大跨空间结构的发展

合集下载

大跨度建筑

大跨度建筑

3.1.2桁架结构的特点
桁架结构比梁结构具有更多更大的优点: (1)扩大了梁式结构的适用跨度; (2)桁架可用各种材料制造,如钢筋混凝土、钢、木均
可; (3)桁架是由杆件组成的,桁架体型可以多样化,如平 行弦桁架、三角形桁架、梯形桁架、弧形桁架等型式; (4)施工方便,桁架可以整体制造后吊装,也可以在施 工现场高空进行杆件拼装。
薄壳结构的概念 概念 • 壳体结构 • 等厚度壳
比较
• 薄壳
双轴力 顺剪力
薄膜内力
平板
双弯矩 扭矩
壳体
空间受力 薄膜内力
很大的强度、刚度 材料强度充分利用
优点
薄壳结构的曲面形式
旋转曲面
由一条平面曲线绕着该平面内某一指定的直线旋转一周所 形成的曲面
北京天文馆
圆顶的结构组成及结构型式
壳身 支座环
门式刚架的类型与构造
门式刚架从结构上分类有: (1)无铰刚架;(2)两铰刚架;(3)三铰刚架
无铰刚架
两铰刚架
三铰刚架
桁架结构
桁架结构是指由若干直杆在其两端用铰连接而成的结
构。桁架结构受力合理、计算简单、施工方便、适应 性强,对支座没有横向推力,因而在结构工程中得到 了广泛的应用。
检票口通廊: 五个双曲扁壳,中间的为21.5m*21.5m,其余16.5m*16.5m
矢高3.3m,厚度60mm,每个顶盖均可采光
鸟瞰图
美国圣路易航空港候机室
由三组壳体组成
每组有两个圆柱形曲面正交形成 两个柱形曲面的交线为十字形交叉拱,加强壳体, 并将荷载传至支座 三组壳体的相交处为采光带
室外透视 双曲抛物面
下部支承
1.壳身结构
平滑圆顶

大跨度空间结构

大跨度空间结构

土耳其圣索非亚教堂, 建于公元537年, 跨度32m
意大利佛罗伦萨圣玛丽亚 教堂,建于公元1420年, 跨度42m
英国伦敦圣保罗大教堂, 建于公元1710年, 跨度33m
意大利罗马大教堂, 建于公元1593年, 跨度42m
2. 钢筋混凝土薄壳结构的出现和发展
1824年:英国人阿士普丁发明混凝土制作法 1856年:英国人贝斯麦首次用转炉炼钢成功,钢材开始用 于建筑结构 1886年:德国人冠农通过圆拱与平板荷载实验确定了钢筋 受拉、混凝土受压的钢筋混凝土理论 1892年:法国人亨奈比克用圆钢筋埋入混凝土作整体梁板 结构,随即钢筋混凝土开始广泛应用于房屋建筑 1892年:A.E.H.Love考虑径向剪力与弯矩的理论为壳体结 构理论的发展打下了基础
永久性膜结构的产生:
在大阪世博会,盖格公司成功地向世人推出气承式膜结构的新设计技 术,而受到建筑工程界一致认可后,又面临所使用的膜材料问题。这 种膜材只有7年— 8年的寿命,在太阳紫外线及风、雨的交互作用下, 膜布会变得硬脆、破裂,而失去结构性能。 正在此时,美国福特基金会下属的教育设施实验室给盖格公司一笔资 金,用来开发此种永久性的建筑膜。 在盖格公司领导下,同美国的杜邦公司、康宁玻纤公司等五家共同开 发永久性的结构膜。 产品很顺利地就制成了,化纤公司将康宁公司提供的玻璃纤维,先集 成线再织成布纱,经过矽胶浸泡,先制成水密坯布,再多次快速放入特 氟隆溶液中,使坯布两面皆有均匀的特氟隆涂层,永久性的PTFE膜正式 诞生。 经过加速气候实验,其物理稳定性确定后,盖格公司又设计各种结构 配件及确定设计程序,以建造不同性质的膜结构。
Tokyo Dome
日本东京后乐园棒球馆 Span Structure Completion 201m Air-inflated membrane structure 1988

