合肥工业大学有限元试题2010及答案

合集下载

有限单元法考试题及答案

有限单元法考试题及答案

有限单元法考试题及答案一、单项选择题(每题2分,共10分)1. 有限元法中,单元刚度矩阵的计算是基于()。

A. 位移法B. 势能原理C. 能量守恒定律D. 牛顿第二定律答案:B2. 在有限元分析中,以下哪项不是网格划分时需要考虑的因素?()A. 网格数量B. 网格形状C. 材料属性D. 边界条件答案:C3. 有限元分析中,以下哪项不是结构分析的基本步骤?()A. 离散化B. 求解C. 后处理D. 优化设计答案:D4. 在有限元分析中,以下哪种类型的单元不适用于平面应力问题?()A. 三角形单元B. 四边形单元C. 六面体单元D. 楔形单元答案:C5. 有限元分析中,以下哪种边界条件不属于几何边界条件?()A. 固定支座B. 压力C. 温度D. 位移答案:C二、多项选择题(每题3分,共15分)6. 有限元法中,以下哪些因素会影响单元的精度?()A. 单元形状B. 单元数量C. 材料属性D. 网格划分答案:ABD7. 在有限元分析中,以下哪些是常见的数值积分方法?()A. 一阶积分B. 二阶积分C. 高斯积分D. 牛顿-莱布尼茨积分答案:ABC8. 有限元分析中,以下哪些是常见的单元类型?()A. 线性单元B. 二次单元C. 三次单元D. 非线性单元答案:ABCD9. 在有限元分析中,以下哪些是常见的后处理技术?()A. 应力云图B. 位移云图C. 模态分析D. 热分析答案:ABC10. 有限元分析中,以下哪些是常见的非线性问题?()A. 几何非线性B. 材料非线性C. 接触非线性D. 热应力问题答案:ABCD三、填空题(每题2分,共20分)11. 有限元法中,单元刚度矩阵的计算通常基于___________原理。

答案:势能12. 在有限元分析中,网格划分的目的是将连续的___________离散化为有限数量的单元。

答案:域13. 有限元分析中,___________是将实际问题转化为数学问题的关键步骤。

(完整word版)有限元法复习题(word文档良心出品)

(完整word版)有限元法复习题(word文档良心出品)

《有限元法》复习题一. 单选题1.平面刚架单元坐标转换矩阵的阶数为( ) A .2⨯2 B .2⨯4 C .4⨯4 D .6⨯62.图示的四根杆组成的平面刚架结构,用杆单元进行有限元分析,单元和节点的划分如图示,则总体刚度矩阵的大小为( ) A.8⨯8阶矩阵 B.10⨯10阶矩阵 C.12⨯12阶矩阵 D.16⨯16阶矩阵3.坐标转换矩阵可归类为( )A.正交矩阵B.奇异矩阵C.正定矩阵D.对称矩阵 4.图示弹簧系统的总体刚度矩阵为( )A 11112322244434000000k k k k k k k k k k k k k k -⎡⎤⎢⎥-++-⎢⎥⎢⎥-+⎢⎥-+⎣⎦ B. 1111222244434000000k k k k k k k k k k k k k -⎡⎤⎢⎥-+-⎢⎥⎢⎥-+-⎢⎥-+⎣⎦C. 11112323224434340000k k k k k k k k k k k k k k k k -⎡⎤⎢⎥-++--⎢⎥⎢⎥-+-⎢⎥--+⎣⎦D. 1111223224434340000k k k k k k k k k k k k k k k -⎡⎤⎢⎥-+--⎢⎥⎢⎥-+⎢⎥--+⎣⎦5.确定已知三角形单元的局部码为1(e),2(e),3(e),对应总码依次为3,6,4,则其单元的刚度矩阵中的元素k 24应放在总体刚度矩阵的( )。

