解直角三角形4方位角问题导学案
2024年解直角三角形方位角、坡度角讲课精彩教案

2024年解直角三角形方位角、坡度角讲课精彩教案一、教学内容1. 利用直角三角形的性质,解决实际生活中的方位角问题;2. 利用直角三角形计算坡度角,并应用于地形、建筑设计等领域。
二、教学目标1. 理解并掌握方位角与坡度角的概念及计算方法;2. 能够运用直角三角形的性质解决实际问题,如确定物体方位和计算坡度;3. 培养学生的空间想象能力和解决实际问题的能力。
三、教学难点与重点教学难点:理解方位角和坡度角的实际应用,以及计算方法的灵活运用。
教学重点:掌握直角三角形的性质,以及如何利用这些性质解决方位角和坡度角问题。
四、教具与学具准备1. 教具:直角三角形模型、地球仪、坡度计算器;2. 学具:三角板、量角器、计算器。
五、教学过程1. 实践情景引入(5分钟)利用地球仪展示不同地点的方位角,引导学生思考如何计算和确定方位角。
2. 知识讲解(15分钟)(1)回顾直角三角形的性质;(2)介绍方位角的概念及计算方法;(3)介绍坡度角的概念及计算方法。
3. 例题讲解(15分钟)(1)计算给定地点的方位角;(2)计算给定地形的坡度角。
4. 随堂练习(10分钟)(1)学生独立完成练习题,计算给定地点的方位角;(2)学生分组讨论,计算给定地形的坡度角。
六、板书设计1. 方位角的定义及计算方法;2. 坡度角的定义及计算方法;3. 例题及解答过程。
七、作业设计1. 作业题目:(1)给定一点,求该点的方位角;(2)给定一个斜面,求其坡度角。
2. 答案:(1)方位角的计算结果为:度;(2)坡度角的计算结果为:度。
八、课后反思及拓展延伸1. 反思:本节课学生对方位角和坡度角的概念理解较为顺利,但在计算过程中仍存在一些问题,如计算方法不熟练、单位换算错误等,需要在课后加强练习。
2. 拓展延伸:引导学生思考在实际生活中,还有哪些问题可以利用直角三角形的性质来解决,鼓励学生进行探索和研究。
重点和难点解析1. 实践情景引入的理解和应用;2. 知识讲解中方位角和坡度角计算方法的掌握;3. 例题讲解中解题步骤的详细解释;4. 随堂练习的设计与实施;5. 作业设计中题目难度的把握及答案的准确性;6. 课后反思与拓展延伸的有效性。
用解直角三角形解方位角的应用教案(完美版)

在线分享文档用解直角三角形解方位角的应用一、教学目标(一)知识与技能巩固直角三角形中锐角的三角函数,学会解关于方位角的问题.(二)过程与方法逐步培养学生分析问题解决问题的能力,进一步渗透数形结合的数学思想和方法.(三)情感态度与价值观培养学生用数学的意识;渗透数学来源于实践又反过来作用于实践的辩证唯物主义观点.二、重、难点重点:能熟练运用有关三角函数知识.难点:解决实际问题.三、教学过程(一)明确目标讲评上课节课后作业(二)重点、难点的学习与目标完成过程教师出示例题.例1 如图,在山坡上种树,要求株距(相邻两树间的水平距离)是5.5m,测得斜坡的倾斜角是24°,求斜坡上相邻两树的坡面距离是多少(精确到0.1m).分析:1.例题中出现许多术语——株距,倾斜角,这些概念学生未接触过,比较生疏,而株距概念又是学生易记错之处,因此教师最好准备教具:用木板钉成一斜坡,再在斜坡上钉几个铁钉,利用这种直观教具更容易说明术语,符合学生的思维特点.2.引导学生将实际问题转化为数学问题画出图形(上图(2)).已知:Rt△ABC中,∠C=90°,AC=5.5,∠A=24°,求AB.3.学生运用解直角三角形知识完全可以独立解决例1.教师可请一名同学上黑在线分享文档板做,其余同学在练习本上做,教师巡视.答:斜坡上相邻两树间的坡面距离约是6.0米.教师引导学生评价黑板上的解题过程,做到全体学生都掌握.例2 如图6-30,沿AC方向开山修渠,为了加快施工速度,要从小山的另一边同时施工,从AC上的一点B取∠ABD=140°,BD=52cm,∠D=50°,那么开挖点E离D多远(精确到0.1m),正好能使A、C、E成一条直线?这是实际施工中经常遇到的问题.应首先引导学生将实际问题转化为数学问题.由题目的已知条件,∠D=50°,∠ABD=140°,BD=520米,求DE为多少时,A、C、E在一条直线上。