大跨度空间结构

大跨度空间结构

摘要:随着技术的发展,大跨度空间结构越来越多的在各领域运用,本文先对大跨度空间结构的起源与历史进行介绍,再对空间结构委员会成立三十年来在空间结构领域作了介绍,重点系统论述了三十年来各时期大跨度空间结构发展与应用情况。

全面阐述了我国大跨度空间结构近期发展的特点,包括在各类公共建筑中的应用情况、空间结构体系的发展与技术进步。

关键词:发展历程,我国进展1.简介:横向跨越60米以上空间的各类结构可称为大跨度空间结构。

常用的大跨度空间结构形式包括折板结构、壳体结构、网架结构、悬索结构、充气结构、篷帐张力结构等。

大跨度空间结构是国家建筑科学技术发展水平的重要标志之一。

世界各国对空间结构的研究和发展都极为重视,例如国际性的博览会、奥运会、亚运会等,各国都以新型的空间结构来展示本国的建筑科学技术水平,空间结构已经成为衡量一个国家建筑技术水平高低的标志之一。

2.大跨度发展历程:实际上,人类很早以前就认识到穹隆具有用最小的表面封闭最大的空间的优点。

效仿洞穴穹顶,人们建造了许多砖石穹顶,如我国东汉时期河南洛阳的地下砖砌墓穴,公元前1185年古希腊迈西尼国王墓等。

古罗马最著名的穹顶是万神殿,也是建筑史上最早、最大跨度的拱建筑。

被誉为展现穹力的杰作。

然而,在尚无力学与结构理论以前,凭借已有的经验与大胆探索来建造房屋,难免发生事故。

公元537年东罗马帝国建造的圣索亚教堂,还有公元1612年建造的罗马圣彼得教堂都出现多较严重问题。

1742年罗马教皇下令检查圣彼得教堂问题原因,三位科学家经过认真调研和计算分析后,作出了解决方案。

这工程实例表明工程结构经验时代的结束和科学时期的到来。

工程结构的发展推动了理论研究的进步,理论成果的指导完善了工程实践,这是建筑结构科学得以不断进步的历史规律。

19世纪的工业革命促使科学技术飞快进步。

生铁材料出现以后引起了建筑结构革命性的变化。

1787年英国出现机扎熟铁条,1831年英国有出现机扎出角铁,1845年法国人碾压出熟铁工字梁。

大跨度空间结构

大跨度空间结构

结构类型
1
折板屋顶结构
2
壳体屋顶结构
3
架屋顶结构
4
悬索屋顶结构
5
充气屋顶结构
一种由许多块钢筋混凝土板连接成波折形的整体薄壁折板屋顶结构。这种折板也可作为垂直构件的墙体或其 他承重构件使用。折板屋顶结构组合形式有单坡和多坡,单跨和多跨,平行折板和复式折板等,能适应不同建筑平 面的需要。常用的截面形状有V形和梯形,板厚一般为5~10厘米,最薄的预制预应力板的厚度为3厘米。跨度为 6~40米,波折宽度一般不大于12米,现浇折板波折的倾角不大于30°;坡度大时须采用双面模板或喷射法施工。 折板可分为有边梁和无边梁两种。无边梁折板由若干等厚度的平板和横隔板组成,V形折板是无边梁折板的一种常 见形式。有边梁折板由板、边梁、横隔板等组成,一般为现浇,如1958年建成的巴黎联合国教科文组织总部大厦 会 议 厅 的 屋 顶 , 是 意 大 利 P . L . 奈 尔 维 设 计 施 工 的 。 •他 按 照 应 力 变 化 的 规 律 , 将 折 板 截 面 由 两 端 向 跨 中 逐 渐 增 大 结构。这种结构整体性强,稳定性好,空间刚度大,防震性能好。构架高度 较小,能利用较小杆形构件拼装成大跨度的建筑,有效地利用建筑空间。适合工业化生产的大跨度架结构,外形 可分为平板型架和壳形架两类,能适应圆形、方形、多边形等多种平面形状。平板型架多为双层,壳形架有单层 和双层之分,并有单曲线、双曲线等屋顶形式。
大跨度空间结构
建筑名词
01 定义
03 结构类型
目录
02 简介 04 发展
大跨度空间结构是国家建筑科学技术发展水平的重要标志之一。世界各国对空间结构的研究和发展都极为重 视,例如国际性的博览会、奥运会、亚运会等,各国都以新型的空间结构来展示本国的建筑科学技术水平,空间 结构已经成为衡量一个国家建筑技术水平高低的标志之一。

