率本振信号的数字下变频处理。
结果表明,基于该方案设计的数字下变频功能已在实际系统中得到应用。
【关键词】数字下变频(DDC);FPGA;数字滤波器【Abstract】The function of DDC is mainly to convert the signal received after A/D conversion by the antenna to Digital Down Convert(DDC),finally into two I/Q baseband data. This paper mainly design a method about Digital Down Conversion based on FPGA,by designing the numerically controlled oscillator (NCO)and a low-pass filter (FIR),to convert different frequency signal with DDC. The results showed that the conversion function has been used in the actual system.【Key words】DDC(Digital Down Convert);FPGA;FIR Filter0 引言软件无线电是现今无线通信系统的关键技术,其核心思想是让数字化处理功能尽量的靠近天线,从而将更多的处理通过数字的方式完成。
[1]而数字下变频是软件无线电的关键部分,主要完成对信号的AD变换、混频、滤波以及抽取等工作,包括数字混频模块和抽取滤波模块。
基于FPGA的宽带信号数字下变频设计与实现

De g L n,Ka g Hu i i iHo g o,Y h L n n a n a q ,L n b a i
( nv syo l t n c nea dTcn l yo C ia hn d 17 1 U i r t e r i Si c n eh o g hn ,C eg u6 1 3 ) e i fE c o c e o f
wh c a aif e u r me t fr a —i r c si g be a s fl w e o r e o c p n y r t n h r r c s i g ih c n s tsy r q ie n so e ltme p o e sn c u e o o r s u c c u a c ae a d s otp o e sn tme d l y i ea . Ke wo d y r s:p lph s le ;d srb t d a g rt m ;DDC;FPGA o y a e f tr it u e lo h i i i
1 引言
针对数字化雷达接收机采样前端 , 目前市面上 已经 出现 了很 多超 高速 多 比特 的 AI 采样 芯片 , D 其
采样 速度 可达 到几 个 Gp , 由此 带来 的 问题 就 是 ss而
搬 移 , 由低 通滤 波 器 滤 波后 , 行 多 倍 抽取 , 到 再 进 达
降速的效果 。对于宽带信 号, 经过 高速 A D采样 / 后, 数据速率可达几 Gp , ss 由于常规的数字 下变频 方法 , 工作速 率 与 A C输 出数据 的速 率一致 , D 而
FG P A器 件 无 法 达 到 如 此 高 的运 行 速 度 , 因此 采 用 常规 的数 字 下变频 方法无 法 实现对 宽带 中频信 号 的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于FPGA的DDC(数字下变频)设计与实现微系统设计、测试与控制课程大作业之基于FPGA的DDC(数字下变频)的设计与仿真摘要 (1)ABSTRACT (2)第一章绪论 (3)1.1 数字下变频(DDC)研究背景 (3)1.2 DDC概述 (4)1.3 本文研究内容和结构安排 (5)第二章数字下变频(DDC)基础理论 (7)2.1 数字下变频器 (7)2.1.1 数字变频的基本原理与结构 (7)2.1.2影响数字变频器性能的主要因素72.2 数字信号采样理论 (8)2.2.1低通信号采样理论 (8)2.2.2 带通信号采样理论 (9)2.3 数字正交检波 (10)2.3.1 低通滤波法 (10)2.3.2 多相滤波结构变换法 (11)2.4 多抽样率数字信号处理理论 (13)2.4.1 整数倍抽取和内插 (13)2.4.2 多抽样率系统的恒等变换 (16)2.4.3 多相滤波结构 (17)2.5 相关算法介绍 (19)2.5.1 CORDIC算法 (19)2.5.2 FIR滤波器 (21)2.6 本章小结 (22)第三章数字下变频(DDC)各模块设计 (23)3.1 数字下变频的基本实现方案 (23)3.2 基于DDS的数控振荡器的设计 (23)3.2.1 混频器模块设计 (23)3.2.2 DDS的特点 (25)3.3抽取滤波 (27)3.4 本章小结 (29)第四章数字下变频器设计验证和逻辑综合 (30)4.1基于DDS的数控振荡器的仿真和验证304.2 FIR滤波器的仿真和验证 (32)4.3 抽取模块仿真验证 (33)4.4 DDC整体的仿真和验证 (33)4.4.1 MATLAB与modelsim仿真 (34)4.4.2 FPGA综合报告 (35)4.5 本章小结 (36)第五章总结与展望 (37)参考文献 (39)摘要数字下变频(Digital Down Convert—DDC)是将中频信号下变频至零频,且使信号速率降至适宜通用DSP器件处理速率的技术。
实现这种功能的数字下变频器是软件无线电的核心部分。
本文首先对软件无线电数字下变频的国内外现状进行了分析,然后对于FPGA实现数字下变频设计的优势作了阐述。
基于本论文在FPGA中实现的结构,结合软件无线电理论基础讨论了DDC的工作原理,给出数字下变频器的常用结构,然后设定整体系统方案,并按功能完成模块划分和接口定义,主要分为混频器、FIR低通滤波器及抽取。
通过使用Verilog和调用部分IP核相结合的方法完成多通道DDC各个模块的设计与仿真调试,通过Matlab对各模块进行验证,结果表明设计的思想和结构是正确的。
基于FPGA实现的DDC,能充分体现软件无线电系统高的灵活性和宽的适应性,本文所设计的数字下变频系统有一定的通用性。
关键字:软件无线电,数字下变频,FIR滤波器, FPGAABSTRACTDigital Down Convert(DDC) converts digitized IF data into filtered based and data which call be processed by a standard DSP microprocessor.DDC is a core part of a Software Radio system.In this paper, the DDC’S current technology at home and abroad was analyzed, and then the advantages of using FPGA to complete the design of DDC were described.This paper is based on the structure implemented in FPGA, combined with the software radio theoretical to discuss the DDC’s works, and then gives the structure of common digital down converter, and then set the whole system solutions, and then complete the module division and functional interface definition, mainly divided into mixer, FIR low-pass filter and decimation. By using Verilog and part of IP core to complete the design and simulation of multi-channel DDC commissioning of each module, validated by MATLAB for each module, the results indicate that the design and structure of thinking is correct.The DDC based on the FPGA can show adequately the great flexible and broad adaptability of software radio.The DDC system in this paper has definite generality.Keywords: Digital down converter, Direct digital synthesis, FIR filter, FPGA第一章绪论1.1 数字下变频(DDC)研究背景雷达(Radar)是用无线电方法发现目标并测定它们的空间位置、速度等信息的一项非常实用的技术。