A.1行2列B.3行12列C.6行12列D.3行6列 6.对一根只受轴向载荷的杆单元,k 12为负号的物理意义可理解为( ) A.当节点2沿轴向产生位移时,在节点1引起的载荷与其方向相同 B.当节点2沿轴向产生位移时,在节点1引起的载荷与其方向相反 C.当节点2沿轴向产生位移时,在节点1引起的位移与其方向相同 D.当节点2沿轴向产生位移时,在节点1引起的位移与其方向相反7.平面桁架中,节点3处铅直方向位移为已知,若用置大数法引入支承条件,则应将总体刚度矩阵中的( )A.第3行和第3列上的所有元素换为大数AB.第6行第6列上的对角线元素乘以大数AC.第3行和第3列上的所有元素换为零D.第6行和第6列上的所有元素换为零 8.在任何一个单元内( )A.只有节点符合位移模式B.只有边界点符合位移模式C.只有边界点和节点符合位移模式D.单元内任意点均符合位移模式 9.平面应力问题中(Z 轴与该平面垂直),所有非零应力分量均位于( ) A.XY 平面内 B.XZ 平面内 C.YZ 平面内 D.XYZ 空间内 12.刚架杆单元与平面三角形单元( )A.单元刚度矩阵阶数不同B.局部坐标系的维数不同C.无任何不同D.节点截荷和位移分量数不同 13.图示平面结构的总体刚度矩阵[K]和竖带矩阵[K *]的元素总数分别是( )A.400和200B.400和160C.484和200D.484和160 14.在有限元分析中,划分单元时,在应力变化大的区域应该( )A.单元数量应多一些,单元尺寸小一些B.单元数量应少一些,单元尺寸大一些C.单元数量应多一些,单元尺寸大一些D.单元尺寸和数量随便确定 15.在平面应力问题中,沿板厚方向( )A.应变为零,但应力不为零B.应力为零,但应变不为零C.应变、应力都为零D.应变、应力都不为零16.若把平面应力问题的单元刚度矩阵改为平面应变问题的单元刚度矩阵只需将( ) A. E 换成E/(1-μ2),μ换成μ/(1-μ2) B. E 换成E/(1-μ2),μ换成μ/(1-μ) C. E 换成E/(1-μ),μ换成μ/(1-μ2) D. E 换成E/(1-μ),μ换成μ/(1-μ) 17.图示三角形单元非节点载荷的节点等效载荷为( ) A.F yi =-100KN F yj =-50KN F yk =0 B. F yi =-80KN F yj =-70KN F yk =0 C. F yi =-70KN F yj =-80KN F yk =0 D. F yi =-50KN F yj =-100KN F yk =018.半斜带宽矩阵r 行s 列的元素对应于竖带矩阵元素( )。

有限元2010期末考试试卷b卷

有限元2010期末考试试卷b卷

诚实答卷,舞弊后果严重
华南理工大学机械与汽车工程学院 2010-2011年第 1 学期期末考试
《 汽车有限元法 》全日制本科 试卷(B 卷)
(.本试卷共有 三大题,满分 100 分,考试时间 120 分钟)
一.简答题(共24分)
1.弹性力学与材料力学在研究对象上的区别(2分)
2.弹性力学中的五点假设(5分)
3.列出应力-应变之间的物理方程(6分)
题号 一 二 三 总分 得分 评卷人
办学单位:机械与汽车工程学院 年级专业: 姓名: 学号: 成绩:
4.列出应力-外力之间的运动平衡方程(3分)
5.弹性力学的求解方法有哪几种?(2分)
6.有限元法分析工程问题的基本步骤(6分)
二.计算题(20分)
1.求解等截面直杆在自重作用下的拉伸,已知:单位杆长重量为q=60KN/m,
杆长为L=3m,截面面积为A=100mm2,弹性模数为E=200GPa,分别用材料力学和有限元法(3个单元)
三.推导题
1.推导三节点三角形平面单元的位移函数(16分)
2.推导三节点三角形平面单元的单元刚度矩阵(15分)
3.在上题基础上分析整体刚度矩阵并计算该平面应力问题。

P y1=100KN ,P y3=50KN ,a =1M ,P x2=100KN ,P x3=50KN ,E =210GPa ,t=0.1,u=0.3,求出各节点处的位移与应力。