【精品】陈桥生 大跨度空间钢结构的发展与施工技术

【精品】陈桥生 大跨度空间钢结构的发展与施工技术

大跨度空间钢结构的发展与施工技术(上海宝冶建设有限公司陈桥生)[摘要]大跨度空间钢结构是目前发展最快的结构类型,主要包括空间网格结构和张力结构两大类,其主要发展方向有张拉整体结构、膜结构、开合结构、折叠结构等新型空间结构。

在经济、文化飞速发展的今天,大跨度建筑及作为其核心的空间结构技术的发展状况与施工技术水平是代表一个国家建筑科技水平的重要标志之一.计算机的普及和有限元分析方法的广泛运用为空间结构的加速发展创造了真正的条件,大跨度空间结构造型越来越新颖,结构体系越来越复杂,施工难度也越来越大,这无疑给我国工程技术人员提出了新的挑战。

本文通过南京奥林匹克体育中心主体育场钢屋盖工程,重点介绍了目前大跨度钢结构的发展趋势与施工技术的研究方向。

[关键词]大跨度空间结构空间网格结构张力结构张拉整体结构膜结构开合结构折叠结构杂交结构施工技术1前言空间结构是指结构的形态呈三维状态,在荷载作用下具有三维受力特性并呈空间工作的结构。

空间结构与平面结构相比具有很多独特的优点,国内外应用非常广泛。

特别是近年来,人们生活水平不断提高,工业生产、文化、体育事业不断进步,大大增强了社会对空间结构尤其是大跨度高性能空间结构的需求。

在建筑技术飞速发展的过程中,空间体系始终没有停止其自身的发展,而且日益显示出一般平面结构无法比拟的丰富多彩和创造潜力,体现出大自然的美丽和神奇。

空间结构的卓越工作性能不仅仅表现在三维受力,而且还表现在通过合理的曲面形体来有效抵抗外荷载的作用。

当跨度增大时,空间结构就愈能显示出它们优异的技术经济性能.计算机的普及和有限元分析方法的广泛运用为空间结构的加速发展创造了真正的条件,大跨度空间结构造型越来越新颖,结构体系越来越复杂,施工难度也越来越大,这无疑给我国工程技术人员提出了新的挑战。

2大跨度空间钢结构的发展特点大跨度空间钢结构主要是指网架、网壳结构及其组合结构(两种或两种以上不同建筑材料组成)和杂交结构(两种或两种以上不同结构形式构成)。

大跨空间结构在奥运场馆中的实践与发展

大跨空间结构在奥运场馆中的实践与发展

奥 运建 筑 。在 近5 年 的奥 运建 筑发 展历 史 中 , 跨度 0 大 ( )18 年 , 莫斯 科 举 办 了 第 2 届 奥 运会 , 3 90 在 2 其 空 间结构 技术 在奥 运场 馆建 设 中一 直处于 核 心地位 。 中跨 度8 m的友谊体 育馆 , 构特 点 为直径 8 m、 0 0 结 0 高2 能 否成 功 举办 奥林 匹 克运 动 会 直接 体现 一 个 国家 的 m的贝壳形 圆顶 , 内部 支撑 , 制 的圆顶 外壳 由2块 无 预 8
pRACTI CE AND DEVELoPM ENT oF LARGE— PAN PACE S S STRUCTURE
I 0LY M PI N C GYM NAS 7 n M
PANG on -a Ch g n ,
(.hjagT nj V ct nlC lg fSinea d T cnl y 12 1 1 e n ogi oao a ol eo c c n eh o g ,3 13 ,Hagh u hn ; Z i i e e o nzo ,C ia 2C l g fCvlE g er gad A ci cue hj n nvri ,30 2 .oee o ii ni e n n rht tr,Z ei g U i sy 10 7,Haghu hn ) l n i e a e t n zo ,C ia
sr cue c o dn t dfee t t cu a tp s n c aa trsis T e r t a rs a c d v lp n o p c tu tr a c r i g o i rn sr tr l y e a d h r ce it . h oei l e e r h e eo me t f s a e f u c c

