石墨烯能带结构的

合集下载

扭角石墨烯的能带结构

扭角石墨烯的能带结构

扭角石墨烯的能带结构石墨烯是一种由碳原子构成的二维材料,具有许多特殊的性质和应用潜力。

在了解其能带结构之前,让我们先了解一些基础的概念。

能带结构是指材料中电子能量的分布情况。

在固体中,原子间的相互作用会导致电子能量的禁带和允带的形成。

禁带是指在该范围内电子是禁止存在的,而允带则是电子能量允许存在的范围。

对于石墨烯这样的二维材料来说,由于其特殊的晶体结构,其能带结构也具有特殊的性质。

石墨烯的能带结构可以通过简单的紧束缚模型来描述。

在这个模型中,我们可以将每个碳原子看作是一个非常小的波函数,著名的π-轨道。

这些π-轨道之间形成了一个广义相互作用,导致了石墨烯的特殊性质。

石墨烯的能带结构可以通过计算每个π-轨道内的电子能量来获得。

由于石墨烯具有相应的空间对称性,可以对能量波函数做坐标变换,得到k空间之中的能带结构。

在石墨烯中,k空间由两个相互垂直的轴(kx和ky)来表示。

石墨烯的基态能带结构呈现出一个特殊的“锥”状形式,可以通过数学计算来获得。

在k空间中,石墨烯的能带结构由两个线性色散关系描述,分别是导带和价带。

导带和价带之间的能隙非常小,约为0.026电子伏特。

这也是石墨烯具有金属特性的原因之一具体而言,石墨烯的导带和价带分别由两个线性色散关系表示。

在导带中,电子的能量与k空间中的k值成正比关系,可以用E(k) = ħv_fk表示,其中E(k)是电子的能量,k是k空间中的波矢,v_f是石墨烯的费米速度。

而在价带中,电子的能量也与k值成正比关系,可以用E(k) = -ħv_fk表示。

石墨烯的可视化能带图通常显示了导带和价带之间的傅里叶因子,在石墨烯中以6个点为中心进行对称展开。

这些图形通常被称为布里渊区。

石墨烯的能带结构对其电子输运性质有着重要的影响。

由于费米速度的高值,石墨烯中的电子具有非常高的迁移率。

这使得石墨烯在电子学器件中具有巨大的潜力。

总之,石墨烯是一种具有特殊能带结构的二维材料。

通过紧束缚模型和数学计算,可以得到导带和价带之间的色散关系。

紧束缚近似下的石墨烯能带计算

紧束缚近似下的石墨烯能带计算

精选课件
3
2、紧束缚近似
紧束缚近似是将在一个原子附近的电子看作 受该原子势场的作用为主,其他原子势场的作用 看作微扰,从而可以得到电子的原子能级和晶体 中能带之间的相互关系。在此近似中,能带的电 子波函数可以写成布洛赫波函数之和的形式:
k r
1 eikRm
Nm
i
rRm
精选课件
4
二、石墨烯电子能带计算
精选课件
8
石墨烯的一个原胞内包含两个不等价的碳原子A和B, 如图1所示,取晶格的基矢为
a 1
3a 2
i
3a j 2
a
2
3a 2
i
3a j 2
b1
2 3a
i
2 3 3a
j
b
2
2 3a
i
2
3 3a
j
由此,可以计算出石墨烯倒空间中第一布里渊区六
个顶点的坐标位置为: 图1中相对位置矢量为:
0 ,
精选课件
7
H 12H 2 11|H| 2
1 eikRjA Nj
rRjA
H1 Nj
eikRB j
rRB j
1 e ik (R B j R jA ) N jj
r R jAHr R B j (6)
在紧束缚近似下,只考虑最近邻相互作用。对于每个碳原子而言,有3 个最近邻原子。如图1所示
精选课件
13
谢谢各位老师!
精选课件
14
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
H |c 11 c 22 E |c 11 c 22 (2)
精选课件
6
用 1 | 两边同时左乘(2)式,可得