(25分)
2
¢Û¢
Ü¢
Ù¢
Ú3
y P 3
x P 3
1
4
5
6
2
x P 1
y P a
a
a
a。

有限元法基础试题

有限元法基础试题

有限元法基础试题(A )一、填空题(5×2分) 1.1单元刚度矩阵eT k B DBd Ω=Ω⎰中,矩阵B 为__________,矩阵D 为___________。

1.2边界条件通常有两类。

通常发生在位置完全固定不能转动的情况为_______边界,具体指定有限的非零值位移的情况,如支撑的下沉,称为_______边界。

1.3内部微元体上外力总虚功:()(),,,,e x x xy y bx xy x y y by d W F u F v dxdy δστδτσδ⎡⎤=+++++⎣⎦+(),,,,x x y y xy y x u v u u dxdy σδσδτδδ⎡⎤+++⎣⎦的表达式中,第一项为____________________的虚功,第二项为____________________的虚功。

1.4弹簧单元的位移函数1N +2N =_________。

1.5 ij k 数学表达式:令j d =_____,k d =_____,k j ≠,则力i ij F k =。

二、判断题(5×2分)2.1位移函数的假设合理与否将直接影响到有限元分析的计算精度、效率和可靠性。

( ) 2.2变形体虚功原理适用于一切结构(一维杆系、二维板、三位块体)、适用于任何力学行为的材料(线性和非线性),是变形体力学的普遍原理。

( ) 2.3变形体虚功原理要求力系平衡,要求虚位移协调,是在“平衡、协调”前提下功的恒等关系。

( ) 2.4常应变三角单元中变形矩阵是x 或y 的函数。

( ) 2.5 对称单元中变形矩阵是x 或y 的函数。

( ) 三、简答题(26分)3.1列举有限元法的优点。

(8分)3.2写出有限单元法的分析过程。

(8分)3.3列出3种普通的有限元单元类型。

(6分)3.4简要阐述变形体虚位移原理。

(4分)四、计算题(54分)4.1对于下图所示的弹簧组合,单元①的弹簧常数为10000N/m ,单元②的弹簧常数为20000N/m ,单元③的弹簧常数为10000N/m ,确定各节点位移、反力以及单元②的单元力。

有限元复习题及答案

有限元复习题及答案

1.两种平面问题的根本概念和根本方程;答:弹性体在满足一定条件时,其变形和应力的分布规律可以用在某一平面内的变形和应力的分布规律来代替,这类问题称为平面问题。

平面问题分为平面应力问题和平面应变问题。

平面应力问题设有张很薄的等厚薄板,只在板边上受到平行于板面并且不沿厚度变化的面力,体力也平行于板面且不沿厚度变化。

由于平板很薄,外力不沿厚度变化,因此在整块板上有:,,剩下平行于XY面的三个应力分量未知。

平面应变问题设有很长的柱体,支承情况不沿长度变化,在柱面上受到平行于横截面而且不沿长度变化的面力,体力也如此分布。

平面问题的根本方程为:平衡方程几何方程物理方程〔弹性力学平面问题的物理方程由广义虎克定律得到〕•平面应力问题的物理方程平面应力问题有•平面应变问题的物理方程平面应变问题有在平面应力问题的物理方程中,将E替换为、替换为,可以得到平面应变问题的物理方程;在平面应变问题的物理方程中,将E替换为、替换为,可以得到平面应力问题的物理方程。

2弹性力学中的根本物理量和根本方程;答:根本物理量有:空间弹性力学问题共有15个方程,3个平衡方程,6个几何方程,6个物理方程。

其中包括6个应力分量,6个应变分量,3个位移分量。

平面问题共8个方程,2个平衡方程,3个几何方程,3个物理方程,相应3个应力分量,3个应变分量,2个位移分量。

根本方程有:1.平衡方程及应力边界条件:平衡方程:边界条件:2.几何方程及位移边界条件:几何方程:边界条件:3.物理方程:3.有限元中使用的虚功方程。

对于刚体,作用在其上的平衡力系在任意虚位移上的总虚功为0,这就是刚体的平衡条件,或者称为刚体的虚功方程。

对于弹性变形体,其虚位移原理为:在外力作用下处于平衡的弹性体,当给予物体微小的虚位移时,外力的总虚功等于物体的总虚应变能。

设想一处于平衡状态的弹性体发生了任意的虚位移,相应的虚应变为,作用在微元体上的平衡力系有〔X,Y,Z〕和面力。

外力的总虚功为实际的体力和面力在虚位移上所做的功,即:在物体产生微小虚变形过程中,整个弹性体内应力在虚应变上所做的功为总虚应变能,即:其中为弹性体单位体积内的应力在相应的虚应变上做的虚功,由此得到虚功方程:4.节点位移,单元位移及它们的关系。