建国以来大跨度建筑的空间结构发展

建国以来大跨度建筑的空间结构发展

建国以来大跨度建筑的空间结构发展空间大跨度结构是建筑工程发展的一个重要标志,我国自五十年代以来就开展了对薄壳结构、悬索结构的研究开发与应用,建成了一批有影响的代表性工程,并取得了一大批研究成果。

八十年代由于计算机技术的发展,空间网格结构在理论研究、标准规范和工程实践等方面均取得了举世瞩目的成绩。

随着国力的增强,新材料的不断出现,空间结构由单一结构形式发展为组合结构、混合结构等多种结构形式,应用范围也从公共建筑、体育建筑发展到工业建筑乃至建筑的各个领域。

50年来,空间大跨度结构取得的辉煌成就使我们能充满信心地去营造21世纪更广阔的空间。

一、五十年空间大跨度结构的发展历程建国50年来,空间大跨度结构经历了四个发展时期:第一时期为五十年代末至六十年代中期,第二时期为七十年代末至八十年代中,第三时期为八十年代末到九十年代初,第四个时期为九十年代。

这四个发展时期都是依据当时的国力和建筑技术水平,反映出各自的结构特点与技术水平。

1、五十年代末至六十年代中期五十年代末,随着建国十年来国力的复苏,国家已有能力关注大型体育馆与大跨度公共建设的需要。

广大结构设计研究人员也以空前的热情投入于薄壳结构、悬索结构的理论研究。

这些理论研究紧密结合工程需要,在当时产生了很好的效果。

在薄壳结构方面,我国技术人员对球壳、圆柱面柱、双曲扁壳、组合扭壳等作了系统的理论研究,发表了一大批高质量的论文。

在理论研究的基础上,进行了大量的工程实践,其中代表性的工程如新疆某工厂的金工车间,采用跨度60m的椭园旋转壳体结构,目前该工程仍为国内最大跨度的薄壳结构。

还建成了跨度42m双曲扁壳的北京网球馆。

建成于1959年的北京火车站,其跨度为35m×35m,也采用双曲扁壳结构。

薄壳结构取材容易、材料省、结构与建筑围护合二为一,造价低,除模板制作稍麻烦外,施工相对简便,计算分析可用连续化方法求解,这些都是符合当时的技术水平与施工条件的。

配合大量的理论研究与工程实践,于1965年完成了国内第一本空间结构方面的规程《钢筋混凝土薄壳顶盖及楼盖设计计算规程》(BJG16-65),这一规程对以后薄壳结构的设计与施工起到了积极的指导作用。

大跨斜拉空间结构国内发展状况分析研究

大跨斜拉空间结构国内发展状况分析研究

2 发展 状况 及特 点
大跨 空间斜 拉结 构是一种新型的悬索 杂交结构 , 主要 由柔性
由于空问结构的曲面形状的不同会严 重影响 到结构 的应 力 、 变形以及承载力 , 目前对于具有代表 性的大型 空间斜拉结 构都是
通过模型试验来进行研究 , 通过模 型试 验研究 和理论分析 的相互 三部分 组成 : 承拉 索 的主承 重结 构 ( 支 塔柱 ) 斜 向拉 索 、 盖结 结合 , 、 屋 以及相互验证 , 来不断了解新型 的空 间结构 的性能 , 为设计 构 。比较典 型的两个 斜拉工程 : 郑州 国际会展 中心展厅钢 屋盖 和 理论提供丰富的理论储备。
中 图分 类 号 :U 9 T 38 文献 标 识 码 : A
1 概 述
2 0世纪以来 , 全世 界 范 围内空 间结 构都 得 到 了很 大 的发 在
3 在 研 关键课 题
虽然我 国大跨度空 间结构 的基础 比较薄弱 , 但是 在空 间结 构
即理论研 究和工 程应 展。所谓“ 间结构 ” 相对 “ 空 是 平面结构” 而言 , 它具有三维作用 的 发展 的历程 中始终保持着一个优 良的传统 , 特性 , 间结构也 可 以看作是 平面 结构 的扩展 和深化 , 拥有 卓 用相互结合和相 互发展 。近年来 教育 部和 国家 自然科学 基金 始 空 其
如以连续化 理论为基 础 构, 由于其结构类 型相 对集 中越来 越难 以满足 人们 的需要 , 是 重于静力作用下 的结构性状和分析 方法 , 于 的平板 网架 的拟板解 法和悬索 结构 考虑大位 移的解 析方法 的研 出现了由各种刚性构 件和柔 性构 件组合 而成 的一 种新型 结构体
各 国 土 木 界 认识 看 好 , 富有 广 阔 的发 展 空 间 。 以满 足 一 般 设 计 工 作 的要 求 为 主 要 目标 。 随 着 科 学 技 术 的发 系— — 混合 结 构 体 系 , 拉 网格 结 构 就 是 其 中 的 一 种 , 斜 目前 正 被 究 , 展 , 国已经开发 了不少 商 品化 的计算 机程 序 , 我 目前 已经被 普遍 运用到设计工作 中。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大跨空间结构的发展摘要:大跨空间结构是目前发展最快的结构类型。

