第7章_一元一次不等式测试卷
第七章一元一次不等式测试题(7.1-7.5)

2010—2011学年八年级数学第二学期抽测考试一元一次不等式(7.1-7.5) (满分100分)班级 姓名一、选择与填空 ( 满分48分, 每空3分)1.如图 ,数轴上A ,B ,C 三点表示的数分别为a ,b ,c ,则它们的大小关系( )(A ) a >b >c (B ) b >c >a (C ) c >a >b (D ) b >a >c2.根据图1和图2所示,对a b c ,,三种物体的重量判断不正确的是( )(A )a c < (B )B .a b < (C )a c > (D )b c <3.下列式子(1)2x -7≥-3, (2)1x - x>0, (3)7< 9, (4)x 2+3x>1, (5)a 2-2(a+1)≤1, (6)m -n>3中是一元一次不等式的有 ( )(A) 1个 ( B) 2个 ( C) 3个 ( D) 4个4. 若x >y ,则下列不等式中成立的是 ( )(A ) x+a < y+b (B )ax <by (C )a 2x >b 2y (D )a-x <a-y5. 不等式260x ->的解集在数轴上表示正确的是 ( )6.已知函数y =(m +2)x -2,要使函数值y 随x 的增大而增大,则m 的取值范围是( )(A ) m ≥-2 (B ) m >-2 (C ) m ≤-2 ( D ) m <-27. 关于x 的不等式2x -a ≤-1的解集如图所示,则a 的取值是 ( )(A )0 (B )-3(C )-2 (D )-18. x 与5的差不小于3,用不等式表示为 .9. 当x 时,式子3x -5的值大于5x +3的值. 10.弟弟上午八点钟出发步行去郊游,速度为每小时4千米;上午十点钟哥哥从同一地点骑自行车去追弟弟.如果哥哥要在上午十点四十分追上弟弟,问哥哥的速度至少是____.11.不等式3(x +2)≥4+2x 的负整数解为________;当x _____时,代数式623-x 的值为非负数. 12.要使函数y=(2m-3)x+2的图像经过第一、二、三象限,则m 的取值范围是__________.13. 点p(x-2,6)在第二象限,则x 的取值范围是____________. . 14 . 关于x 的方程x kx 21=-的解为正实数,则k 的取值范围是 .15. .若不等式 的解集是 ,则m 的取值范围是_______.(A ) (B ) (C ) (D ) ( 第6题) ( 第1题) 图1 图2( 第2题)二、求解与应用(满分52分。
沪科版 数学七年级下册课时练 第7章 7.2 第3课时 一元一次不等式的实际应用

沪科版数学七年级下册第7章一元一次不等式与不等式组7.2一元一次不等式第3课时一元一次不等式的实际应用1.小丽同学准备用自己的零花钱购买一台学生平板电脑,她原有750元,计划从本月起每月存入30元,直到她至少存有1 080元.设x个月后小丽至少有1 080元,则可列不等式为(D)A.3x+750>1 080B.30x-750≥1 080C.30x-750<1 080D.3x+750≥1 0802.光明文具店销售某品牌钢笔,当它的售价为14元/支时,月销量为180支,若每支钢笔的售价每涨价1元,月销量就相应减少15支.设每支钢笔涨价后的售价为x元,若使该种钢笔的月销量不低于105支,则x应满足的不等式为(D)A.180-15x≥105 B.180-(x-14)≤105C.180+15(x+14)≥105 D.180-15(x-14)≥1053.小红读一本400页的书,计划10天内读完,前5天因种种原因只读了100页,为了按计划读完,则从第6天起平均每天至少要读(B)A.50页B.60页C.80页D.100页4.(2019·山西太原期末)某社区超市以4元/瓶从厂家购进一批饮料,以6元/瓶销售.近期计划进行打折销售,若这批饮料的销售利润不低于20%,则最多可打(D)A.六折B.七折C.七五折D.八折5.小丽种了一棵高75 cm的小树,假设小树平均每周长高3 cm,x周后这棵小树的高度不超过100 cm,所列不等式为__75+3x≤100__.6.小明用30元钱购买矿泉水和冰激凌,每瓶矿泉水2元,每支冰激凌3.5元,他买了6瓶矿泉水和若干支冰激凌,他最多能买__5__支冰激凌.7.(教材P33,习题7.2,T9改编)某次知识竞赛试卷有20道题,评分办法是答对1道题记5分,不答记0分,答错1道题扣2分.小明有3道题没答,但成绩超过60分,则小明至少答对了__14__道题.8.(2018·山西中考)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过115 cm.某厂家生产符合该规定的行李箱,已知行李箱的宽为20 cm,长与高的比为8∶11,则符合此规定的行李箱的高的最大值为__55__cm.9.学校准备用2 000元购买名著和词典作为艺术节奖品,其中名著每套65元,词典每本40元.现已购买名著20套,问最多还能买词典多少本?解:设还能买词典x本,根据题意,得20×65+40x≤2 000,解得x≤171 2.因为x为整数,所以x的最大值是17.答:最多还能买词典17本.10.某国有企业在“一带一路”倡议中,向东南亚销售A,B两种外贸产品共6万吨.已知A种外贸产品每吨800元,B种外贸产品每吨400元,若A,B两种外贸产品的销售额不低于3 200万元,则至少销售A种外贸产品多少万吨?解:设销售A种外贸产品x万吨,则销售B种外贸产品(6-x)万吨.依题意,得800x+400(6-x)≥3 200,解得x≥2.答:至少销售A种外贸产品2万吨.11.小兰准备用30元买钢笔和笔记本,已知一支钢笔4.5元,一本笔记本3元.如果她钢笔和笔记本共买了8件,每种至少买1件,则她有多少种购买方案?解:设她买了x支钢笔,则买了(8-x)本笔记本.由题意得4.5x+3(8-x)≤30,解得x≤4.又因为x≥1,所以x可取1,2,3,4,所以共有4种购买方案.12.(2019·安徽淮北五校联考)某品牌智能手机的标价比成本价高a %,根据市场需求,该手机需降价x %,若不亏本,则x 应满足( C ) A .x ≤a100+aB .x ≤a100-a C .x ≤100a100+aD .x ≤100a100-a13.(2019·浙江衢州一模)小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如图所示的操作.请根据图中给出的信息,量筒中至少放入__10__个球时有水溢出.14.(2019·安徽淮北五校联考)为保护生态环境,甲、乙两村各自清理所属区域的养鱼网箱和养虾网箱,每村参加清理的人数及总开支如下表所示:村庄 清理养鱼网箱人数/人清理养虾网箱人数/人总支出/元 甲 12 8 18 400 乙9513 000(1)出费用各是多少元?(2)在人均支出费用不变的情况下,为节约开支,两村准备协调32人共同清理养鱼网箱和养虾网箱.要使总支出不超过28 800元,则至多安排多少人清理养鱼网箱? 解:(1)设清理养鱼网箱和养虾网箱的人均支出费用分别为x 元和y 元. 根据题意,得⎩⎨⎧12x +8y =18 400,9x +5y =13 000,解得⎩⎨⎧x =1 000,y =800.答:清理养鱼网箱的人均支出费用为1 000元,清理养虾网箱的人均支出费用为800元. (2)设安排a 人清理养鱼网箱,则安排(32-a )人清理养虾网箱. 根据题意,得1 000a +800(32-a )≤28 800,解得a ≤16. 答:至多安排16人清理养鱼网箱.15.(2019·内蒙古赤峰中考)某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话:(1)结合两人的对话内容,求小明原计划购买文具袋多少个;(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,两次购买奖品总支出不超过400元,其中钢笔标价每支8元,签字笔标价每支6元.经过沟通,这次老板给予八折优惠,那么小明最多可购买钢笔多少支?