2024年解直角三角形方位角、坡度角讲课教案

2024年解直角三角形方位角、坡度角讲课教案一、教学内容本节课我们将学习教材第十章“解直角三角形的应用”中的方位角与坡度角。
具体内容包括:理解方位角的概念,掌握利用正切值计算方位角;理解坡度角的概念,掌握利用正弦值和余弦值计算坡度角。
二、教学目标1. 理解并掌握方位角与坡度角的概念。
2. 学会使用正切、正弦和余弦值计算方位角与坡度角。
3. 能够在实际问题中运用所学的知识,解决有关方位角与坡度角的问题。
三、教学难点与重点重点:方位角与坡度角的概念及其计算方法。
难点:在实际问题中运用所学的知识,解决有关方位角与坡度角的问题。
四、教具与学具准备1. 教具:三角板、量角器、多媒体课件。
2. 学具:直角三角形模型、计算器。
五、教学过程1. 实践情景引入:通过展示实际生活中的方位角与坡度角问题,引导学生思考如何解决这些问题。
2. 知识讲解:a. 讲解方位角的概念,引导学生通过观察三角板理解方位角的含义。
b. 讲解正切值在计算方位角中的应用,通过例题进行演示。
c. 讲解坡度角的概念,引导学生通过观察直角三角形模型理解坡度角的含义。
d. 讲解正弦值和余弦值在计算坡度角中的应用,通过例题进行演示。
3. 随堂练习:让学生完成教材中的相关习题,巩固所学知识。
4. 解题方法与技巧讲解:针对学生在随堂练习中遇到的问题,进行讲解和指导。
六、板书设计1. 方位角与坡度角的概念。
2. 正切、正弦和余弦值在计算方位角与坡度角中的应用。
3. 例题解答步骤。
七、作业设计1. 作业题目:a. 计算给定直角三角形的方位角。
b. 计算给定直角三角形的坡度角。
2. 答案:见附页。
八、课后反思及拓展延伸1. 反思:本节课学生对方位角与坡度角的概念掌握情况,以及计算方法的运用。
2. 拓展延伸:引导学生思考方位角与坡度角在实际生活中的应用,如建筑设计、地形测量等。
重点和难点解析1. 教学内容的针对性及深度。
2. 教学目标的明确性与可衡量性。
3. 教学难点与重点的识别。
九年级数学《解直角三角形4》导学案

《28.2.3 解直角三角形》导学案【知识脉络】【学习目标】1、了解方位角的命名特点,能准确把握所指的方位角是指哪一个角2、理解坡角、坡度的概念,并会用解直角三角形的相关知识解决航行、坡度等实际问题。
3、巩固用三角函数有关知识解决问题,学会解决方位角问题.逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法.【要点检索】1、关于行程问题的解直角三角形的应用;2、坡角、坡度的意义及应用。
【方法导航】1、复习回顾行程、航行问题,并运用解直角三角形解决有关实际问题,认识坡角、坡度的意义,并解决实际问题。
2、课前热身:(1)直角三角形中三边、两锐角、边角关系分别是什么?(2)什么叫解直角三角形?直角三角形可解的条件是什么?在解法选择上应注意什么?3、自主探究:自学教科书内容,尝试解决下列问题(1)坡角指的是____________________,坡度指的是_______________,(2)通常情况下,坡度可表示为_______________,如图,坡角为α,则坡度i 与坡角之间的关系为_______________。
结合图形思考,坡度i 与坡角α之间具有什么关系?解直角三角形 坡角、坡度的意义航行问题 坡角、坡度等实际问题实际问题这一关系在实际问题中经常用到。
友情提示:坡度与坡角坡面的铅直高度h和水平宽度l的比叫做坡度(或叫做坡比),一般用i表示。