石墨烯的能带结构

石墨烯的能带结构

石墨烯的能带结构
石墨烯是一个二维的单层碳原子晶体,其能带结构与三维晶体不同。

石墨烯的能带结构是一个简单的线性结构,其中存在两个无色散的Dirac点。

在石墨烯中,每个碳原子有三个近邻碳原子,它们在二维平面上形成一个六边形格子。

由于局部电子结构的共价键成键能达到几电子伏特(eV)级别,而高能电子或光子的能量竞相达到几百电子伏特级别,因此大部分情况下,我们只需要关注石墨烯最外层的价带和导带。

石墨烯的费米面在K点处与价带相交,这个交点是双价带结构中的能源极值点,称为Dirac点。

由于石墨烯的晶格结构以及碳原子的π轨道特性,这个点出现在唯一的两个对称点处,即K点和K'点。

在K点和K'点处,碳原子的高度对称性使得石墨烯中的电荷载流子表现出线性色散关系。

通过改变能带结构的形状和尺寸,可以调节石墨烯的电学性质,实现对电子传输的控制。

总之,石墨烯的能带结构具有独特的线性结构,其中包含两个无色散的Dirac点。

这种结构赋予了石墨烯优异的电学和热学性质,使其成为当今材料科学研究中的热点。

石墨烯光学性质以及二维材料的纳米光子学性质浅析

石墨烯光学性质以及二维材料的纳米光子学性质浅析
① 石墨烯与等离子体纳米结构相结合
使光集中用于等离子体共振,从而使局部电场得到显著增强。在量子效 率方面得到巨大提高。但也会导致可操作宽带的范围减少。
② 整合量子点和石墨烯
用胶体量子点覆盖石墨烯可以获得具有能够获得具有 108 电子/光子的的超高光电探测和 107AW-1 的光响应的光电探测器。但由于需要长时间产生增益, 它们的运算速度也很低。
石墨烯等离激元学
由于石墨烯同时具有高的载流子迁移率和高导电性,它也成为了一种极具前 景的太赫兹到中红外等离子体器件应用的候选材料。等离子体具有高局域场 强度,广泛用于包括光学天线,近场光学显微镜,化学和生物传感器和亚波 长光学器件等。和传统等离子材料相比具有以下优点: ① 可以通过化学掺杂和门电压调控。 ② 具有更强的局域性 ③ 低损耗和长寿命 ④ 结晶度
过渡金属二硫化物光子学
过渡金属二硫化物(TMDCs)是化学公式为MX2的材料,M代表Mo、W、Nb、Re 这一类元素,X是硫元素。
TMDCs的层间相互作用是弱范德华力,而平面成键是强共价键。因此TMDCs 可以被剥离到类似石墨烯的薄膜结构,显著地扩展了二维材料的材料库。一 些二维的TMDCs,如钼和钨的硫化物,在多层的形式中有间接带隙,而在它们 的单层形式中成为直接带隙半导体。他们相当大的和可调带隙,不仅仅能产 生强的光致发光,也能打开像光电探测器,能量收集器,电致发光等光电器 件的大门。而且不同于石墨烯基器件,他具有可操作的光谱范围。另外,在 一些二维的TMDCs中已经证明了的奇异光学性质,如谷相干和谷选择性的圆二 色性,使这些材料非常有希望发现新的物理现象。
① 光与石墨烯的相互作用从能带跃迁的角度主要有两种:带间跃迁和带内跃 迁。远红外和太赫兹光谱区为带内跃迁,近红外及可见光光谱区主要是带 间跃迁;

石墨烯性质-表面等离子体

石墨烯性质-表面等离子体

1 石墨烯电子能带结构所带来的性质石墨烯是零带系半导体,其能带结构在K空间成对顶的双锥形,费米面在迪拉克点之上,石墨烯为n型,费米面在狄拉克点以下为p型。

由于其能带结构的特殊性,在狄拉克点处的电子态密度很低,对于费米面在狄拉克点附近的高质量石墨烯,通过简单的掺杂或用栅压调控,就可以使其费米面有很大幅度的移动,从而很容易用人工的方法制作出石墨烯的p-n结结构。

