离散数学 集合论.
离散知识点公式总结

离散知识点公式总结1. 集合论集合是离散数学中的基本概念,它是由一些确定的对象所组成的一个整体。
集合之间的运算包括并集、交集、差集、补集等。
其相关公式如下:- 并集:对于集合A和B,它们的并集定义为包含A和B中所有元素的集合,记作A∪B。
公式:A∪B={x|x∈A或x∈B}- 交集:对于集合A和B,它们的交集定义为同时属于A和B的所有元素的集合,记作A∩B。
公式:A∩B={x|x∈A且x∈B}- 差集:对于集合A和B,A与B的差集定义为属于A但不属于B的元素所组成的集合,记作A-B。
公式:A-B={x|x∈A且x∉B}- 补集:对于集合A,相对于全集合U而言,A的补集定义为全集合中不属于A的元素所组成的集合,记作A'。
公式:A'={x|x∈U且x∉A}2. 关系和函数关系是一种描述元素之间的对应关系的数学工具,而函数则是一种特殊的关系。
在离散数学中,关系和函数的定义和性质是非常重要的内容。
其相关公式如下:- 关系R:对于集合A和B,关系R定义为A和B的笛卡尔积中的元素对所组成的集合。
公式:R={(a,b)|a∈A且b∈B}- 函数f:对于集合A和B,如果f是从A到B的一个映射,那么对于任意元素a∈A,都有唯一的元素b∈B与之对应。
公式:f:A→B3. 图论图论是离散数学中的一个重要分支,它研究的是由顶点和边组成的数学结构。
图论的基本概念包括图的类型、路径和回路、连通性、树等。
其相关公式如下:- 有向图:对于图G=(V,E),如果E中的边是有方向的,则称G为有向图。
公式:G=(V,E),E={(u,v)|u,v∈V,u→v}- 无向图:对于图G=(V,E),如果E中的边是无方向的,则称G为无向图。
公式:G=(V,E),E={{u,v}|u,v∈V,u≠v}- 路径:在图G中,顶点v1,v2,...,vn的一个路径是图G中的一个顶点序列,其中相邻的顶点用一条边连接。
公式:v1,v2, (v)- 回路:在图G中,如果一条路径的起点和终点是同一个顶点,则称其为回路。
离散数学形考任务2集合论部分概念及性质

离散数学形考任务2集合论部分概念及性质概念在离散数学中,集合论是一个重要的分支。
集合是由对象(元素)组成的全体,这些对象可以是任何事物。
集合论研究集合的性质、操作和关系。
集合集合是指具有相同特性或共同属性的对象的整体。
集合可以用大写字母表示,例如A、B、C。
元素集合中的对象称为元素。
一个元素可以属于一个或多个集合。
子集如果集合A的所有元素也是集合B的元素,那么集合A是集合B的子集。
用符号A ⊆ B表示。
真子集如果集合A是集合B的子集且集合A不等于集合B,那么集合A是集合B的真子集。
用符号A ⊂ B表示。
并集两个集合A和B的并集,表示为A ∪ B,是包含所有A和B 中元素的集合。
交集两个集合A和B的交集,表示为A ∩ B,是同时属于A和B 的元素构成的集合。
补集给定一个集合U,集合A的补集,表示为A'或A^c,是指属于U但不属于A的元素构成的集合。
性质集合论有一些基本性质和规则,以帮助我们理解和操作集合。
1. 交换律:对于任意两个集合A和B,A ∪ B = B ∪ A,A ∩B = B ∩ A。
交换律:对于任意两个集合A和B,A ∪ B = B ∪ A,A ∩B = B ∩ A。
2. 结合律:对于任意三个集合A、B和C,(A ∪ B) ∪ C = A∪ (B ∪ C),(A ∩ B) ∩ C = A ∩ (B ∩ C)。
结合律:对于任意三个集合A、B和C,(A ∪ B) ∪ C = A ∪ (B ∪ C),(A ∩ B) ∩ C = A ∩(B ∩ C)。
3. 分配律:对于任意三个集合A、B和C,A ∪ (B ∩ C) = (A∪ B) ∩ (A ∪ C),A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)。
分配律:对于任意三个集合A、B和C,A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C),A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)。