即i=,常写成i=1:m的形式如i=1:2.5把坡面与水平面的夹角α叫做坡角.(3)如图,一艘海轮位于灯塔P的北偏东65方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34方向上的B处.这时,海轮所在的B处距离灯塔P有多远?分析导引:要求BP,实质是求那个三角形的什么边,由题中已知条件可确定哪些元素的值?怎样求PC?应选择什么方法求BP?(4)汉江旬阳县城段拦河堤坝剖面如图6-33所示水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1∶3,斜坡CD 的坡度i=1∶2.5,你能根据所提供的数据求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长吗(精确到0.1m) ?试试看!分析导引:①坡度与坡角是什么关系?怎样求坡角α、β?②由坡度i=1:3,可知AE与BE的关系是_________,由BE=23m可求出AE=_____要求斜坡AB,可选方法是__________;③要求AD,只需求出________即可。
冀教版九年级数学上册26.4解直角三角形的应用导学案

26.4解直角三角形的应用(方位角)导学案年级:九科目:数学课题:26.4 解直角三角形的应用(方位角)课型:新授课使用时间:xxx 主备人:xx 主审人:xx 班级9.11姓名xx 知识技能目标1.进一步学会锐角三角函数的应用,运用解直角三角形的知识解决问题.2.培养学生把实际问题转化为应用问题,方法情感目标事物间的相互转化思想,通过学习培养学生学习数学的兴趣.重点方位角的实际问题难点把实际问题转化为数学问题教法讲练结合法学法类比学习法,小组讨论与自主学习相结合【知识要点】1.认清俯角与仰角解决此类问题的关键是将一般三角形问题,通过添加辅助线转化直角三角形问题典型例题】1.如图,AB和CD是同一地面上的两座相距36米的楼房,在楼AB的楼顶A点测得楼CD的楼顶C的仰角为45°,楼底D的俯角为30°.求楼CD的高。
若已知楼CD高为30米,其他条件不变,你能求出两楼之间的距离BD吗?2.如图,飞机在距地面9km高空上飞行,先在A处测得正前方某小岛C的俯角为30°,飞行一段距离后,在B处测得该小岛的俯角为60°.求飞机的飞3.如图,在一笔直的海岸线上有A,B两个观测站,A在B的正西方向,AB=2km,从A测得船C在北偏东60°的方向,从B测得船C在北偏西45°的方向.求船C离海岸线的距离.【基础演练】【基础演练】编号:2.方位角:如图,从O点出发的视线与铅垂线所成的锐角,叫做观测的方位角30°45°45°北东西O南4.气象局发出预报:如图, 沙尘暴在A市的正东方向400km的B处以40km/h的速度向北偏西600的方向转移,距沙尘暴中心300km的范围内将受到影响,A市是否受到这次沙尘暴的影响?如果受到影响,将持续多长时间?5.如图, 海上有一灯塔P, 在它周围3海里处有暗礁. 一艘客轮以9海里/时的速度由西向东航行, 行至A点处测得P在它的北偏东60度的方向, 继续行驶20分钟后, 到达B处又测得灯塔P在它的北偏东45度方向. 问客轮不改变方向继续前进有无触礁的危险?5.海上有一小岛A,它周围8.7海里内有暗礁,某海船跟踪鱼群由西向东航行,在B点测得小岛在北偏东60°,航行10海里后到达C点,这时测得小岛A在北偏东30°,如果渔船不改变航向,继续1.如图,一座塔的高度TC=120m,甲、乙两人分别站在塔的西、东两侧的点A、B处,测得塔顶的仰角分别为28º、15º。
课题解直角三角形4

课题解直角三角形(四)教学目标:1、使学生了解方位角的命名特点,能准确把握所指的方位角是指哪一个角2、逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法.3、巩固用三角函数有关知识解决问题,学会解决方位角问题.重点:用三角函数有关知识解决方位角问题难点:学会准确分析问题并将实际问题转化成数学模型三、教学过程(一)复习引入1、叫同学们在练习薄上画出方向图(表示东南西北四个方向的)。