(完整版)有限元考试试题及答案

(完整版)有限元考试试题及答案

e an dAl l t h i ng si nt he i rb ei n ga re go o2. 如图2所示,有一正方形薄板,沿对角承受压力作用,厚度t=1m ,载荷F=20KN/m ,设泊松比µ=0,材料的弹性模量为E ,试求它的应力分布。

(15分)图23. 图示结点三角形单元的124边作用有均布侧压力q ,单元厚度为t ,求单元的等效结点荷载。

图3图1一、简答题1. 答:1)合理安排单元网格的疏密分布2)为突出重要部位的单元二次划分3)划分单元的个数4)单元形状的合理性5)不同材料界面处及荷载突变点、支承点的单元划分6)曲线边界的处理,应尽可能减小几何误差7)充分利用结构及载荷的对称性,以减少计算量2. 答:形函数应满足的三个条件:a.必须能反映单元的刚体位移,就是位移模式应反映与本单元形变无关的由其它单元形变所引起的位移。

b.能反映单元的常量应变,所谓常量应变,就是与坐标位置无关,单元内所有点都具有相同的应变。

当单元尺寸取小时,则单元中各点的应变趋于相等,也就是单元的形变趋于均匀,因而常量应变就成为应变的主要部分。

c.尽可能反映位移连续性;尽可能反映单元之间位移的连续性,即相邻单元位移协调。

3. 答:含义:所谓的等参数单元,就是在确定单元形状的插值函数和确定单元位移场的插值函数中采用了完全相同的形函数。

意义:构造出一些曲边地高精度单元,以便在给定地精度下,用数目较少地单元,解决工程实际地具体问题。

4. 答:有限单元法是基于变分原理的里兹(Ritz)法的另一种形式,从而使里兹法分析的所有理论基础都适用子有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法.利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,面且事先不要求满足任何边界条件,因此它可以用来处理很复杂的连续介质问题。

有nl⎥⎦⎤⎢⎣⎡5.0025.025.011212---==E k k ⎥⎦⎤⎢⎣⎡5.0025.0011313-==E k k ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡5.125.025.05.125.0005.05.00025.075.025.025.075.032222212222E E E E k k k k +=++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---5.025.025.0125.025.005.025.0025.05.032312323E E E k k k =+=⎥⎦⎤⎢⎣⎡---5.0025.025.022424E k k ==⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡025.025.00025.0000025.0032522525E E E k k k =+=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.15.00025.075.025.025.075.025.0005.043333313333E E E E k k k k =++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---125.025.05.05.0025.025.05.025.0025.043533535E E E k k k =+=⎥⎦⎤⎢⎣⎡0025.0043636E k k ==⎥⎦⎤⎢⎣⎡75.025.025.075.024444E k k ==⎥⎦⎤⎢⎣⎡---25.0025.05.024545E k k == ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.175.025.025.075.05.00025.025.0005.045535525555E E E E k k k k =++=⎥⎦⎤⎢⎣⎡---25.0025.05.045656E k k ==⎥⎦⎤⎢⎣⎡25.0005.046666E k k ==把上面计算出的,…,对号入座放到总刚矩阵中去,于是得到11k 66k []K的具体表达式。

合肥工业大学机械动力学基础试题(含部分答案)

1 1 2 m2 x2 J eq 2 , 2 2
②由动能定理可知: E = m1 x12
1 2
其中 x1 a , x2 b , 为杆转过的角度. J eq m1a 2 m2b2 再求等效刚度, keq x 2
1 2
1 2 1 2 2 kx2 kb keq kb2 2 2