4. 幂集性质:对于任意集合A,A的幂集是指包含A的所有子集的集合。
离散的数学定义

离散的数学定义
离散数学是数学的一个分支,主要研究离散对象和离散结构之间的关系,重点关注离散的整数值、集合和图论等。
以下是离散数学的一些主要概念和定义:
1. 集合论:
- 集合是离散数学中最基本的概念之一,表示一组独立对象的总体。
集合论研究集合之间的关系、运算和性质。
2. 逻辑:
- 逻辑是研究命题和推理的学科,离散数学中的逻辑主要包括命题逻辑和谓词逻辑,用于研究命题的真假和推理规则。
3. 图论:
- 图论是离散数学的一个重要分支,研究图(vertices 和edges组成的结构)之间的关系和性质,包括图的遍历、连通性、最短路径等问题。
4. 离散结构:
- 离散结构指的是离散对象之间的关系和结构,如排列组合、树、图等。
离散数学研究这些结构的性质和应用。
5. 组合数学:
- 组合数学是离散数学的一个重要分支,研究离散对象的排列组合方式,包括排列、组合、二项式定理等。
6. 概率论:
- 离散概率论研究离散随机变量的概率分布和性质,包
括概率空间、随机变量、概率分布等。
7. 离散数学的应用:
- 离散数学在计算机科学、信息技术、密码学、通信等领域有着广泛的应用,如算法设计、数据结构、网络设计等。
总的来说,离散数学是研究离散对象和结构的数学分支,涉及集合论、逻辑、图论、组合数学等内容,在计算机科学和信息技术等领域具有重要的理论和实际应用。
离散数学例子

离散数学例子
离散数学是研究离散对象(如集合、图、树、逻辑等)的数学分支,广泛应用于计算机科学、工程学等领域。
以下是一些离散数学的例子:
1. 集合论:集合论是离散数学的基石,它研究集合、集合之间的关系和集合的性质。
例如,自然数集、有理数集和实数集都是集合。
2. 图论:图论是研究图(由节点和边组成)及其性质的数学分支。
图论在计算机科学、电子工程、交通运输等领域有广泛应用。
例如,计算机网络的拓扑结构可以用图来表示和优化。
3. 逻辑:逻辑是研究推理的数学分支,它研究推理的规则和形式。
例如,在计算机科学中,逻辑用于设计和分析计算机程序和算法。
4. 离散概率论:离散概率论是研究离散随机事件的数学分支,如掷骰子、抽奖等。
离散概率论在计算机科学、统计学等领域有广泛应用。
5. 组合数学:组合数学是研究计数、排列和组合问题的数学分支。
例如,组合数学中的“鸽巢原理”可以用来解决一些实际生活中的问题。
6. 离散概率论:离散概率论是研究离散随机事件的数学分支,如掷骰子、抽奖等。
离散概率论在计算机科学、统计学等领域有广泛应用。
以上是一些离散数学的例子,这些例子可以帮助您更好地理解离散数学的基本概念和应用。
离散数学中的集合论问题

离散数学中的集合论问题离散数学是一个重要的数学分支,其中集合论问题是离散数学的核心内容之一。
集合论研究的是集合的性质、操作和关系,并提供了一种描述和推理离散对象之间关系的框架。
本文将介绍离散数学中的集合论问题,包括集合的定义、运算、性质以及一些常见的集合论问题。
一、集合的定义和表示方法在离散数学中,集合可以通过定义和表示方法来描述。
集合的定义是指明集合中的元素和满足的条件,通常用大写字母表示。
例如,集合A表示为:A = {1, 2, 3, 4, 5},表示集合A包含了元素1、2、3、4和5。
除了列举元素的方法表示集合外,还可以通过描述或表示集合中元素的性质来定义集合。
例如,集合B = {x | x 是偶数}表示B是所有偶数的集合。
集合可以用不同的表示方法来表达。
常见的表示方法包括:1. 列举法:将集合中的元素一一列举出来,写在花括号{}中;2. 描述法:通过描述集合中元素的性质来定义集合,使用竖线或冒号表示;3. Venn图:用图形方式表示集合之间的关系,通常用圆圈或矩形表示集合。
二、集合的运算在集合论中,集合之间可以进行不同的运算,包括并集、交集、差集和补集。
1. 并集:两个集合A和B的并集(A∪B)是包含A和B中所有元素的集合。
符号∪表示并集。
例如,A = {1, 2, 3},B = {3, 4, 5},则A∪B = {1, 2, 3, 4, 5}。