2、依次画出表示东南方向、西北方向、北偏东65度、南偏东34度方向的射线(二)教学互动例5如图,一艘海轮位于灯塔P的北偏东65o方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34o方向上的B处.这时,解:如图, 在中,00g=-PC PAcos(9065)=⨯80cos25≈72.8在中, .,因此.当海轮到达位于灯塔P的南偏东340方向时,它距离灯塔P大约130.23海里.海轮所在的B处距离灯塔P有多远(精确到0.01海里)?(三)巩固再现1、P95 12、上午10点整,一渔轮在小岛O的北偏东30°方向,距离等于10海里的A处,正以每小时10海里的速度向南偏东60°方向航行.那么渔轮到达小岛O的正东方向是什么时间?(精确到1分).3、如图6-32,海岛A的周围8海里内有暗礁,鱼船跟踪鱼群由西向东航行,在点B处测得海岛A位于北偏东60°,航行12海里到达点C处,又测得海岛A位于北偏东30°,如果鱼船不改变航向继续向东航行.有没有触礁的危险?三、评讲分析前置性作业。
四、小结,学生谈本节课的收获:本节课你学到了什么知识?从中得到了什么启发?五、布置作业。
1、前置作业:金牌学案P672、课后作业:课本P93(7)教学反思:。
【学案】 解直角三角形及方位角的应用
23.2.1解直角三角形及方位角的应用教学思路(纠错栏)学习目标:1.能利用直角三角形中的边、角关系解直角三角形.2. 能用解直角三角形的知识解决与方位角有关的实际问题;学习重点:了解解直角三角形的概念,能运用直角三角形的角与角(两锐角互余),边与边(勾股定理)、边与角关系解直角三角形。
学习难点:灵活选择适当的边角关系式.☆预习导航☆一、链接:如图,△中共有六个元素(三个角、三条边),其中∠90°,那么其余五个元素(三边a、b、c ,两个锐角A、B)之间有怎样的关系呢?填一填:(1)三边之间的关系:_____22=+ba;(2)两锐角之间的关系:∠A + ∠B = ;(3)边角之间的关系: = ,= , = .二、导读:1.阅读课本124到125 页,并思考以下问题:(1)解直角三角形的定义。
任何一个三角形都有六个元素,三条边、三个角,在直角三角形中,已知有一个角是直角,我们把利用已知的元素求出末知元素的过程(已知的两个元素中,至少有一个是边),叫做解直角三角形。
(2)解直角三角形的所需的工具。
如图,在△中,∠=90°,其余5个元素之间有以下关系:a.两锐角互余∠A+∠B=b.三边满足勾股定理a2+b2=c.边与角关系==,==,=,=。
(3)在解决第125页例2时如何添加辅助线构造出直角三角形?2.阅读课本127—128 页例5并思考:如何把实际问题转化为数学问题来解答?教学思路(纠错栏)☆合作探究☆1.在△中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且3,3,解这个三角形.2.如图,在△中,∠A = 60°, = 6 ,= 5 ,求 S△3.如图,海中有一个小岛A,该岛四周10海里内有暗礁.今有货轮由西向东航行,开始在A岛南偏西55º的B处,往东行驶20海里后到达该岛的南偏西25º的C处.之后,货轮继续向东航行,你认为货轮继续向东航行途中会有触礁的危险吗?☆归纳反思☆填写下表:在△中,∠C=90°,∠A,∠B,∠C的对边分别是a , c.已知条件已知条件解法一边一角一条直角边和一个锐角(a, ∠A)斜边和一个锐角(c, ∠A)两 边两条直角边 () 斜边和一条直角边(a )提醒:在解直角三角形时,结合已知条件,选择合适的解法(尽量不使用除法计算),可使运算简便。
初中数学九年级下册《利用方位角、坡度解直角三角形》导学案