解:(1)设小明原计划购买文具袋x个,则实际购买了(x+1)个.依题意得10(x+1)×0.85=10x-17,解得x=17,答:小明原计划购买文具袋17个.(2)设小明可购买钢笔y支,则购买签字笔(50-y)支.依题意得[8y+6(50-y)]×80%≤400,解得y≤100.答:小明最多可购买钢笔100支.16.某体育用品商场采购员到厂家批发购进篮球和排球共100只,付款总额不得超过11 800元,已知厂家的批发价和商场的零售价如下表,设商场采购员到厂家购进x只篮球,试解答下列问题.品名厂家的批发价/(元/只)商场的零售价/(元/只)篮球130160排球100120(1)(2)若商场把100只球全部售出,为使商场的利润不低于2 580元,采购员有哪几种采购方案?哪种方案商场获利最多?解:(1)设采购员购进篮球x只,根据题意得130x+100(100-x)≤11 800,解得x≤60,所以x的最大值是60.答:采购员最多购进篮球60只.(2)设采购员购进篮球y只,根据题意得(160-130)y+(120-100)(100-y)≥2 580,解得y≥58.综合(1),得58≤y≤60.所以采购员有三种采购方案:方案一:购进篮球58只,排球42只,获利30×58+20×42=2 580(元);方案二:购进篮球59只,排球41只,获利30×59+20×41=2 590(元);方案三:购进篮球60只,排球40只,获利30×60+20×40=2 600(元).因为2 600>2 590>2 580,所以方案三使商场获利最多.答:采购员有三种采购方案,分别是方案一:购进篮球58只,排球42只;方案二:购进篮球59只,排球41只;方案三:购进篮球60只,排球40只.方案三使商场获利最多.。
七年级下册7、2一元一次不等式第2课时含分母的一元一次不等式的解法习题新版沪科版

第7章 一元一次不等式与不等式组
7.2 一元一次不等式 第2课时 含分母的一元一次
不等式的解法
提示:点击 进入习题
1D 2B 3C 4D
5D
答案显示
6A
7D
8 0,1,2题
11 见习题
12 见习题
答案显示
13 见习题 14 见习题
15 见习题
11.解不等式2x- 0.51.5-3x- 0.20.6>10(01.1.9×-103x). 解:将2x- 0.51.5-3x- 0.20.6>10(01.1.9×-103x) 整理,得 4x-3-15x+3>19-30x.
移项,合并同类项,得 19x>19.
系数化为 1,得 x>1.
12.【中考·宁德】已知:不等式2-3 x≤2+x. (1)解该不等式,并把它的解集表示在数轴上; 解:2-x≤3(2+x), 2-x≤6+3x, -4x≤4, x≥-1. 解集表示在数轴上如图所示.
解不等式 3(x-1)+5>5x+2(m+x),得 x<1-2 m.
由题意得1-2 m>45,解得 m<-35.
【答案】C
4.【中考·宿迁】不等式x-1≤2的非负整数解有( D ) A.1个 B.2个 C.3个 D.4个
5.【中考·大庆】若3是关于x的不等式2x-a-2<0的一个
解,则a可取的最小正整数为( D )
9.小明解不等式1+2 x-2x+ 3 1≤1 的过程如下,请指出他解 答过程中错误步骤的序号,并写出正确的解答过程. 解:去分母,得 3(1+x)-2(2x+1)≤1.① 去括号,得 3+3x-4x+1≤1.② 移项,得 3x-4x≤1-3-1.③ 合并同类项,得-x≤-3.④ 两边都除以-1,得 x≤3.⑤
数学沪科版七年级下册第7章一元一次不等式与一元一次不等式组单元测试(Word版 含答案)

初中数学沪科版(2012)七年级下册第7章一元一次不等式与一元一次不等式组单元测试一、选择题1.不等式组211,420x x ->⎧⎨-≤⎩的解集是( ) A .x≤2B .1<x≤2C .x >1D .x≥2 2.若不等式ax+x>1+a 的解集是x>1,则a 必须满足的条件是( )A .a 1<-B .a 1<C .a 1>-D .a 1>3.若不等式组-00x b x a <⎧⎨+>⎩的解集为2<x<3,则a,b 的值分别为( ) A .-2,3 B .2,-3 C .3,-2 D .-3,24.下面说法正确的是( )A .x=3是不等式2x>3的一个解B .x=3是不等式2x>3的解集C .x=3是不等式2x>3的唯一解D .x=3不是不等式2x>3的解5.若不等式组0,122x a x x -≥⎧⎨->-⎩有解,则a 的取值范围是( ) A .a >-1B .a≥-1C .a≤1D .a <1 6.不等式组3(2)423x x a x x --≤⎧⎪+⎨>⎪⎩无解,则a 的取值范围是( ) A .a<1B .a≤1C .a>1D .a≥17.下列各对不等式中,解集不相同的一对是( )A .34227x x -+<与7(3)2(42)x x --<+B .31244x x +>-与31x >-C .22123x x +-≥与()()32221x x +≥- D .1923x x -+<与()()3129+x x -<- 8.不等式组21241x x x x ><-⎧⎨+-⎩的解集为( ) A .x>13 B .x>1 C .13>x>1 D .空集9.如果关于x 的不等式x >2a ﹣1的最小整数解为x=3,则a 的取值范围是( )A .0<a <2B .a <2C .32≤a <2D .a ≤210.甲、乙两人从相距24km 的A 、B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度( )A .小于8km/hB .大于8km/hC .小于4km/hD .大于4km/h11.在关于x 、y 的方程组2728x y m x y m +=+⎧⎨+=-⎩中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( )A .B .C .D .12.若x >y >则下列不等式不一定成立的是( )A .x >1>y >1B .2x >2yC .2x >y 2 D .x 2>y 213.若m> -1,则下列各式中错误的是( )A .6m> -6B .-5m< -5C .m+1>0D .1-m<2 14.不等式72x -+1<322x -的负整数解有( ) A .1个 B .2个 C .3个 D .4个15.不等式﹣3x>1的解集是( )A .x>>2B .x>>13C .x>>13D .x>4二、填空题 16.若a b <,则不等式组x a x b >⎧⎨>⎩的解集是________,不等式组x a x b>⎧⎨<⎩的解集是_________,不等式组x a x b <⎧⎨>⎩的解集是_________. 17.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为___________>18.如图,左边物体的质量为xg ,右边物体的质量为50g ,用不等式表示下列数量关系是______.19.若不等式组1{21x m x m <+>-无解,则m 的取值范围是______.20.如图所示的不等式的解集是________.三、解答题21.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.22.已知实数x、y满足2x+3y=1.(1)用含有x的代数式表示y;(2)若实数y满足y>1,求x的取值范围;(3)若实数x、y满足x>﹣1,y≥﹣12,且2x﹣3y=k,求k的取值范围.23.解不等式组12215(1)xx x⎧>-⎪⎨⎪+≥-⎩,并写出它的所有整数解.24.解不等式1211232x x--≤,并把它的解集在数轴上表示出来.参考答案1.D2.A3.A4.A5.D6.B7.D8.B9.C10.B11.C12.D13.B14.A15.C 16.x b > a x b << 无解17.x <218.50x >19.m≥220.x≤221.(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析22.(1)y=123x -;(2)x <﹣1;(3)﹣5<k ≤4. 23.2<x≤2,不等式组的整数解为>1>0>1>2>24.x≥-3,数轴见解析.。