1 0.577 ,则 n 3
F0 k 1 (1 ) 2
2 2 2
| X |
1 1 =0.133m 2 2 8 (1 0.577 ) (2 0.577 0.577) 2
arctan
2 2 0.577 0.577 arctan 1rad 57.30 2 1 1 0.5772
5.①一单自由度系统运动方程为: 2 x 4 x 8x 3sin t ,求下列值: 系统固有圆频率 n ;临界阻尼系数 ccr ;阻尼比 ;静位移 X S ;动位移幅值(即最大振 幅) | X | ;有阻尼固有频率d ;振动响应滞后于激励的相位角 。 答: 由题意知,m 2kg ,c 4 N s / m ,k 8N / m ,F0 3N , 1rad / s , 则有:
kk mx kx 0 ,即: mx 1 2 k3 cos 2 x 0 k1 k2
∴系统固有频率为:n
k m
k1k2 k3 cos 2 k k k (k k 2 ) cos 2 k1 k 2 . = 1 2 3 1 m m(k1 k 2 )
④推导出用单元节点位移表示的单元应变、单元应力表达式,再利用虚功方程建立单元节 点力阵与节点位移列阵之间的关系,形成单元的刚度方程式。 ⑤根据系统的动能与势能,得到各单元的刚度矩阵和质量矩阵。 ⑥考虑整体结构的约束情况,修正整体刚度方程,求解单元节点的运动方程。 ⑦由单元节点的运动方程“装配”成为全系统的运动方程。 (6)简述机械系统的三要素及动力学模型。 (2012) 答:三要素:惯性、弹性、阻尼. 动力学模型:①集中参数模型,由惯性元件、弹性元件和阻尼元件等离散元件组成;②有 限单元模型,由有限个离散单元组成,每个单元则是连续的;③连续弹性体模型将实际结 构简化成质量和刚度均匀分布或按简单规律分布的弹性体. 3. 试求图示振动系统的运动微分方程和固有频率。 (图 3、图 5 作纯滚动)