28.2.2 应用举例第3课时利用方位角、坡度解直角三角形【学习目标】⑴使学生了解方位角的命名特点,能准确把握所指的方位角是指哪一个角⑵逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法.⑶巩固用三角函数有关知识解决问题,学会解决方位角问题.【学习重点】用三角函数有关知识解决方位角问题【学习难点】学会准确分析问题并将实际问题转化成数学模型【导学过程】一、自学提纲:坡度与坡角坡面的铅直高度h和水平宽度l的比叫做坡度(或叫做坡比),一般用i表示。
即i=,常写成i=1:m的形式如i=1:2.5把坡面与水平面的夹角α叫做坡角.结合图形思考,坡度i与坡角α之间具有什么关系?这一关系在实际问题中经常用到。
二、教师点拨:例5如图,一艘海轮位于灯塔P的北偏东65方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34方向上的B处.这时,海轮所在的B处距离灯塔P有多远?例6同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图6-33水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m)四、学生展示:完成课本77页练习补充练习(1)一段坡面的坡角为60°,则坡度i=______;______,坡角 ______度.2、利用土埂修筑一条渠道,在埂中间挖去深为0.6米的一块(图阴影部分是挖去部分),已知渠道内坡度为1∶1.5,渠道底面宽BC为0.5米,求:①横断面(等腰梯形)ABCD的面积;②修一条长为100米的渠道要挖去的土方数.五、课堂小结:六、作业设置:课本第78页习题28.2复习巩固第5、7题七、自我反思:本节课我的收获:数学选择题解题技巧1、排除法。
是根据题设和有关知识,排除明显不正确选项,那么剩下唯一的选项,自然就是正确的选项,如果不能立即得到正确的选项,至少可以缩小选择范围,提高解题的准确率。
解直角三角形方位角、坡度角讲课教案
解直角三角形方位角、坡度角讲课教案一、教学内容本节课教学内容选自《数学》第九章第二节,主题为“解直角三角形方位角、坡度角”。
详细内容包括:回顾直角三角形的性质,掌握方位角和坡度角的概念,学会运用三角函数解决实际问题,包括计算方位角和坡度角。
二、教学目标1. 理解并掌握方位角和坡度角的概念,能够区分它们在实际问题中的应用。
2. 学会运用三角函数求解直角三角形中的方位角和坡度角。
3. 能够将所学知识应用于实际问题,提高解决实际问题的能力。
三、教学难点与重点教学难点:三角函数在求解方位角和坡度角中的应用。
教学重点:方位角和坡度角的概念及其在直角三角形中的应用。
四、教具与学具准备教具:三角板、量角器、直尺、多媒体教学设备。
学具:三角板、量角器、直尺、练习本、铅笔。
五、教学过程1. 导入:通过实际情景引入,如房屋建筑的斜坡、灯塔观测等,引导学生思考如何求解方位角和坡度角。
2. 知识讲解:a. 回顾直角三角形的性质。
b. 介绍方位角和坡度角的概念。
c. 讲解三角函数在求解方位角和坡度角中的应用。
3. 例题讲解:讲解两个典型例题,一个求解方位角,一个求解坡度角,详细演示解题过程。
4. 随堂练习:布置两道练习题,要求学生在课堂上完成,并及时给予反馈。
六、板书设计1. 解直角三角形方位角、坡度角2. 内容:a. 直角三角形的性质b. 方位角和坡度角的概念c. 三角函数在求解方位角和坡度角中的应用d. 典型例题及解题步骤e. 随堂练习题目七、作业设计1. 作业题目:a. 求解一个直角三角形的方位角。
b. 求解一个直角三角形的坡度角。
2. 答案:见附录。
八、课后反思及拓展延伸1. 反思:对本节课的教学效果进行反思,针对学生的掌握情况,调整教学方法。
2. 拓展延伸:a. 探讨非直角三角形中方位角和坡度角的求解方法。
b. 了解其他学科中方位角和坡度角的应用,如地理、物理等。