八年级(下)数学第七章一元一次不等式(组)单元测试卷

第七章 一元一次不等式单元测试班级 姓名 学号 得分一、选择题:(每小题2分,共16分) 1、下列结论:①4a>3a ②4+a>3+a ③4-a>3-a 中正确的是………………………………( ) A.①② B. ①③ C.②③ D.①②③ 2、下列不等式中,是一元一次不等式的是………………………………………………( )A .21->-B .1-<xC .3≤-y xD .0122≥++x x3、与不等式1523-<-x的解集相同的是………………………………………………( ) A .3-2x>5 B.3-2x<5 C.2x-3>5 D.x<4 4、若不等式b ax >的解集是abx <,则 ………………………………………………( ) A .0≥a B .0≤a C .0>a D .0<a5、下列不等式组中,无解的是 ……………………………………………………………( ) A .⎩⎨⎧<+<-0201x x B .⎩⎨⎧>+<-0201x x C .⎩⎨⎧<+>-0201x x D .⎩⎨⎧>+>-0201x x6、若点)2,1(+-a a M 在第二象限,则a 的取值范围是………………………………( ) A .2->a B .12<<-a C .2-<a D .1>a7、不等式)12(213x x -≤-的正整数解有 ……………………………………………( ) A .3个 B .4个 C .5个 D .6个8、若不等式组⎩⎨⎧>≤<m x x 21有解,则m 的取值范围是……………………………………( )A .1<mB .2<mC .2≤mD .21≤≤m二、填空题:(每空2分,共22分) 9、用适当符号表示下列关系:(1)a 、b 两数的和是负数: ;(2)m 与2的差不小于21: 。
一元一次不等式组测试题

测试5 一元一次不等式组(一)学习要求会解一元一次不等式组,并会利用数轴正确表示出解集.课堂学习检测一、填空题1.解不等式组⎩⎨⎧>--<+②①223,423x x 时,解①式,得______,解②式,得______;于是得到不等式组的解集是______.2.解不等式组⎪⎩⎪⎨⎧-≥--≥-②①21,3212x x 时,解①式,得______,解②式,得______;于是得到不等式组的解集是______. 3.用字母x 的范围表示下列数轴上所表示的公共部分:二、选择题4.不等式组⎩⎨⎧+<+>-5312,243x x x 的解集为( ).(A)x <-4(B)x >2 (C)-4<x <2 (D)无解 5.不等式组⎩⎨⎧>+<-023,01x x 的解集为( ). (A)x >1 (B)132<<-x (C)32-<x (D)无解三、解下列不等式组,并把解集表示在数轴上6.⎩⎨⎧≥-≥-.04,012x x 7.⎩⎨⎧>+≤-.074,03x x8.⎪⎩⎪⎨⎧+>-<-.3342,121x x x x 9.-5<6-2x <3.四、解答题10.解不等式组⎪⎩⎪⎨⎧<-+≤+321),2(352x x x x 并写出不等式组的整数解.综合、运用、诊断一、填空题11.当x 满足______时,235x-的值大于-5而小于7.12.不等式组⎪⎪⎩⎪⎪⎨⎧≤-+<2512,912x x x x 的整数解为______.二、选择题13.如果a >b ,那么不等式组⎩⎨⎧<<b x a x ,的解集是( ).(A)x <a (B)x <b (C)b <x <a (D)无解14.不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2 (B)m ≥2 (C)m ≤1 (D)m ≥1三、解答题15.求不等式组73123<--≤x 的整数解.16.解不等式组⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x17.当k 取何值时,方程组⎩⎨⎧-=+=-52,53y x k y x 的解x ,y 都是负数.18.已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.拓展、探究、思考19.已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.20.关于x的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.测试6 一元一次不等式组(二)学习要求进一步掌握一元一次不等式组.课堂学习检测一、填空题1.直接写出解集:(1)⎩⎨⎧->>3,2x x 的解集是______; (2)⎩⎨⎧-<<3,2x x 的解集是______; (3)⎩⎨⎧-><3,2x x 的解集是_______; (4)⎩⎨⎧-<>3,2x x 的解集是______. 2.如果式子7x -5与-3x +2的值都小于1,那么x 的取值范围是______.二、选择题3.已知不等式组⎩⎨⎧->--+-≤-).23(2)1(53,1)1(3)3(2x x x x x 它的整数解一共有( ).(A)1个(B)2个 (C)3个 (D)4个 4.若不等式组⎩⎨⎧>≤<k x x ,21有解,则k 的取值范围是( ). (A)k <2 (B)k ≥2(C)k <1 (D)1≤k <2 三、解下列不等式组,并把解集在数轴上表示出来5.⎪⎩⎪⎨⎧⋅>-<-322,352x x x x 6.⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x x x7.⎪⎩⎪⎨⎧+>-≤+).2(28,142x x x 8..234512x x x -≤-≤-综合、运用、诊断一、填空题9.不等式组⎪⎩⎪⎨⎧⋅<->+233,152x x 的所有整数解的和是______,积是______. 10.k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.二、解下列不等式组11.⎪⎪⎩⎪⎪⎨⎧<+->+--.1)]3(2[21,312233x x x x x12.⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅>-->-->-24,255,13x x x x x x三、解答题13.k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10?14.已知关于x ,y 的方程组⎩⎨⎧-=-+=+34,72m y x m y x 的解为正数,求m 的取值范围.拓展、探究、思考15.若关于x的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.测试7 利用不等关系分析实际问题学习要求利用不等式(组)解决较为复杂的实际问题;感受不等式(组)在实际生活中的作用.课堂学习检测列不等式(组)解应用题1.一个工程队原定在10天内至少要挖掘600m 3的土方.在前两天共完成了120m 3后,接到要求要提前2天完成掘土任务.问以后几天内,平均每天至少要挖掘多少土方?2.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾厂处理.如果甲厂每小时可处理垃圾55吨,需花费550元;乙厂每小时处理45吨,需花费495元.如果规定该城市每天用于处理垃圾的费用的和不能超过7150元,问甲厂每天至少要处理多少吨垃圾?3.若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满.问学生有多少人?宿舍有几间?4.2008年5月12日,汶川发生了里氏8.0级地震,给当地人民造成了巨大的损失.某中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:二班的捐款金额比三班的捐款金额多300元;信息三:一班学生平均每人捐款的金额大于..51元...48元,小于请根据以上信息,帮助老师解决:(1)二班与三班的捐款金额各是多少元?