最初,雷达是为了满足对空监视和武器控制的军事需求而研制的,军事应用使得雷达技术的开发得到各国大量的财政支持。
随着科技人员更深入的研究,雷达开始在许多重要的民用场合,如飞机、轮船、宇宙飞船的安全飞行,环境遥感,特别是气象遥感等方面也获得了广泛的应用[1]。
在早期的雷达收发系统中,都是采用模拟器件来实现各个功能模块,设计过程中经常会出现温度漂移、增益变化等问题。
相对于模拟电路来说,数字电路具有可自检、可编程等优点,上面所述的系统很多部分都已经逐步数字化。
在数字化进程中,数字信号处理技术的应用也受到了雷达系统研究工作者的重视,成为相关积累(如FFT、数字滤波、脉冲压缩等)、非相关积累(视频积累)、目标检测以及图像处理等功能的技术保证。
随着数字信号处理理论的不断成熟和完善,微电子技术的飞速发展,雷达技术和其它的电子信息化技术的发展,尤其是软件无线电技术的兴起,更加方便了雷达数字化系统的实现。
在这样的发展趋势下,除了微波发射和射频部分,整个雷达系统将全部由数字电路实现,在数字信号处理的优势能得到全面的发挥的同时,还使具有体制标准化、系统数字化,功能模块化,低功耗,高度开放性以及灵活性等性能,这将成为了现代雷达系统的关键技术和发展趋势[2]。
在现今的高科技发展的时代,人们纷纷打起的信息战和电子战,雷达系统在其中扮演的角色尤为重要。
为了能更好的适应现代战争的需求,对现今的雷达系统也提出抗干扰、反隐形,具有高分辨力以及强大的自我生存等能力,高要求的提出,使得雷达信号处理技术的研究也得到了快速的进步。
目前雷达信号处理正在由视频处理阶段向中频处理阶段迈进,目的就是实现雷达中频以下的处理全部数字化,采用数字中频技术结合以DSP为基础的软件无线电技术正成为现代雷达领域的一个研究热点。
现代雷达处理的数据吞吐量基本在每秒几兆到几十兆复数字,使得雷达信号处理必须具有很高的数据处理能力以及运算速度,实时处理要求很高。
如果在中频阶段能够直接对数据进行处理,在保留有用信息的基础上减少信号采样点数,可以有效的降低后续数据处理的压力;同时若能在发射时利用数字的方式提高信号采样频率,减少由于模拟器件带来的不利影响,可以提高系统可靠性和灵活性。
基于此提出了本课题——数字变频器的设计。
1.2 DDC概述软件无线电起源于军事需求,最早的研究和发展也是在军用无线电台中。
然而随着软件无线电概念的不断发展和完善,它不仅在军事应用方面受到重视,民用需求如移动通信领域也开始加大对软件无线电技术的研究,已经逐渐成为未来无线电通信发展的方向。
1992年5月,在美国电信系统会议(IEEE National Telesystems Conference)上,Joe Mitola首次明确提出了软件无线电的概念[3],核心思想是搭建具有标准化和模块化特点的一个通用硬件平台,在系统结构相对通用和稳定的前提下,利用软件实现各种功能,使得不同系统之间能够兼容和互联,从而摆脱基于硬件系统结构设计的束缚。
由于技术的变化和应用的扩展,目前很难给软件无线电一个严格而全面的定义。
但是根据大多同行专家的理解,可以这样定义:软件无线电是将模块化、标准化的硬件单元以总线方式连接成基本平台,并通过软件加载实现各种无线通信功能的一种开放式体系结构。
关键思想是:将宽带A/D、D/A尽可能靠近天线,用软件实现尽可能多得无线电功能。
现阶段,受各种关键器件特别是A/D、D/A采样速率、工作带宽以及通用DSP器件处理速度的限制,用可编程器件和高速数字信号处理器来代替模拟射频电路是很难实现的,数字中频正成为一种经济、适用的选择[4]。
数字下变频的处理方式是将雷达回波中频信号下变频至零中频,并降低数据采样速率。
数字上下变频器在这里起到了连接基带DSP与ADC/DAC后端器件的作用,它们的目的是把信号的频谱搬移到更高或更低的频率上,改变数据速率,这样能在很大程度上降低对ADC/DAC转换器以及DSP器件性能的要求,便于实现和降低成本。
数字下变频不仅在军、民无线通信中获得了应用,而且在其他领域例如电子战,雷达[5],信息化家电等领域也得到推广。
数字下变频是软件无线电核心技术之一,数据运算量最大,也是最难完成的部分。
目前,实现方案主要有三种。
第一种方案是使用DSP数字信号处理芯片,该方案的优点是灵活性高、适应性强,但会受到处理速度等因素的制约,适合于数据速率比较低的各种处理。
第二种方案是使用FPGA来实现,可以采用并行或者串行的工作方式,在处理速度上优于DSP芯片,灵活性上优于ASIC 设计,但消耗的硬件资源比较多。
第三种方案是利用ASIC来完成数字下变频的功能,该方案具有计算速度快,单片成本低等优点[6]。
现在市场上成熟的数字下变频芯片则有Intersil公司的HSP50016,ADI公司的AD6640[7]等,它们的功能已经不仅仅是简单的“数字下变频”。