重点和难点解析一、教学难点与重点的关注细节1. 三角函数在求解方位角和坡度角中的应用。
人教版九年级数学导学案利用方位角、坡度角解直角三角形
第二十八章锐角三角函数28.2 解直角三角形及其应用第3课时利用方位角、坡度解直角三角形学习目标:1.巩固解直角三角形有关知识.2.能运用解直角三角形知识解决仰角和俯角有关的实际问题,在解题过程中进一步体会数形结合、转化、方程的数学思想,并从这些问题中归纳出常见的基本模型及解题思路.重点:1.巩固解直角三角形相关知识.2.能运用解直角三角形知识解决仰角和俯角有关的实际问题,在解题过程中进一步体会数形结合、转化、方程的数学思想,并从这些问题中归纳出常见的基本模型及解题思路.难点:能运用解直角三角形知识解决仰角和俯角有关的实际问题,在解题过程中进一步体会数形结合、转化、方程的数学思想,并从这些问题中归纳出常见的基本模型及解题思路.一、知识链接1.什么叫方位角?什么叫坡角?什么叫坡度?2.坡度与坡角有什么关系?一、要点探究探究点1:解与方位角有关的问题【典例精析】如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80 n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处,这时,海轮所在的B处距离灯塔P有多远(精确到0.01 n mile)?【典例精析】如图,海岛A的周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在点B处测得海岛A位于北偏东60°,航行12海里到达点C处,又测得海岛A位于北偏东30°,如果渔船不改变航向继续向东航行.有没有触礁的危险?练一练如图所示,A,B两城市相距200km.现计划在这两座城市间修筑一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上.已知森林保护区的范围在以P点为圆心,100km为半径的圆形区域内,请问:计划修筑的这条高速公路会不会穿越保护区( 1.732≈1.414).探究点2:解与坡度有关的问题练一练1. 斜坡的坡度是1:α = 度.2. 斜坡的坡角是45°,则坡比是.3. 斜坡长是12米,坡高6米,则坡比是_______.【典例精析】如图,一山坡的坡度为i=1:2.小刚从山脚A出发,沿山坡向上走了240m到达点C.这座山坡的坡角是多少度?小刚上升了多少米(角度精确到0.01°,长度精确到0.1m)?【典例精析】水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1∶3,斜坡CD 的坡度i=1∶2.5,求:(1) 斜坡CD的坡角α (精确到1°);(2) 坝底AD与斜坡AB的长度(精确到0.1m).练一练如图,小明周末上山踏青,他从山脚处的B点出发时,测得坡面AB的坡度为1 : 2,20米到达山顶A处.这时,他发现山的另一坡面AC的最低点C的俯角是30°.请求走5出点B和点C的水平距离.二、课堂小结1.如图,河坝横断面迎水坡AB的坡比是1 :3,坝BC=3m,则坡面AB的长度是()A.9mB.6mC.63D. 332. 如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB等于.3.如图,某渔船如图所示,某渔船在海面上朝正东方向匀速航行,在A处观测到灯塔M在北偏东60°方向上,航行半小时后到达B处,此时观测到灯塔M在北偏东30°方向上,那么该船继续航行到达离灯塔距离最近的位置所需的时间是.4.如图,海上B,C两岛分别位于A岛的正东和正北方向,一艘船从A岛出发,以18海里/时的速度向正北方向航行2小时到达C岛,此时测得B岛在C岛的南偏东43°方向,则A,B两岛之间的距离为.(结果精确到0.1海里,参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)5.