(2)一班的学生人数是多少?综合、运用、诊断5.某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,42座客车的租金为每辆320元,60座客车的租金为每辆460元.(1)若学校单独租用这两种客车各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且比单独租用一种车辆节省租金,请选择最节省的租车方案.拓展、探究、思考6.在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m2和乙种板材12000m2的任务.某灾民安置点计划用该企业生产的这批板材搭建A,B两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A型板房和一间B型板房所需板材及能安置的人数如下表所示:A 型板房 54 m 226 m 25 B 型板房78 m 241 m 28问:这400间板房最多能安置多少灾民?参考答案 测试51..2;21;2-<<-<x x x 2..361;3;61≤≤≤≥x x x 3.(1)x >-1; (2)0<x <2; (3)无解. 4.B . 5.B . 6.421≤≤x ,解集表示为7.x ≥0,解集表示为8.无解. 9.1.5<x <5.5解集表示为10.-1≤x <3,整数解为-1、0、1、2. 11.-3<x <5. 12.-2,-1,0. 13.B . 14.C . 15.-10<x ≤-4,整数解为-9,-8,-7,-6,-5,-4. 16.-1<x <4. 17.-721<k <25.(⎩⎨⎧<--=<-=015213,02513k y k x )18.①-②得:y -x =2k -1,∵0<y -x <1 ∴0<2k -1<1 ∴.121<<k19.解得⎪⎩⎪⎨⎧>+≥.2,34x a x 于是234≤+a ,故a ≤2;因为a 是自然数,所以a =0,1或2.20.不等式组的解集为a ≤x <2,-4<a ≤-3.测试61.(1)x >2;(2)x <-3;(3)-3<x <2;(4)无解. 2.31<x <76. 3.B . 4.A .5.(1)x >6,解集表示为6.-6<x <6,解集表示为7.x <-12,解集表示为 8.x ≤-4,解集表示为9.7;0. 10.-1<k <3. 11.无解. 12.x >8. 13.由2<x =328-k <10,得1<k <4,故整数k =2或3.14..532.5,23<<-⎩⎨⎧-=+=m m y m x 15.不等式组的解集为2-3a <x <21,有四个整数解,所以x =17,18,19,20,所以16≤2-3a <17,解得⋅-≤<-3145a测试71.设以后几天平均每天挖掘x m 3的土方,则(10-2-2)x ≥600-120,解得x ≥80. 2.设该市由甲厂处理x 吨垃圾,则7150)700(4549555550≤-+x x ,解得x ≥550.3.解:设宿舍共有x 间.⎩⎨⎧+<-+>.204)1(8,2048x x x x 解得5<x <7.∵x 为整数,∴x =6,4x +20=44(人).4.(1)二班3000元,三班2700元;(2)设一班学生有x 人,则⎩⎨⎧><200051200048x x 解得3241511139<<x ∵x 为整数.∴x =40或41.5.(1)61942385=÷ 单独租用42座客车需10辆.租金为320×10=3200;125660385=÷ 单独租用60座客车需7辆.租金为460×7=3220.(2)设租用42座客车x 辆,则60座客车需(8-x )辆.⎩⎨⎧<-+≥-+.3200)8(460320,385)8(6042x x x x 解得⋅≤<1855733x x 取整数,x =4,5.当x =4时,租金为3120元;x =5时,租金为2980元.所以租5辆42座,3辆60座最省钱.6.设生产A 型板房m 间,B 型板房(400-m )间.所以⎩⎨⎧≤-+≤-+.12000)400(4126,24000)400(7854m m m m 解得m ≥300.所以最多安置2300人.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是( ) A .-3℃ B .8℃ C .-8℃D .11℃2.下列立体图形中,从上面看能得到正方形的是( )3.下列方程是一元一次方程的是( )A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为( ) A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是( )A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是( ) A.x=y B.ax+1=ay-1 C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为( )A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是( )A.130°B.40°C.90°D.140°9.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF=m,CD=n,则AB的长是( )A.m-n B.m+nC.2m-n D.2m+n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12; ②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解;③若a +b +c =0,且abc ≠0,则abc >0;④若|a |>|b |,则a -b a +b>0. 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________. 12.若-13xy 3与2x m -2y n +5是同类项,则n m =________. 13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a △b =a ·b -2a -b +1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分)19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x -22-1=x +13-x +86.21.先化简,再求值:2(x 2y +xy )-3(x 2y -xy )-4x 2y ,其中x =1,y =-1.22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O 的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A 8.D 9.C 10.B二、11.23;5 12.-8 13.-514.19°31′13″15.3 16.717.> 18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy. 当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α. 所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF =90°-β2.所以∠BOE =180°-∠AOE =180°-(90°-β)=90°+β,∠COF =∠AOF +∠AOC =90°-β2+β=12(90°+β).所以∠BOE =2∠COF .25.解:(1)0.5x ;(0.65x -15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a 度.根据题意,得0.65a -15=0.55a ,解得a =150.答:该用户10月用电150度.26.解:(1)130(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.故点C表示的数为-50或25.(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,解得t=65.65×4=260,260+30=290,所以点D表示的数为-290.(4)ON-AQ的值不变.设运动时间为m s,则PO=100+8m,AQ=4m.由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。