2. 交集:两个集合A和B的交集(A∩B)是包含A和B中公共元素的集合。
符号∩表示交集。
例如,A = {1, 2, 3},B = {3, 4, 5},则A∩B = {3}。
3. 差集:集合A减去集合B中的元素形成的集合称为差集(A-B)。
符号-表示差集。
例如,A = {1, 2, 3},B = {3, 4, 5},则A-B = {1, 2}。
4. 补集:在给定的全集中,集合A的补集(A')是包含全集中不属于A的元素的集合。
符号'表示补集。
离散数学知识点整理

离散数学知识点整理离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、物理学等领域都有着广泛的应用。
以下是对离散数学中一些重要知识点的整理。
一、集合论集合是离散数学中最基本的概念之一。
集合是由一些确定的、互不相同的对象组成的整体。
集合的表示方法有列举法、描述法等。
列举法就是将集合中的元素一一列举出来,比如{1, 2, 3};描述法是通过描述元素所具有的性质来表示集合,例如{x | x 是大于 0 小于 5 的整数}。
集合之间的关系包括子集、真子集、相等。
如果集合 A 的所有元素都属于集合 B,那么 A 是 B 的子集;如果 A 是 B 的子集,且 B 中存在元素不属于 A,那么 A 是 B 的真子集;如果两个集合的元素完全相同,那么它们相等。
集合的运算有并集、交集、差集等。
并集是将两个集合中的所有元素合并在一起组成的新集合;交集是两个集合中共同拥有的元素组成的集合;差集是从一个集合中去掉另一个集合中的元素所得到的集合。
二、关系关系是集合中元素之间的某种联系。
比如在一个班级中,同学之间的“同桌关系”就是一种关系。
关系可以用矩阵和图来表示。
矩阵表示中,若元素之间存在关系则对应的位置为1,否则为0;图表示中,用点表示元素,用线表示关系。
关系的性质包括自反性、对称性、反对称性和传递性。
自反性是指每个元素都与自身有关系;对称性是指如果 a 与 b 有关系,那么 b 与 a 也有关系;反对称性是指如果 a 与 b 有关系且 b 与 a 有关系,那么 a =b;传递性是指如果 a 与 b 有关系,b 与 c 有关系,那么 a 与 c 有关系。
关系的运算有复合关系和逆关系。
复合关系是将两个关系组合起来得到新的关系;逆关系是将原关系中的元素顺序颠倒得到的关系。
三、函数函数是一种特殊的关系,对于定义域中的每个元素,在值域中都有唯一的元素与之对应。
函数的类型有单射、满射和双射。
单射是指不同的定义域元素对应不同的值域元素;满射是指值域中的每个元素都有定义域中的元素与之对应;双射是既是单射又是满射。
离散数学的基础知识点总结

离散数学的基础知识点总结离散数学是研究离散结构和离散对象的数学分支。
它以集合论、图论和逻辑等为基础,涉及了许多重要的基础知识点。
下面是对离散数学的基础知识点进行的总结。
1. 集合论(Set theory):集合论是离散数学的基础,涉及了集合的概念、运算和恒等关系,以及集合的分类、子集、幂集和笛卡尔积等基本概念和性质。
2. 逻辑(Logic):逻辑是离散数学的重要组成部分,涉及了命题逻辑和谓词逻辑的基本概念和推理规则,包括命题的真值表、谓词的量化、逻辑等价和逻辑蕴含等概念。
3. 函数(Functions):函数是离散数学中的核心概念之一,涉及了函数的定义、域和值域、函数的性质、特殊的函数(如恒等函数、常值函数、单射函数和满射函数等)以及函数的复合和逆函数等。
4. 关系(Relations):关系是离散数学中的另一个核心概念,涉及了关系的定义、关系的特性(如自反性、对称性、传递性和等价关系等)、关系的闭包和自反闭包、关系的图示表示和矩阵表示、等价关系和偏序关系等。
5. 图论(Graph theory):图论是离散数学的重要分支,涉及了图的基本概念(如顶点、边、路径和圈等)、图的表示方法(如邻接矩阵和邻接表等)、图的遍历算法(如深度优先和广度优先等)、图的连通性和可达性、最小生成树和最短路径等基础知识。