一段路基的横断面是梯形,高为4米,上底的宽是12米,路基的坡面与地面的倾角分别是45°和30°,求路基下底的宽(精确到0.01 1.732 1.414).6.如图有一个古镇建筑A,它周围800米内有古建筑,乡村路要由西向东修筑,在B点处测得古建筑A在北偏东60°方向上,向前直行1200米到达D点,这时测得古建筑A在D点北偏东30°方向上,如果不改变修筑的方向,你认为古建筑会不会遭到破坏?参考答案自主学习一、知识链接1.以正南或正北方向为准,正南或正北方向线与目标方向线构成的小于90°的角,叫做方位角.坡面与水平面的夹角叫做坡角,记作 α .坡面的铅垂高度 (h ) 和水平长度 (l ) 的比叫做坡面的坡度 (或坡比),记作i.2.坡度与坡角的关系:tan hi lα==,即坡度等于坡角的正切值. 课堂探究 一、要点探究探究点1:解与方位角有关的问题 【典例精析】例1 解:如图 ,在Rt △APC 中,PC =PA ·cos (90°-65°)=80×cos25°≈72.505. 在Rt △BPC 中,∠B =34°,sin PC B PB =,()72.505129.66n mile .sin sin 34PC PB B ∴==≈因此,当海轮到达位于灯塔P 的南偏东34°方向时,它距离灯塔P 大约129.66 n mile . 【典例精析】例2 解:过点A 作AF ⊥BC 于点F ,则AF 的长是A 到BC 的最短距离.∵BD ∥CE ∥AF , ∴∠DBA =∠BAF =60°,∠ACE =∠CAF =30°,∴∠BAC =∠BAF -∠CAF =60°-30°=30°.又∵∠ABC =∠DBF -∠DBA = 90°-60°=30°=∠BAC ,∴BC =AC =12(海里).∴AF =AC · cos30°=海里),>8,故渔船继续向正东方向行驶,没有触礁的危险.练一练 解:过点P 作PC ⊥AB ,C 是垂足,则∠APC =30°,∠BPC =45°,AC =PC ·tan30°,BC =PC ·tan45°.∵AC +BC =AB ,∴PC · tan30°+PC · tan45°=200PC +PC =200,解得 PC ≈126.8km >100km.答:计划修筑的这条高速公路不会穿越保护区. 探究点2:解与坡度有关的问题练一练 1. 30 2. 1:1 3. 1:【典例精析】例3 解:用α表示坡角的大小,由题意可得1tan 0.52α==,因此 α≈26.57°.在Rt △ABC 中,∠B =90°,∠A =26.57°,AC =240m ,因此sin 240BC BCAC α==,从而 BC =240×sin26.57°≈107.3(m ).答:这座山坡的坡角约为26.57°,小刚上升了约107.3 m . 【典例精析】例4 解:(1)斜坡CD 的坡度i = tan α = 1 : 2.5=0.4,由计算器可算得α≈22°.故斜坡CD 的坡角α 为22°.(2)分别过点B ,C 作BE ⊥AD ,CF ⊥AD ,垂足分别为E ,F ,由题意可知BE =CF =23m , EF =BC =6m.在Rt △ABE 中,13BE i AE ==,()332369m AE BE .∴==⨯=在Rt △DCF 中,同理可得125CF i FD .==,()2.5 2.52357.5m FD CF ==⨯=,AD AE EF FD ∴=++=69+6+57.5=132.5 (m).在Rt △ABE 中,由勾股定理可得AB =()72.7m .=≈故坝底AD 的长度为132.5m ,斜坡AB 的长度为72.7m.练一练 点B 和点C 的水平距离为(40+米.当堂检测1. B2. 90°3. 15分钟4. 33.5海里5. 解:作DE ⊥AB ,CF ⊥AB ,垂足分别为E ,F .由题意可知DE =CF =4 (米),CD =EF =12 (米). 