大跨度建筑及作为其核心的空间结构技术的发展状况是代表一个国家建筑科技水平的重要标志之一。

本文就空间网格结构和张力结构两大类介绍了国内外空间结构的发展现状和前景。

对这一领域几个重要理论问题,包括空间结构的形态分析理论、大跨柔性属盖的动力风效应、网壳结构的稳定性和抗震性能等问题的研究提出了看法。

一、概述在这实际的三维世界里,任何结构物本质上都是空间性质的,只不过出于简化设计和建造的目的,人们在许多场合把它们分解成一片片平面结构来进行构造和计算。

与此同时,无法进行简单分解的真正意义上的空间体系也始终没有停止其自身的发展,而且日益显示出一般平面结构无法比拟的丰富多彩和创造潜力,体现出大自然的美丽和神奇。

空间结构的卓越工作性能不仅仅表现在三维受力,而且还由于它们通过合理的曲面形体来有效抵抗外荷载的作用。

当跨度增大时,空间结构就愈能显示出它们优异的技术经济性能。

事实上,当跨度达到一定程度后,一般平面结构往往已难于成为合理的选择。

从国内外工程实践来看,大跨度建筑多数采用各种形式的空间结构体系。

近二十余年来,各种类型的大跨空间结构在美、日、欧等发达国家发展很快。

建筑物的跨度和规模越来越大,目前,尺度达150m以上的超大规模建筑已非个别;结构形式丰富多彩,采用了许多新材料和新技术,发展了许多新的空间结构形式。

例如1975年建成的美国新奥尔良“超级穹顶”,直径207m,长期被认为是世界上最大的球面网壳;现在这一地位已被1993年建成夏径为222m的日本福冈体育馆所取代,但后者更著名的特点是它的可开合性:它的球形屋盖由三块可旋转的扇形网壳组成,扇形沿圆周导轨移动,体育馆即可呈全封闭、开启1/3或开启2/3等不同状态。

1983年建成的加拿大卡尔加里体育馆采用双曲抛物面索网屋盖,其圆形平面直径135m,它是为1988年冬季奥运会修建的,外形极为美观,迄今仍是世界上最大的索网结构。

70年代以来,由于结构使用织物材料的改进,膜结构或索-膜结构获得了发展,美国建造了许多规模很大的气承式索-膜结构;1988年东京建成的“后乐园”棒球馆,也采用这种结构技术尤为先进,其近似圆形平面的直径为204m;美国亚特兰大为1996年奥运会修建的“佐治亚穹顶”采用新颖的整体张拉式索一膜结构,其准椭圆形平面的轮廓尺寸达192mX241m。

许多宏伟而富有特色的大跨度建筑已成为当地的象征性标志和著名的人文景观。

由于经济和文化发展的需要,人们还在不断追求覆盖更大的空间,例如有人设想将整个街区、整个广场、甚至整个山谷覆盖起来形成一个可人工控制气候的人聚环境或休闲环境;为了发掘和保护古代陵墓和重要古迹,也有人设想采用超大跨度结构物将其覆盖起来形成封闭的环境。