综合解析沪科版七年级数学下册第7章一元一次不等式与不等式组综合测评试题(含详解)
七年级数学下册第7章一元一次不等式与不等式组综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若|m﹣1|+m=1,则m一定()A.大于1 B.小于1 C.不小于1 D.不大于12、﹣(﹣a)和﹣b在数轴上表示的点如图所示,则下列判断正确的是()A.﹣a<1 B.b﹣a>0 C.a+1>0 D.﹣a﹣b<03、若x+2022>y+2022,则( )A.x+2<y+2 B.x-2<y-2 C.-2x<-2y D.2x<2y4、下列四个说法:①若a=﹣b,则a2=b2;②若|m|+m=0,则m<0;③若﹣1<m<0,则m2<﹣m;④两个四次多项式的和一定是四次多项式.其中正确说法的个数是()A.4 B.3 C.2 D.15、若x<y,则下列不等式中不成立的是()A.x-5<y-5 B.16x<16y C.x-y<0 D.-5x<-5y6、如果点P (m ,1﹣2m )在第一象限,那么m 的取值范围是 ( )A .102m << B .102m -<< C .0m < D .12m > 7、已知a >b ,下列变形一定正确的是( )A .3a <3bB .4+a >4﹣bC .ac 2>bc 2D .3+2a >3+2b8、某种商品进价为700元,标价1100元,由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可以打( )折.A .9B .8C .7D .69、不等式4x -8≤0的解集是( )A .x ≥-2B .x ≤-2C .x ≥2D .x ≤2 10、不等式﹣2x +4<0的解集是( )A .x >12B .x >﹣2C .x <2D .x >2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、按照下面给定的计算程序,当2x =-时,输出的结果是_____;使代数式25x +的值小于20的最大整数x 是__________.2、 “x 的3倍与2的和不大于5”用不等式表示为 _________.3、不等式组32510x x <⎧⎨-<⎩的解集是___________. 4、若关于x 的不等式1x m +>的解集如图所示,则m 的值为_____.5、如图,关于x 的不等式组在数轴上所表示的的解集是:______.三、解答题(5小题,每小题10分,共计50分)1、a 取什么值时,代数式3-2a 的值:(1)大于1?(2)等于1?(3)小于1?2、解不等式组331213(1)8x x x x-⎧+≥+⎪⎨⎪--<-⎩,并把解集在数轴上表示出来.3、由于近期疫情防控形势严峻,妈妈让小明到药店购买口罩,某种包装的口罩标价每袋10元,请认真阅读老板与小明的对话:(1)结合两人的对话内容,小明原计划购买几袋口罩?(2)此时,妈妈来电话说:“口罩只需要购买8袋,另外还需要购买消毒液和洗手液共5瓶,并且三种物品购买总价不超过200元.”现已知消毒液标价每瓶20元,洗手液标价每瓶35元,经过沟通,老板答应三种物品都给予8折优惠,那么小明最多可购买洗手液多少瓶?4、解不等式组2151232312(1)x xx x--⎧-≤⎪⎨⎪-<+⎩,并写出所有整数解.(不画数轴)5、某体育用品商店开展促销活动,有两种优惠方案.方案一:不购买会员卡时,乒乓球享受8.5折优惠,乒乓球拍购买5副(含5副)以上才能享受8.5折优惠,5副以下必须按标价购买.方案二:办理会员卡时,全部商品享受八折优惠,小健和小康的谈话内容如下:小健:听说这家商店办一张会员卡是20元.小康:是的,上次我办了一张会员卡后,买了4副乒乓球拍,结果费用节省了12元.(会员卡限本人使用)(1)求该商店销售的乒乓球拍每副的标价.(2)如果乒乓球每盒10元,小健需购买乒乓球拍6副,乒乓球a盒,小健如何选择方案更划算?-参考答案-一、单选题1、D【分析】先将绝对值等式移项变形为|m﹣1|=1–m,利用绝对值的非负性质列不等式1–m≥0,解不等式即可.【详解】解:∵|m﹣1|+m=1,∴|m﹣1|=1–m,∵|m﹣1|≥0,∴1–m≥0,∴m≤1.故选择D.【点睛】本题考查绝对值的性质,列不等式与解不等式,掌握绝对值的性质,列不等式与解不等式方法是解题关键.2、B【分析】化简﹣(﹣a)=a,根据数轴得到a<﹣1<﹣b<0,再结合有理数的加减、不等式的性质逐项分析可得答案.【详解】解:﹣(﹣a)=a,由数轴可得a<﹣1<﹣b<0,∵a<﹣1,∴﹣a>1,故A选项判断错误,不合题意;∵﹣b<0,∴b>0,b﹣a>0,故B正确,符合题意;∵a<﹣1,∴a+1<0,故C判断错误,不合题意;∵a<﹣b,∴a+b<0,∴﹣a﹣b>0,故D判断错误,不合题意.故选:B.【点睛】本题考查了有理数的加减法则、不等式的性质、用数轴表示数等知识,熟知相关知识并根据题意灵活应用是解题关键.3、C【分析】直接根据不等式的性质可直接进行排除选项解:∵x+2022>y+2022,∴x>y,∴x+2>y+2,x-2>y-2,-2x<-2y,2x>2y.故答案为:C.【点睛】本题主要考查不等式的性质,熟练掌握不等式两边同时加或减去同一个整式,不等号方向不变;不等式两边同时乘(或除以)同一个大于0的整式,不等号方向不变;不等式两边同时乘(或除以)同一个小于0的整式,不等号方向改变,据此判断即可.4、C【分析】根据题意分别利用相反数的性质以及绝对值的代数意义和多项式的加法进行判断即可.【详解】解:①若a=﹣b,则a2=b2,说法正确;②若|m|+m=0,则m 0,说法错误;③若﹣1<m<0,则m2<﹣m,说法正确;④两个四次多项式的和不一定是四次多项式,说法错误;①③正确,共有2个.故选:C.【点睛】本题考查相反数的性质和不等式性质以及绝对值的代数意义和多项式的加法,熟练掌握相关的概念是解题的关键.5、D根据不等式的性质逐项分析即可.【详解】解:A. ∵x <y ,∴x -5<y -5,故不符合题意;B. ∵x <y ,∴1166x y <,故不符合题意; C. ∵x <y ,∴x-y <0,故不符合题意;D. ∵x <y ,∴55x y ->-,故符合题意;故选D .【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.6、A【分析】根据第一象限的横坐标为正、纵坐标为负,列出关于m 的不等式组解答即可.【详解】解:∵P (m ,1﹣2m )在第一象限,∴0120m m ⎧⎨-⎩>> ,解得:102m << 故选A .【点睛】本题主要考查了解一元一次不等式组、平面直角坐标系等知识点,根据点在平面直角坐标系的象限列出关于m 的一元一次不等式组成为解答本题的关键.7、D【分析】根据不等式的基本性质逐项排查即可.【详解】解:A .在不等式的两边同时乘或除以同一个正数,不等号的方向不发生改变,这里应该是3a >3b ,故A 不正确,不符合题意;B .无法证明,故B 选项不正确,不符合题意;C .当c =0时,不等式不成立,故C 选项不正确,不符合题意;D .不等式的两边同时乘2再在不等式的两边同时3,不等式,成立,故D 选项正确,符合题意. 故选:D .【点睛】本题主要考查了不等式的性质,1.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变; 2.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;3.