7. 代数结构(Algebraic structures):代数结构是离散数学的一个重要方向,涉及了群、环、域和格等基本代数结构的定义、性质和分类,以及同态映射和同构等概念。
8. 数论(Number theory):数论是离散数学的一个重要分支,涉及了自然数的性质和结构,包括质数和素数、最大公因数和最小公倍数、同余和模运算、欧几里得算法和扩展欧几里得算法、费马小定理和欧拉函数等。
9. 排序和选择(Sorting and selection):排序和选择是离散数学中的一类重要问题,涉及了各种排序算法(如冒泡排序、插入排序、快速排序和归并排序等)和选择算法(如选择排序和堆排序等),以及它们的复杂度分析和应用。
离散数学基础

离散数学基础离散数学是数学的一个分支,主要研究非连续、离散的概念和结构。
它在计算机科学、信息科学以及其他相关领域中具有重要的应用。
本文将介绍离散数学的基础概念和常见的应用。
一、集合论集合论是离散数学的基础,它研究的是元素的集合。
在集合论中,我们常用符号来表示集合和集合之间的关系。
例如,如果A是一个集合,我们可以使用A∈B表示元素A属于集合B。
集合论还引入了交集、并集、差集等运算,用于描述集合之间的关系和操作。
二、逻辑和命题逻辑是离散数学的另一个重要组成部分。
它研究的是推理和推断的规则。
逻辑中最基本的概念是命题,它可以是真或假的陈述。
逻辑运算符包括非(¬)、与(∧)、或(∨)和蕴含(→)。
利用这些运算符,我们可以构建复合命题,并进行逻辑推理。
三、图论图论是离散数学中的一个重要分支,研究的是图的性质和图的应用。
图由节点和边组成,节点表示对象,边表示对象之间的关系。
图可以用来描述网络、社交关系、路线规划等问题。
图论中的常见概念包括图的连通性、最短路径、最小生成树等。
四、代数系统离散数学还研究各种代数系统,如群、环、域等。
代数系统是一种结构,它由一组元素和定义在这些元素上的运算构成。
代数系统在密码学、编码理论等领域中有广泛的应用。
例如,RSA加密算法就是基于模运算的群的性质。
五、概率论概率论是离散数学中的一个重要分支,研究的是随机事件的发生概率和随机现象的规律。
概率论可以用来描述随机算法的性能、信息的压缩率等。
在计算机科学中,概率论在机器学习、数据挖掘等领域中有着广泛的应用。
六、离散数学的应用离散数学在计算机科学和信息科学中有着广泛的应用。
例如,离散数学的概念和方法在编程语言设计、数据结构与算法、数据库系统等方面都扮演着重要的角色。
离散数学还在密码学、图像处理、计算机网络等领域中有着重要的应用。
结论离散数学作为数学的一个分支,研究的是非连续、离散的概念和结构。
它的基础概念包括集合论、逻辑和命题、图论、代数系统以及概率论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
空集、全集和幂集
1.定义6.4 空集 :不含有任何元素的集合 实例: { x | xR x2+1=0 } 定理6.1 空集是任何集合的子集。 证 对于任意集合A, A x (xxA) T (恒真命题) 推论 是惟一的 2. 定义6.5 幂集:P(A)={ x | x A } 实例:P()={}, P({})={,{}} 计数:如果 |A|=n,则 |P(A)|=2n. 3. 定义6.6 全集 E:包含了所有集合的集合 全集具有相对性:与问题有关,不存在绝对的全集
第二部分
第六章 集合代数
集合论
主要内容 集合的基本概念 属于、包含 幂集、空集 文氏图等 集合的基本运算 并、交、补、差等 集合恒等式 集合运算的算律、恒等式的证明方法
1
6.1 集合的基本概念
1. 集合定义 集合没有精确的数学定义 理解:由离散个体构成的整体称为集合,称这些个体为集 合的元素 常见的数集:N, Z, Q, R, C 等分别表示自然数、整数、有 理数、实数、复数集合 2. 集合表示法 枚举法----通过列出全体元素来表示集合 谓词表示法----通过谓词概括集合元素的性质 实例: 枚举法 自然数集合 N={0,1,2,3,…} 谓词法 S={ x | x是实数,x21=0}
集合与集合之间的关系:, =, ⊈, , ,