有限单元法考试题和答案

有限单元法考试题和答案一、选择题(每题2分,共20分)1. 有限元法中,节点是指()。

A. 网格的交点B. 网格的边界C. 网格的内部点D. 网格的对称中心答案:A2. 在有限元分析中,以下哪种类型的单元是二维的()。

A. 杆单元B. 梁单元C. 壳单元D. 体单元答案:C3. 有限元法中,以下哪种类型的边界条件是自然边界条件()。

A. 位移边界条件B. 力边界条件C. 力矩边界条件D. 压力边界条件答案:B4. 在有限元分析中,以下哪种类型的单元是三维的()。

A. 三角形单元B. 四边形单元C. 六面体单元D. 四面体单元答案:C5. 有限元法中,以下哪种类型的单元是一维的()。

A. 杆单元B. 梁单元C. 壳单元D. 体单元答案:A6. 在有限元分析中,以下哪种类型的单元是平面应力单元()。

A. 轴对称单元B. 平面应变单元C. 壳单元D. 体单元答案:B7. 有限元法中,以下哪种类型的单元是平面应变单元()。

A. 轴对称单元B. 平面应力单元C. 壳单元D. 体单元答案:A8. 在有限元分析中,以下哪种类型的单元是轴对称单元()。

A. 平面应力单元B. 平面应变单元C. 壳单元D. 体单元答案:A9. 有限元法中,以下哪种类型的单元是四面体单元()。

A. 二维单元B. 三维单元C. 壳单元D. 体单元答案:B10. 在有限元分析中,以下哪种类型的单元是六面体单元()。

A. 二维单元B. 三维单元C. 壳单元D. 体单元答案:B二、填空题(每题2分,共20分)1. 有限元法中,单元刚度矩阵的计算需要基于______假设。

答案:小变形2. 在有限元分析中,节点位移向量通常表示为______。

答案:U3. 有限元法中,整体刚度矩阵的组装是通过______实现的。

答案:节点编号4. 在有限元分析中,边界条件的处理需要考虑______和______。

答案:位移边界条件;力边界条件5. 有限元法中,单元的形函数是用于描述单元内______分布的函数。

有限元作业试题及答案.doc

E引入约束,求解整体平衡方程
2
答:一般选用三角形或四边形单元,在满足一定精度情况,
有限元划分网格的基本原则是:
1、拓朴正确性原则。即单元间是靠单元顶点、或单元边、或单元面连接
2、几何保形原则。即网格划分后,单元的集合为原结构近似
3、特性一致原则。即材料相同,厚度相同
4、单元形状优良原则。单元边、角相差尽可能小
c j二elcm= —a
Ni = l/a2 • a x = x/a
同理可得:Nj二y/a
有限元方法及应用试题
1
答:单元离散(划分、剖分)一单元分析一整体分析
有限元分析的主要步骤主要有:
A结构的离散化
B单元分析。选择位移函数、根据几何方程建立应变与位移的关系、根据物理方程建立应力
与位移的关系、根据虚功原理建立节点力与节点位移的关系(单元刚度方程)
C等效节点载荷计算
D整体分析,建立整体刚度方程
7、图示三角形ijni为等边三角形单元,边长为1,单位面积材料密度位P,集 中力F垂直作用于nij边的中点,集度为q的均布载荷垂直作用于im边。写出三 角形单元的节点载荷向量。
q:移到m, i点F:移到m, j点重力:移到m, I, j点
要证{8}=0
只需证,Nm = 0
Nm= 1/2A (am+bmx +cmy)
(d)平面三角形单元,29个节点,38个自由度
4、什么是等参数单元?。
如果坐标变换和位移插值采用相同的节点,并且单元的形状变换函数与位移插值的形函
数一样,则称这种变换为等参变换,这样的单元称为等参单元。
5பைடு நூலகம்
v(x, y)=
答:不能取这样的位移模式,因为在平面三节点三角形单元中,位移模式应该是呈线性的。

合肥工业大学09有限元试题答案

合肥工业大学工程硕士专业《工程中的有限元》2009年试卷答案2009年1月18日晚考试答案 学号: 专业:适用专业:工程硕士-土木与建筑、水利工程2008级,出题人:牛忠荣1.(10分)线弹性力学静力问题有限元法计算列式的推导是如何采用弹性力学问题基本方程? 答:(1) 假设单元的位移场模式 e N δf =, (2) 代入到几何方程,得 e B δε=, (3) 代入到物理方程,得 e DB δζ=,(4) 代入到虚功方程或最小势能原理,得到单元刚度刚度方程 e e K δF =, (5) 叠加到总刚阵,得到结构的平衡方程 K δF =,(6) 引入已知位移边界条件后,K 非奇异,解上式得结点位移。

2.(12分)图示弹性力学平面问题,采用三角形常应变元,网格划分如图,试求:(1) 对图中网格进行结点编号,并使其系统总刚度矩阵的带宽最小; (2) 计算在你的结点编号下的系统刚度矩阵的半带宽; (3) 根据图中结构的边界约束状态,指出那些结点自由度的位移已知并且为何值。

解: 10)1(2,4=+==d M d B041==u u 041==v v题2 图p103.(10分)弹性力学有限元中,平面等参数单元中的“等参数”概念是何意思? 该单元在跨相邻单元时,位移场连续吗? 应力场连续吗?答:在单元中,位移描述的形函数和单元形状描述的形函数是相同的,参数个数相等,称为等参数元。

相邻等参元之间,位移是连续的,应力场不连续。

4.(13分)回答下列问题:(1) 弹性力学平面问题4节点四边形等参元,其单元自由度是多少?单元刚阵元素是多少?(2) 弹性力学空间轴对称问题三角形3节点单元,其单元自由度是多少?单元刚阵元素是多少?(3) 弹性力学空间问题4节点等参元,其单元自由度是多少?单元刚阵元素是多少?(4) 平面刚架结构梁单元(考虑轴向和横向变形)的自由度是多少?单元刚阵元素是多少?答:平面问题4节点等参元,其单元自由度是8个; 单元刚阵元素有64个; 轴对称问题三角形3节点单元,单元自由度是6个;单元刚阵元素有36个; 空间问题4节点等参元,其单元自由度是12个;单元刚阵元素有144个; 平面梁单元(考虑轴向和横向变形)的自由度是6个;单元刚阵元素有36个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档