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变.8、C【分析】设打x 折,由题意:某种商品进价为700元,标价1100元,商店准备打折销售,但要保证利润率不低于10%,列出一元一次不等式,解不等式即可.【详解】设打x 折, 根据题意得:1100×10x ﹣700≥700×10%, 解得:x ≥7,∴至多可以打7折故选:C .【点睛】本题考查了一元一次不等式的知识;解题的关键是熟练掌握一元一次不等式的性质,从而完成求解.9、D【分析】根据题意先移项,再把x 的系数化为1即可得出答案.【详解】解:不等式4x -8≤0,移项得,4x ≤8,把x 的系数化为1得,x ≤2.故选:D .【点睛】本题考查的是解一元一次不等式,熟练掌握解一元一次不等式的基本步骤是解答此题的关键.10、D【分析】首先通过移项得到-2-4x <,然后利用不等式性质进一步化简即可得出答案.【详解】解:移项可得:24x -<-,两边同时除以-2可得:>2x ,∴原不等式的解集为:>2x ,故选:D.【点睛】本题主要考查了解一元一次不等式,熟练掌握相关方法是解题关键.二、填空题1、1 7【分析】当2x =-时,代数式的值()2522+54+5=1x +=⨯-=-,根据1<20,可确定输出的值为1,列不等式2520x +<,求解即可得答案.【详解】解:当2x =-时,()2522+54+5=1x +=⨯-=-,∵120<,∴当2x =-时,25x +输出的值为1,2520x +<,移项合并得215x <, 系数化1得152x <, ∴x 最大整数=7.故1;7.【点睛】本题考查流程图与代数式求值,列不等式,不等式的最大整数解,掌握代数式求值,列不等式是解题关键.2、3x +2≤5【分析】不大于就是小于等于的意思,根据x 的3倍与2的和不大于5,可列出不等式.【详解】解:由题意得:3x +2≤5,故答案为:3x +2≤5.【点睛】本题考查由实际问题抽象出一元一次不等式,关键是抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.3、23x < 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】32510x x <⎧⎨-<⎩①② 解不等式①得:23x <解不等式②得:15x <∴不等式组32510x x <⎧⎨-<⎩的解集是23x < 故答案为:23x <【点睛】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键. 4、3【分析】由数轴可以得到不等式的解集是x >﹣2,根据已知的不等式可以用关于m 的式子表示出不等式的解集.就可以得到一个关于m 的方程,可以解方程求得.【详解】解:解不等式x +m >1得1x m >-由数轴可得,x >﹣2,则12m -=-解得,m =3.故答案为:3.【点睛】本题主要考查了解一元一次不等式,数轴上表示不等式的解集,解一元一次方程,注意数轴上的空心表示不包括﹣2,即x >﹣2.并且本题是不等式与方程相结合的综合题.5、21x -<≤【分析】根据图像特点向左是小于,向右是大于,即可得答案.【详解】∵从-2出发向右画出的折线中表示-2的点是空心,∴x >-2,∵从1出发向左画出的折线中表示1的点是实心,∴x ≤1,∴不等式的解集是:−2<x ≤1故答案为:−2<x ≤1.【点睛】本题考查了一元一次不等式的解法,做题的关键是掌握空心和实心的区别.三、解答题1、(1)a<1;(2)a =1;(3)a>1【分析】(1)根据代数式大于1列不等式,解不等式即可;(2)根据代数式等于1列方程,解方程即可;(3)根据代数式小于1列不等式,解不等式即可.【详解】解:(1)由3-2a>1,移项合并得-2a>-2,解得a<1;(2)由3-2a=1,移项合并得-2a=-2,解得a =1;(3)由3-2a<1,移项合并得-2a<-2,解得a>1.【点睛】本题考查列一元一次不等式与一元一次方程,解一元一次不等式与一元一次方程,掌握列不等式与方程的方法是解题关键.2、﹣2<x≤1,图见解析【分析】分别解不等式组中的两个不等式,再取两个不等式的解集的公共部分,再在数轴上表示不等式组是解集即可.【详解】解:331213(1)8x x x x -⎧+≥+⎪⎨⎪--<-⎩①②,∵解不等式①得:x ≤1,解不等式②得:x >﹣2,∴不等式组的解集为:﹣2<x ≤1.在数轴上表示不等式组的解集为:【点睛】本题考查的是一元一次不等式组的解法,在数轴上表示不等式组的解集,掌握解不等式组的方法是解本题的关键.3、(10)10;(2)4【分析】(1)设小明原计划购买x 袋口罩,列方程0.8510(1) 6.510x x ⨯++=,求解即可;(2)设购买洗手液a 瓶,则购买消毒液(5-a )瓶,由题意得列不等式[]0.881020(5)35200a a ⨯+-+≤,求解即可.【详解】解:(1)设小明原计划购买x 袋口罩,由题意得0.8510(1) 6.510x x ⨯++=,解得x =10,∴小明原计划购买10袋口罩;(2)设购买洗手液a 瓶,则购买消毒液(5-a )瓶,由题意得[]0.881020(5)35200a a ⨯+-+≤, 解得243a ≤, ∴小明最多可购买洗手液4瓶.【点睛】此题考查了一元一次方程的实际应用,一元一次不等式的实际应用,正确理解题意列出方程或不等式是解题的关键.4、不等式组的解集为:13x -≤<;整数解为:-1,0,1,2.【分析】分别把不等式组中的两个不等式解出来,然后求得不等式组的解集,根据解集找到整数解即可.【详解】 解:2151232312(1)x x x x --⎧-≤⎪⎨⎪-<+⎩①②,解不等式①得:1x ≥-,解不等式②得:3x <,∴不等式组的解集为:13x -≤<,∴不等式组的整数解为:-1,0,1,2.【点睛】本题主要是考查了不等式组的求解,熟练掌握求解不等式组的方法,注意最后的解集要取不等式组中的每个不等式解集的公共部分,不要弄错.5、(1)40元;(2)当16a =时,两种方案一样;当016a <<时,选择方案一;当16a >时,选择方案二【分析】(1)设商店销售的乒乓球拍每副的标价为x 元,根据题意列出一元一次方程,解方程即可求得乒乓球拍每副的标价;(2)根据两种方案分别计算小健购买乒乓球拍6副,乒乓球a 盒,所需费用,比较即可【详解】(1)设商店销售的乒乓球拍每副的标价为x 元,根据题意得2040.8412x x +⨯=-解得40x =答:该商店销售的乒乓球拍每副的标价为40元(2)方案一:6400.850.85102048.5a a ⨯⨯+⨯=+方案二:206400.8100.82128a a +⨯⨯+⨯=+若2048.5a +=2128a +,即16a =时,两种方案一样当2048.5a +<2128a +解得16a <即当016a <<时,选择方案一,当2048.5a +>2128a +解得16a >即当16a >时,选择方案二【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,根据题意列出方程或不等式是解题的关键.。
初一数学:一元一次不等式测试卷
初一数学:一元一次不等式测试卷11.4一元一次不等式1.x取什么值时,代数式3x+7的值:(1)小于1?(2)不小于1?2.求不等式3(x+1)5x-9的正整数解.3.分别解不等式5x-13(x+1),x-17- x所得的两个解集的公共部分是什么?时雨4.x取哪些数时,代数式x-8的值不大于7-x的值?5.某批发商欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开办海产品运输业务,已知运输路程为120千米,汽车和火车的速度分别为60千米/时,100千米/时,两货运公司的收费项目及收费标准如下表所示:运输工具运输费单价(元/吨千米) 冷藏费单价(元/吨小时) 过桥费(元) 装卸及治理费(元)汽车2 5 200 0火车1.8 5 0] 1600注:元/吨千米表示每吨物资每千米的运费;元/吨小时表示每吨物资每小时的冷藏费.一样说来,“教师”概念之形成经历了十分漫长的历史。
杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。
这儿的“师资”,事实上确实是先秦而后历代对教师的别称之一。
《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”因此也指教师。
这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副事实上的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。
(1)设该批发商待运的海产品有x吨,汽车货运公司和铁路货运公司所要收取的费用分别为y1元和y2元,试求y1和y2与x的函数关系式;(2)若该批发商待运的海产品许多于30吨,为节约运费,他应选择哪个货运公司承担运输业务?教师范读的是阅读教学中不可缺少的部分,我常采纳范读,让幼儿学习、仿照。
如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。
八年级数学上册一元一次不等式专题卷(附答案)
八年级数学上册一元一次不等式专题卷(附答案)评卷人得分一、选择题(题型注释)1.如果不等式组无解,那么m 的取值范围是()A.m>5 B.m≥5 C.m<5 D.m≤52.不等式组840312xx-⎩≤-⎧⎨>的解集在数轴上表示为()3.如果不等式无解,则b的取值范围是()A.b>﹣2 B.b<﹣2 C.b≥﹣2 D.b≤﹣24.不等式2x﹣6<0的解集是()A.x>3 B.x<3 C.x>﹣3 D.x<﹣35.已知不等式组,其解集在数轴上表示正确的是()6.关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是()A.-3<b<-2 B.-3<b≤-2C.-3≤b≤-2 D.-3≤b<-27.不等式组的解集在数轴上表示为()A. B .C . D.8.在数轴上表示不等式组202(1)1xx x+>⎧⎨-≤+⎩的解集,正确的是()A. B. C . D.9.不等式2x﹣6>0的解集是()A.x>1 B.x<﹣3 C.x>3 D.x<310.如果不等式组有解,那么m的取值范围是()A.m>8 B.m<8 C.m≥8 D.m≤811.已知不等式组1x a x >⎧⎨≥⎩的解集是x ≥1,则a 的取值范围是( ) A .a <1 B .a ≤1 C .a ≥1 D .a >1 评卷人得分二、填空题(题型注释) 12.学校举行百科知识抢答赛,共有20道题,规定每答对一题记10分,答错或放弃记﹣4分,八年级一班代表的得分目标为不低于88分,则这个队至少要答对 道题才能达到目标要求.13.不等式组⎩⎨⎧-≤->+x x x 81212的最大整数解是 .14.不等式组的解集为 .15.不等式组10241x x x +⎧⎨+-⎩>≥的解集为 . 16.定义新运算:对于任意实数a ,b 都有:a ⊕b=a (a ﹣b )+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x <13的解集为 。
第七章一元一次不等式_单元过关测试卷
第七章 一元一次不等式 单元过关测试卷一、填空题(每空3分,共30分)1.不等式512<+x 的最大整数解是 .2.当x ______时,代数式623-x 的值为不小于0. 3.点p(x -2,3+x )在第二象限,则x 的取值范围是____________.4.已知:y 1=3x +2,y 2=-x +8,当x ________时,y 1>y 2.5.若不等式(m-2)x>2的解集是x <22-m , 则m 的取值范围是_______. 6.弟弟上午八点钟出发步行去郊游,速度为4千米/时;上午十点钟哥哥从同一地点骑自行车去追弟弟.如果哥哥要在上午十点四十分之前追上弟弟,问哥哥的速度至少是______.7.某试卷共有20道题,每道题选对了得10分,选错了或不选的扣5分,至少要选对________道题,其得分才能不少于80分.8、若不等式2x-a ≤0只有4个正整数解,则a 的取值范围9、不等式3x+3≥5x-2则 ︳2x-5︳=10、如果a <3,那么关于x 的不等式ax >3x+5的解集是二、选择题(每题3分,共18分)11.若-y x >则下列不等式中一定成立的是 ( ) .A. x y -<B. 0<-y xC. 0>+y xD.y m x m 22->12. 不等式12-4x ≥3的正整数解的个数有 ( ).A. 3个B. 2个C. 1个D. 0个13.一个不等式的解集在数轴上表示如图, 对应的不等式可能是 ( ).A. 01>-xB. 01<-xC. 01>+xD. 01<+x14.已知a <b ,下列式子中,错误的是( ) .A 、4a <4bB 、-4a <-4b C.、a +4<b +4 D 、a -4<b -415.2x +1是不小于-3的负数,表示为…………………………………( ).A 、-3≤2x +1≤0B 、-3<2x +1<0C 、-3≤2x +1<0D 、-3<2x +1≤016.解不等式32x +>512-x 的过程中,出现错误的一步……………………( ). 的是 ① 去分母:5(x +2)>3(2x -1)② 去括号:5x +10>6x -3③ 移项:5x -6x >-10-3④系数化为1:x >13A 、①B 、②C 、③D 、④三、解答题17.(每题5分,共15分)解下列不等式(组),并将解集地数轴上表示出来. (1) 433+<x x 231(3)123x x ++-<18.(本题6分)求不等式285-x ≤418-x 的非负整数解.19.(本题6分)某地长途汽车客运公司规定,旅客可随身携带一定重量的行李,如果超过规定,则需要购买行李票,行李票费用y (元)是行李重量x (公斤)的一次函数,其图象如图所示. 求 (1)y 与x 之间的函数关系式;(2)旅客最多可免费携带行李的公斤数.20.(本题6分)已知一次函数y=(2m +4)x +(3-m ).(1)当y 随x 的增大而增大,求m 的取值范围;(2)若图象经过一、二、三象限,求m 的取值范围;(3)若m =1,当-1≤x ≤2时,求y 的取值范围.21.一只纸箱质量为1kg ,当放入一些苹果(每个苹果的质量为0.3kg )后,箱子和苹果的总质量不超过10kg .这只纸箱内最多能装多少个苹果?行李票费用(元)行李重量(公斤)22、某校组织学生参加“周末郊游”.甲旅行社说: “只要一名同学买全票,则其余学生可享受半价优惠.”乙旅行社说:“全体同学都可按6折优惠.”已知全票价为240元.1.设学生数为x ,甲旅行社收费为y 甲,乙旅行社收费为y 乙。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7章 一元一次不等式测试卷(满分:100分 时间:90分钟)一、精心选一选(每题2分,共20分)1.在平面直角坐标系中,若点P (x -2, x )在第二象限,则x 的取值范围为A .x >0B .x <2C .0<x <2D .x >22.不等式组25x x >-⎧⎨⎩≤的解集在数轴上可表示为A B C D3.若关于x 的不等式x -m ≥-1的解集如图所示,则m 等于A .0B .1C .2D .31.C ,分析:第二象限内点的横坐标是负数,纵坐标为正数,因此我们可列不等式组200x x -<⎧⎨>⎩,求得不等式的解集为0<x <2. 2.D ,分析:比5小,比-2大,应该取中间.3.D ,分析:这个不等式的解集为x ≥m -1,而数轴上不等式的解集为x ≥2,因此m -1=2,解得m =3.4.A ,分析:逐个求出不等式组的解集即可5.D15.C 16.D 17.A 18.C 19.B4.下列不等式组中,无解的是( )A .230320x x +<⎧⎨+>⎩B .230320x x +>⎧⎨+<⎩C .230320x x +>⎧⎨+>⎩D .230320x x +<⎧⎨+<⎩5.已知小明家距离学校10千米,而小蓉家距离小明家3千米.如果小蓉家到学校的距离是d 千米,则d 满足 ( )A. 3<d <10B. 3≤d ≤10C. 7<d <13D. 7 ≤d≤1316.已知不等式组2113x x a-⎧>⎪⎨⎪>⎩的解集为2x >,则 ( )A.2a <B.2a =C.2a >D.2a ≤17.已知方程组2231y x m y x m -=⎧⎨+=+⎩的解x 、y 满足2x +y ≥0,则m 的取值范围是 ( ) A.m ≥-43 B.m ≥43 C.m ≥1 D.-43≤m ≤1 18..关于x 的不等式组⎩⎨⎧x +152>x -32x +23<x +a 只有4个整数解,则a 的取值范围是 ( ) A. -5≤a ≤-143 B. -5≤a <-143 C. -5<a ≤-143 D. -5<a <-14319初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数( )A.至多6人 B.至少6人 C.至多5人 D.至少5人二、细心填一填(每题3分,共15分)6.不等式的解集在数轴上表示如图所示,则该不等式可能是_____________。