目前某些发达国家正在进行尺度为300m以上的超大跨度空间结构的设计方案探讨。

可以这样说,大跨空间结构是最近三十多年来发展最快的结构形式。

国际《空间结构》杂志主编马考夫斯基说:在60年代“空间结构还被认为是一种兴趣但仍属陌生的非传统结构,然而今天已被全世界广泛接受。

”从今天来看,大跨度和超大跨度建筑物及作为其核心的空间结构技术的发展状况已成为代表一个国家建筑科技水平的重要标志之一。

世界各国为大跨度空间结构的发展投入了大量的研究经费。

例如,早在20年前美国土木工程学会曾组织了为期10年的空间结构研究计划,投入经费1550万美元。

同一时期,西德由斯图加特大学主持组织了一个“大跨度空间结构综合研究计划”,每年研究经费100万马克以上。

这些研究工作为各国大跨度建筑的蓬勃发展奠定了坚实的理论基础和技术条件。

国际壳体和空间结构学会每年定期举行年会和各种学术交流活动,是目前最受欢迎的著名学术团体之一。

我国大跨度空间结构的基础原来比较薄弱,但随着国家经济实力的增强和社会发展的需要,近十余年来也取得了比较迅猛的发展。

工程实践的数量较多,空间结构的类型和形式逐渐趋向多样化,相应的理论研究和设计技术也逐步完善。

以北京亚运会、哈尔滨冬季亚运会、上海八运会的许多体育建筑为代表的一系列大跨空间结构——作为我国建筑科技进步的某种象征在国内外都取得了一定影响。

种种迹象说明,我国虽然尚是一个发展中国家,但由于国大人多,随着国力的不断增强,要建造更多更大的体育、休闲、展览、航空港、机库等大空间和超大空间建筑物的需求十分旺盛,而且这种需求量在一定程度上可能超过许多发达国家。

这是我国空间结构领域面临的巨大机遇。

但与国际先进水平相比,我国仍存在一定差距。

主要表现在结构形式还比较拘谨,较少大胆创新之作,说明新颖的建筑构思与先进的结构创造之间尚缺乏理想的有机结合,尤其是150m以上的超大跨度空间结构的工程实践还比较少;结构类型相对地集中于网架和网壳结构,悬索结构用得比较少,而一些有巨大前景的新颖结构形式如膜结构和索-膜结构、整体张拉结构、可开合结构等在国外已有不少成功的工程实践,在我国则还处于空白或艰难起步阶段。

情况看来是,我国空间结构的发展经过十余年来在较为平坦的草原上的驰骋之后,似乎遇上了一个需要努力跃上的新台阶。

这一新台阶包含材料和生产条件等技术问题,也包含尚未很好解决的一些理论问题。

为促进我国空间结构进一步的更高层次的发展,有待科技工作者和企业家努力创造条件,以求得这些技术问题和理论问题较快较好地解决。

大跨空间结构的类型和形式十分丰富多彩,习惯上分为如下这些类型:钢筋混凝土薄壳结构;平板网架结构;网壳结构;悬索结构;膜结构和索-膜结构;近年来国外用的较多的“索穹顶”。

中国第一批具有现代意义的网壳是在50和60年代建造的,但数量不多。

当时柱面网壳大多采用菱形“联方”网格体系,1956年建成的天津体育馆钢网壳和l961年同济大学建成的钢筋混凝土网壳可作为典型代表。

球面网壳则主要采用助环型体系,1954年建成的重庆人民礼堂半球形穹顶和1967年建成的郑州体育馆圆形钢屋盖习能是仅有的两个规模较大的球面网壳。

自此以后直到80年代初期,网壳结构在我国没有得到进一步的发展。

相对而言自第一个平板网架于1964年建成以来,网架结构一直保持较好发展势头。

1967年建成的首都体育馆采用斜放正交网架,其矩形平面尺寸为99mx112m,厚6m,采用型钢构件,高强螺栓连接,用钢指标65kg每平米。

1973年建成的上海万人体育馆采用圆形平面的三向网架净架110m,厚6m,采用圆钢管构件和焊接空心球结点,用钢指标47kg每平米。

当时平板网架在国内还是全新的结构形式,这两个网架规模都比较大,即使从今天来看仍然具有代表性,因而对工程界产生了很大影响。

在当时体育馆建设需求的激励下,国内各高校、研究机构和设计部门对这种新结构投入了许多力量,专业的制作和安装企业也逐渐成长,为这种结构的进一步发展打下了较坚实的基础。