而该结构是太阳能电池材料所必需的条件。

2、石墨烯对红外光的高透过性石墨烯对光的透过率可达到97.7%以上,使其成为太阳能电池电极材料的很好选择。

现在太阳能电池的透过效率不好原因是太阳能电池上层电极对太阳光中的红外部分吸收十分严重,而红外部分又是太阳光能量的一个集中区,所以影响了下方的光伏材料获得的光的强度。

而石墨烯对红外的透过性非常好,用石墨烯带作为太阳能电极材料,可大幅度提高转化效率。

3、石墨烯中的高载流子迁移率石墨烯中的电子的迁移率大约是硅的100倍,而电导率是与迁移率和载流子浓度乘积成正比,而材料的透光性能又通常和载流子浓度成反比。

一般材料如果对光的透过性很好,那么它的载流子浓度就很低,而通常迁移率也很低,从而导电率也很差,这也是目前为什么太阳能透明电极没有很好性能的原因。

而石墨烯这种新材料,它的载流子迁移率如此之高,即使在载流子浓度很低时(透光性很好),也能保证两者乘积很客观,有很好的导电性。

这也进一步解释了石墨烯适合用于太阳能电池电极的原因。

4、石墨烯中的光激发电子-空穴对的产生消失时间石墨中的电子式狄拉克电子,速度接近光速三分之一,室温下传导电子比任何其他已知导体要快,所以被光激发出的电子-空穴对可以快速形成电流,同理在撤去光源后也可以迅速消失。

基于石墨烯的光伏器件对光的响应目前在实验室中已达到THz,成为超快光电探测器的候选材料5、石墨烯的热载流子效应石墨烯可以对光产生不同寻常的反应,在室温和普通光照射下,就可以发生热载流子效应,产生电流。

石墨烯电子能带结构的计算

石墨烯电子能带结构的计算

石墨烯电子能带结构的计算摘要:本文简要阐述了石墨烯的结构和主要特性,采用碳原子的SP2 杂化理论和能带理论,运用紧束缚近似方法计算了石墨的能带结构。

关键词:石墨烯,结构和性质,紧束缚近似,能带结构一、引言石墨烯是一种由碳原子构成的单层片状结构的新材料。

是一种由碳原子以SP2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。

石墨烯目前是世上最薄,最坚硬,电阻率最小的材料。

而且电子迁移的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。

由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。

二、石墨烯结构石墨烯是由碳六元环组成的两维(2D)周期蜂窝状点阵结构, 它可以翘曲成零维(0D)的富勒烯(fullerene),卷成一维(1D)的碳纳米管(carbon nano-tube, CNT)或者堆垛成三维(3D)的石墨(graphite), 因此石墨烯是构成其他石墨材料的基本单元。

石墨烯的基本结构单元为有机材料中最稳定的苯六元环, 是目前最理想的二维纳米材料。

理想的石墨烯结构是平面六边形点阵,可以看作是一层被剥离的石墨分子,每个碳原子均为sp2杂化,并贡献剩余一个p轨道上的电子形成大π键,π电子可以自由移动,赋予石墨烯良好的导电性。