定义6.1 A B x ( xA xB ) 定义6.2 A = B A B B A 定义6.3 A B A B A B A ⊈ B x ( xA xB )
思考: 和 的定义
11
有穷集合元素的计数
1. 文氏图法 2. 包含排斥原理 定理6.2 设集合S上定义了n条性质,其中具有第 i 条性质的 元素构成子集Ai, 那么集合中不具有任何性质的元素数为
| A1 A2 ... An || S | | Ai |
1 i n 1 i j有 定义6.7 并 AB = {x | xA xB} 交 AB = {x | xA xB} 相对补 AB = {x | xA xB} 定义6.8 对称差 AB = (AB)(BA) 定义6.9 绝对补 A = EA
| A A
i
j
|
1 i j k n
n | A A A | ... ( 1 ) | A1 A2 ... An | i j k
推论 S中至少具有一条性质的元素数为
| A1 A2 An | | Ai |
i 1
n
1 i j n
13
实例
方法二 |S| = 1000 |A|=1000/5=200, |B|=1000/6=166, |C|=1000/8=125 |AB| = 1000/lcm(5,6) = 1000/33 = 33 |AC| = 1000/lcm(5,8) = 1000/40 = 25 |BC| = 1000/lcm(6,8) = 1000/24 = 41 |ABC| = 1000/lcm(5,6,8) = 1000/120 = 8
6
文氏图
集合运算的表示
A AB
B
A
B
A
B
AB
A–B
B
A
B
A
AB
~A
7
几点说明
并和交运算可以推广到有穷个集合上,即 A1 A2 … An = { x | xA1 xA2 … xAn} A1 A2 … An = { x | xA1 xA2 … xAn} A B A B =
A B = A B = A
8
广义运算
1. 集合的广义并与广义交 定义6.10 广义并 A = { x | z ( zA xz )} 广义交 A= { x | z ( zA xz )} 实例 {{1}, {1,2}, {1,2,3}}={1,2,3} {{1}, {1,2}, {1,2,3}}={1} {{a}}={a}, {{a}}={a} {a}=a, {a}=a
9
关于广义运算的说明
2. 广义运算的性质 (1) =,无意义 (2) 单元集{x}的广义并和广义交都等于x (3) 广义运算减少集合的层次(括弧减少一层) (4) 广义运算的计算:一般情况下可以转变成初级运算 {A1, A2, … , An}=A1A2…An {A1, A2, … , An}=A1A2…An 3. 引入广义运算的意义 可以表示无数个集合的并、交运算,例如 {{x} | xR}=R 这里的 R 代表实数集合.
10
运算的优先权规定
1 类运算:初级运算, , , , 优先顺序由括号确定 2 类运算:广义运算和运算, 运算由右向左进行 混合运算:2 类运算优先于1 类运算
例1 A={{a},{a,b}},计算A(AA). 解: A(AA) = {a,b}({a,b}{a}) = (ab)((ab)a) = (ab)(ba) = b
| A A
i
j
|
1 i j k n
m 1 | A A A | ( 1 ) | A1 A2 An | i j k
12
实例
例2 求1到1000之间(包含1和1000在内)既不能被5和6整 除,也不能被8整除的数有多少个?
解 方法一:文氏图 定义以下集合: S={ x | xZ 1x1000} A={ x | xS x可被5整除} B={ x | xS x可被6整除} C={ x | xS x可被8整除} 画出文氏图,然后填入相应的 数字,解得 N=1000-(200+100+33+67) =600
2
元素与集合
1. 集合的元素具有的性质 无序性:元素列出的顺序无关 相异性:集合的每个元素只计 数一次 确定性:对任何元素和集合都 能确定这个元素是否 为该集合的元素 任意性:集合的元素也可以是 集合 2.元素与集合的关系 隶属关系:或者 3.集合的树型层次结构
d A , a A
3
集合与集合