7.不等式1252x +--≤≤的解集是______________ 8.如果不等式(3)3a x a +>+的解集是1x <,那么a 的取值范围是____________.9.已知一个矩形的相邻两边长分别是3cm 和xcm ,若它的周长小于14cm ,面积大于62cm ,则x 的取值范围_______________.10.商店买进一批总价为1530元的衣服,第一天以每件20元的价格销售16件,以后以22.5元的价格出售,至少要再卖____________件才能获利.20.当x _______时,代数式324x +的值是正数. 21.已知关于x 的不等式组0321x a x -≥⎧⎨->-⎩有五个整数解,这五个整数是____________,a 的取值范围是___________________22.当m ______________时,关于x 的方程(2)21(4)m x m x +-=--有正数解.23.在方程组26x y a x y +=⎧⎨-=⎩中,已知0x >,0y <,则a 的取值范围是________________24.比较下面两个算式结果的大小(在横线上填“>”“<”“=”)2243+______432⨯⨯ 2222+______222⨯⨯ 22431⎪⎭⎫ ⎝⎛+______4312⨯⨯ ()2252+-______()522⨯-⨯ 223221⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛ ______32212⨯⨯通过观察归纳,写出能反映这种规律的一般情况:______________________________。
三、耐心解一解(第11~13题各6分,第14题7分,共25分)11.解不等式组,并把其解集在数轴上表示出来:12.当x 为何值时,式子124x +的值不大于式子82x -的值。
13.已知方程120ax +=的解是x =3,求不等式(2)6a x +<-的解集。
14.若方程2323x x a ++-=的解是非负数,求a 的取值范围。
B 卷(激活训练部分,50分)一、精心选一选(每题2分,共10分)二、细心填一填(每题3分,共15分)三、耐心解一解(第25~27题各6分,第28题7分,共25分)25.求不等式组5131131132x x x x -<+⎧⎪++⎨≤+⎪⎩的整数解26.一个矩形,两边长分别为xcm 和10cm ,如果它的周长小于80cm ,面积大于100cm 2.求x 的取值范围。
27.已知关于x 、y 的方程组221243x y m x y m +=+⎧⎨-=-⎩的解是一对正数。
(1)试确定m 的取值范围;(2)化简312m m -+-≥ ⎪⎩⎪⎨⎧-<--+-.8)1(31,323x x x x28.小明放学回家后,问爸爸妈妈小牛队与太阳队篮球比赛的结果.爸爸说:“本场比赛太阳队的纳什比小牛队的特里多得了12分.”妈妈说:“特里得分的两倍与纳什得分的差大于10;纳什得分的两倍比特里得分的三倍还多.”爸爸又说:“如果特里得分超过20分,则小牛队赢;否则太阳队赢.”请你帮小明分析一下.究竟是哪个队赢了,本场比赛特里、纳什各得了多少分?C 组(能力提升部分,20分)29.已知472,34-=+=x b x a ,并且a b <252≤。
请求出x 的取值范围。
30.某高速公路收费站,有m (m>0)辆汽车排队等候收费通过。
假设通过收费站的车流量(每分钟通过的汽车数量)保持不变,每个收费窗口的收费检票的速度也是不变的。
若开放一个收费窗口,则需20分钟才可能将原来排队等候的汽车以及后来接上来的汽车全部收费通过;若同时开放两个收费窗口,则只需8分钟也可将原来排队等候的汽车以及后来接上来的汽车全部收费通过。
若要求在3分钟内将排队等候收费的汽车全部通过,并使后来到站的汽车也随到随时收费通过,请问至少要同时开放几个收费窗口?参考答案:A 卷一、精心选一选(每题2分,共10分)二、细心填一填(每题3分,共15分)6.10x -≤ 7.113x -≤≤ 8.3a <- 9.24x << 10.54三、耐心解一解(第11~13题各6分,第14题7分,共25分)11.解:解不等式323+-x ≥x ,得x ≤3, 解不等式x x -<--8)1(31,得x >-2. 所以,原不等式组的解集是-2<x ≤3. 在数轴上表示为12.解:由题意:14+2x ≥82x -,解得:3112x ≥ 所以当3112x ≥时,式子124x +的值不大于式子82x -的值。
13.解:把x =3代入方程:3120a +=,解得:4a =-,把4a =-代入不等式得:(42)6x -+<-,解得:3x >-14.解:2323x x a ++-=,3(2)182()x x a +-=+,361822x x a +-=+,122x a =+,∵解是非负数,∴1220a +≥,解得6a ≥-B 卷(激活训练部分,50分)一、精心选一选(每题2分,共10分)二、细心填一填(每题3分,共15分)20.32x >- 21.-3、-2、-1、0、1 22.34m < 23.63a -<< 24.> = > > > 222x y xy +≥三、耐心解一解(第25~27题各6分,第28题7分,共25分)25.解:解不等式(1)得:5311x x -<+,22x <,1x <解不等式(2)得:2(1)3(31)6x x +≤++,22936x x +≤++,77x -≤,1x ≥- ∴不等式组的解集为:11x -≤<∴整数解有-1,026.解:由题意得:104010100x x +<⎧⎨>⎩,解得:1030x <<答:x 的取值范围是1030x <<27.解:(1)①+②得:262x m =-,31x m =-①-②得:424y m =-+, 22m y -=∵ 方程组的解为一对正数 ∴310202m m ->⎧⎪⎨->⎪⎩ 解得:123m << (2)∵ 123m << ∴310m ->,20m -< ∴312m m -+-=(31m -)+(2m -)=2m +128.设本场比赛特里得了x 分,则纳什得分为x+12由题意,得⎩⎨⎧>+>+-x x x x 3)12(2,10)12(2 解得22<x<24. 因为x 是整数,所以x=23 答:小牛队赢了,特里得了23分,纳什得了35分.C 组(能力提升部分,20分)29.解:∵472,34-=+=x b x a ,a b <252≤ ∴275224532x x -⎧≤⎪⎪⎨+⎪>⎪⎩ 解得:3.56x <≤30.解:设每个收费窗口每分钟可收费通过x 辆汽车,每分钟的车流量为y 辆,又设需要开放n 个收费窗口,才能在3分钟内将排队等候的汽车全部收费通过,根据题意得: ⎪⎩⎪⎨⎧∙≤+⨯=+=+③②①x n y m x y m x y m 338282020 由①、②可得:m x 403=,m y 401=④ 将④代入③得:m n m m 409403∙≤+∵ m > 0,∴ n ≥943,n 取最小正整数,∴ n = 5。