二维石墨烯结构可以看是形成所有sp2杂化碳质材料的基本组成单元。

三、石墨烯特性1、电子运输石墨烯表现出了异常的整数量子霍尔行为。

其霍尔电导为量子电导的奇数倍,且可以在室温下观测到。

这个行为已被科学家解释为“电子在石墨烯里遵守相对论量子力学,没有静质量”。

2、导电性石墨烯结构非常稳定。

石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。

这种稳定的晶格结构使碳原子具有优秀的导电性。

石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。

石墨烯的能带结构及其与电子输运的关系

石墨烯的能带结构及其与电子输运的关系石墨烯是一种独特的材料,由单层的碳原子组成的二维晶体结构。

在近年来,石墨烯因为其独特的电学和光学性质受到了广泛的研究。

尤其是在电子输运领域,石墨烯在提高电子速度、操作速度和功耗等方面有着广泛的应用前景。

本文将就石墨烯的能带结构及其与电子输运的关系进行深入分析。

一、石墨烯的能带结构石墨烯的能带结构是其独特电学性质的重要基础。

石墨烯的能带结构由两个部分组成:价带和导带。

价带是一个由半满的电子能级组成的能带,而导带是一个由空的电子能级组成的能带。

当石墨烯中的电子受到激发后,它们会跳到导带中,从而形成电流。

不同于其他材料的能带结构,石墨烯的价带和导带都是相交的。

这种相交的能带结构使得石墨烯的电子表现出一些非常特殊的性质。

其中最重要的是,电子表现出一种类似于相对论的行为,称为狄拉克费米子(Dirac Fermion)。

二、石墨烯的电子输运石墨烯的独特能带结构对电子的输运有着深刻的影响。

一般来说,石墨烯中的电子输运分为两种模式:扩散和隧穿。

扩散是指电子在石墨烯中通过晶格振动进行的传递。

在扩散模式下,石墨烯中的电子表现出一种类似于半球的传输模式。

这种传输模式使得石墨烯中的电子具有非常高的迁移速度和导电能力。

隧穿是指电子通过两个不连通的导体之间的空间逸出。

在隧穿模式下,电子可以穿过电势垒并传输到另一个导体中。

由于石墨烯中的电子跨越空间的能力非常强,因此石墨烯在隧穿方面的应用潜力非常大。

三、结论总体来说,石墨烯的独特能带结构使得它具有非常特殊的电学性质。

石墨烯中的电子不仅具有非常高的迁移速度和导电能力,而且还具有非常强的隧穿能力。

因此,在未来的电子设备中,石墨烯将有着广泛的应用前景。

同时,石墨烯的发现也为我们提供了一种全新的材料研究思路,或许它将带领我们打开更为广阔的材料世界。

石墨烯的电子结构与特性

石墨烯的电子结构与特性石墨烯是一种由碳原子组成的二维晶体结构,它的电子结构与特性引起了广泛的研究兴趣。

石墨烯的电子结构与传统三维材料存在着很大的区别,这决定了它具有许多独特的特性。

首先,石墨烯的电子结构可以通过简单的紧束缚模型来描述。

由于石墨烯只有一个原子层的厚度,碳原子之间的相互作用非常密切,使得电子在石墨烯中具有高度的共价性。

在紧束缚模型中,我们可以将每个碳原子的原子轨道视为一个原子的价带,通过考虑碳原子之间的相互作用,得到石墨烯的能带结构。

石墨烯的能带结构显示了它的特殊性。

石墨烯中的电子以π键形式与邻近的碳原子形成共价结合,形成π能带和π*能带。

这两个能带之间存在一个能隙,称为零势能点。

在这个点附近,石墨烯的费米能级会与能带相交,形成简并点。

这个简并点使得石墨烯的传导性质非常特殊。

此外,石墨烯的电子结构还具有色散关系非常特殊的特点。

在石墨烯的能带结构中,π能带和π*能带的色散关系可以近似看作线性关系。

这种线性色散关系使得石墨烯中的电子具有非常高的流动速度,称为石墨烯的电荷载流子具有无质量属性。

这使得石墨烯具有非常高的载流子迁移率,是一种非常理想的材料用于制备高速电子器件。

除了电子结构的特殊性,石墨烯还具有许多其他的特性。

例如,石墨烯具有非常高的机械强度,其张力可以达到每平方米1.0 T。

这使得石墨烯具有很高的拉伸强度和弹性模量,是一种理想的材料用于制备超薄和柔性设备。

此外,石墨烯还具有非常好的热导性。