改革开放以来的十多年里是我国空间结构快速发展的黄金时期而平板网架结构就自然地处于捷足先登的优先地位。

甚至80年代后期北京为迎接1990年亚运会兴建的一批体育建筑中,多数仍采用平板网架结构。

在这一时期,网架结构的设计已普遍采用计算机,生产技术也获得很大进步,开始广泛采用装配式的螺栓球结点,大大加快了网架的安装。

但事物总是存在两个方面。

在平板网架结构一枝独秀地加快发展的同时,随着经济和文化建设需求的扩大和人们对建筑欣赏品位的提高,在设计日益增多的各式各样大跨度建筑时,设计者越来越感觉到结构形式的选择余地有限,无法满足日益发展的对建筑功能和建筑造型多样化的要求。

这种现实需求对网壳结构、悬索结构等多种空间结构形式的发展起了良好的刺激作用。

由于网壳结构与网架结构的生产条件相同,国内已具备现成的基础,因而从80年代后半期起,当相应的理论储备和设计软件等条件初步完备,网壳结构就开始了在新的条件下的快速发展。

建造数量逐年增加,各种形式的网壳,包括球面网壳、柱面网壳、鞍形网壳、双曲扁网壳和各种异形网壳,以及上述各种网壳的组合形式均得到了应用;还开发了预应力网受、斜拉网壳等新的结构体系。

近几年来建造了一些规模相当宏大的网壳结构。

例如1994年建成的天津体育馆采用肋环斜杆型双层球面网壳,其圆形平面净跨108m,周边伸出,网壳厚度3m,采用圆钢管构件和焊接空心球结点,用钢指标55kg每平米。

1995年建成的黑龙江省速滑馆用以覆盖400m速滑跑道,其巨大的双层网壳结构由中央柱面壳部分和两端半球壳部分组成,轮廓尺寸,覆盖面积达15000平米,网壳厚度,采用圆钢管构件和螺栓球结点,用钢指标50kg每平米。

1997年刚建成的长春万人体育馆平面呈桃核形,由肋环型球面网壳切去中央条形部分再拼合而成,体型巨大,如果将外伸支腿计算在内,轮廓尺寸达,网壳厚度,其桁架式“网片”的上、下弦和腹杆一律采用方钢管,焊接连接,是我国第一个方钢管网壳。

这一网壳结构的设计方案是由国外提出的,施工图设计和制作安装由国内完成。

在网壳结构的应用日益扩大的同时,平板网架结构并未停止其自身的发展。

这种目前来看已比较简单的结构有它自己广泛的使用范围,跨度不拘大小;而已近几年在一些重要领域扩大了应用范围。

例如在机场维修机库方面,广州白云机场80m机库、成都机场140m机库、首都机场2Zmx150m机库等大型机库都采用平板网架结构。

这些三边支承的平板网架规模巨大,且需承受较重的悬挂荷载,常采用较重型的焊接型钢结构,有时需采用三层网架;其单位面积用钢指标可达到一般公用建筑所用网架的一倍或更多。

单层工业厂房也是近几年来平板网架获得迅速发展的一个重要领域。

为便于灵活安排生产工艺,厂房的柱网尺寸有日益扩大的趋向,这时平板网架结构就成为十分经济适用的理想结构方案。

1991年建成的第一汽车制造厂高尔夫轿车安装车间面积近8万平米,柱网21mx12m,采用焊接球结点网架,用钢指标31kg每平米。

该厂房是目前世界上面积最大的平板网架结构。

1992年建成的天津无缝钢管厂加工车间面积为6万平米,柱网36m x 18m,采用螺栓球结点网架,用钢指标32kg每平米,与传统的平面钢桁架方案比较,节省了47%。

鉴于这类厂房的巨大圆积,它们确实为平板网架结构的发展提供了广阔的新领域。

十分明显,包括网架和网壳在内的空间网格结构是我国近十余年来发展最快,应用最广的空间结构类型。

这类结构体系整体刚度好,技术经济指标优越,可提供丰富的建筑造型,因而受到建设者和设计者的喜爱。

我国网架企业的蓬勃发展也为这类结构提供了方便的生产条件。

据估计,近几年我国每年建造的网架和网壳结构达800万平方米建筑面积,相应钢材用量约20万t。

这么大的数字是任何其它国家无法比拟的,无愧于“网架王国”这一称号,难怪国外有关企业对这一巨大市场垂涎欲滴。

如此大的发展势头自然也会带采一些问题。

与国际水平相比,我国目前网架生产的工艺水平和质量管理水平尚有一定距离。

相关文档
最新文档