石墨烯的热导率可以达到3000 W/mK,是铜的10倍以上。

这使得石墨烯可用于制备高效的热管理器件。

另一个石墨烯的重要特性是其光学特性。

石墨烯具有非常高的光吸收率,可达到2.3%。

这使得石墨烯可用于制备高效的光电转换器件。

总之,石墨烯的电子结构与特性使其成为一个非常有潜力的材料。

石墨烯不仅具有特殊的电子结构,还具有独特的机械、热学和光学特性。

这些特性使得石墨烯在电子器件、传感器、储能器件和光电器件等领域有着广泛的应用前景。

石墨烯能态密度

石墨烯能态密度
引言概述:
石墨烯作为一种新型的二维材料,具有出色的导电性、热传导性和机械性能,引起了广泛的研究兴趣。

石墨烯的能态密度是描述其电子能级分布的重要物理量,对于理解和设计石墨烯的电子性质具有重要意义。

本文将从五个大点出发,详细阐述石墨烯的能态密度。

正文内容:
1. 石墨烯的基本特性
1.1 石墨烯的结构特点
1.2 石墨烯的电子能级分布
1.3 石墨烯的导电性和热传导性
2. 石墨烯的能带结构
2.1 石墨烯的能带图像
2.2 石墨烯的费米能级
2.3 石墨烯的能带间隙
3. 石墨烯的能态密度计算方法
3.1 第一性原理计算方法
3.2 紧束缚模型计算方法
3.3 有效质量模型计算方法
4. 石墨烯的能态密度的影响因素
4.1 温度的影响
4.2 外加电场的影响
4.3 缺陷和杂质的影响
5. 石墨烯的能态密度的应用
5.1 石墨烯的能带调控
5.2 石墨烯的电子输运性质
5.3 石墨烯的光电性能
总结:
综上所述,石墨烯的能态密度是描述其电子能级分布的重要物理量。

石墨烯的能带结构、能态密度计算方法以及影响因素的研究为我们深入理解石墨烯的电子性质提供了重要的理论基础。

石墨烯的能态密度的应用涉及到能带调控、电子输运性质和光电性能等领域,对于石墨烯在电子器件、光电器件等领域的应用具有重要意义。

随着对石墨烯的研究不断深入,相信石墨烯的能态密度将在更多领域展现出其独特的应用价值。

石墨烯的带隙

石墨烯的带隙一、石墨烯的介绍石墨烯是由碳原子组成的单层二维材料,具有高导电性、高透明度和高机械强度等特性。

它是一种新型的纳米材料,被认为具有广泛的应用前景。

二、带隙的概念和作用带隙是指能带中能量禁止区域的宽度,也可以理解为价带和导带之间的能量差。

在半导体或绝缘体中,带隙可以阻止电子从价带跃迁到导带,因此对于电子传导和光学性质起着重要作用。

三、石墨烯的能带结构石墨烯由于只有一个原子层,其能量分布与三维晶体不同。

它具有两个不重叠的圆锥形能带,即价带和导带。

这两个能带在费米面处相交,并且没有明显的能隙。

四、石墨烯的零质量费米子行为由于其特殊的能量分布,石墨烯中存在零质量费米子行为。

这意味着在费米面附近,电子表现出类似于光子的行为,其速度与能量成正比。

这种行为在石墨烯中具有重要的应用价值。

五、石墨烯带隙的调控方法由于石墨烯本身没有明显的带隙,因此需要通过外部作用来调控其带隙。

目前常用的方法包括:物理剥离、化学修饰、量子点引入和电场调控等。

六、化学修饰法调控带隙化学修饰法是通过在石墨烯表面引入各种官能团来改变其电子结构,从而实现带隙调控。

例如,氟原子可以引入负电荷,使得费米面向导带移动,并增大了带隙。

七、量子点引入法调控带隙量子点是一种纳米材料,具有禁闭效应和大小效应。

将量子点引入到石墨烯中可以形成人工能级,在费米面附近形成能隙。

这种方法可以实现可控的带隙大小和位置。

八、电场调控法调控带隙通过在石墨烯表面施加垂直方向上的电场可以改变其电子结构,从而实现带隙调控。

这种方法可以实现快速、可逆和可调控的带隙调节。

九、石墨烯带隙的应用调控石墨烯的带隙可以使其在电子器件、传感器、光电器件等领域有广泛的应用。

例如,通过引入量子点可以制备高效的太阳能电池;通过化学修饰法可以制备高灵敏度的气体传感器。

十、总结石墨烯作为一种新型纳米材料,具有特殊的能带结构和零质量费米子行为。

调控其带隙是实现其应用价值的重要途径之一,目前已经有多种方法被提出并得到了广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档