在Rt △ADE 中,4tan 45,DE i AE AE ===︒44tan 45AE ∴==︒(米).在Rt △BCF 中,同理可得46.93tan 30BF =≈︒(米).因此 AB =AE +EF +BF ≈4+12+6.93≈22.93 (米).答: 路基下底的宽约为22.93米. 6. 解:过点A 作AE 垂直于BD ,垂足为E .∵点A 处在B 点的北偏东60°方向上,∴∠ABE =30°.又∵A 在D 点的北偏东30°方向上,∴∠ADE =60°,∴∠BAD =∠ADE -∠ABE =30°=∠ABE ,∴BD =AD =1200米,∴DE =AD cos60°=600(米),AE ≈1039.2>800米.∴不会遭到破坏.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解直角三角形4方位角问题导学案
一、导学
1.课题导入:
情景:如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,
它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处,这时,
海轮所在的B处距离灯塔P有多远?
问题:怎样由方位角确定三角形的内角?
2.学习目标:
(1)能根据方位角画出相应的图形,会用解直角三角形的知识解决方位问题.
(2)知道坡度与坡角的含义,能利用解直角三角形的知识解决与坡度有关的实际问题.
3.学习重、难点:
重点:会用解直角三角形的知识解决方位角、坡度的相关问题.
难点:将实际问题转化为数学问题(即数学建模).
二、分层学习
第一层次学习
1.自学指导
(1)自学内容:P76页例5.
如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处,这时,海轮所在的B处距离灯塔P有多远?(结果取整数,参考数据:cos25°≈0.91,sin25°≈0.42,tan25°≈0.47,sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)(2)自学时间:10分钟.
(3)自学方法:独立探索解题思路,然后同桌之间讨论,写出规范的解题过程.
(4)自学参考提纲:
①根据已知在图中标出方位角:如图所示.
②根据方位角得到三角形的内角:
在△PAB中,∵海轮沿正南方向航行,∴∠A=,∠B=,PA= .
③作高构造直角三角形:如图所示.
④写出解答过程:
⑤如图,海中有一个小岛A,它周围8海里内有暗礁,渔船跟踪鱼群
由西向东航行,在B点测得小岛A在北偏东60°的方向上,航行12海里
到达D点,这时测得小岛A在北偏东30°的方向上,如果渔船不改变航向
继续向东航行,有没有触礁的危险?
2.自学:结合自学指导开展自学.
3.助学:
(1)师助生:
①明了学情:观察学生自学提纲的答题情况.
②差异指导:根据学情对学习有困难的学生进行个别或分类指导.
(2)生助生:小组内互相交流、研讨.
4.强化:利用解直角三角形的知识解方位角问题的一般思路.
第二层次学习
1.自学指导
(1)自学内容:P77页的内容.
(2)自学时间:5分钟.
(3)自学方法:先独立归纳利用解直角三角形的知识解决实际问题的一般思路,然后对照课本P77页的归纳,进行反思总结.
(4)自学参考提纲:
①利用解直角三角形的知识解决实际问题的一般思路:
②练习:如图,拦水坝的横断面为梯形ABCD,斜面坡度i=1:1.5,是指坡面的铅直高度AF与水平宽度BF的比,斜面坡度i=1:3,是指DE与CE的比,根据图中数据,求:
○a坡角α和β的度数;
○b斜坡AB的长(结果保留小数点后一位).
2.自学:学生可参考自学指导进行自学.
3.助学:
(1)师助生:
①明了学情:明了学生解答问题的情况.
②差异指导:根据学情进行相应指导.
(2)生助生:小组内互相交流、研讨.
4.强化:
(1)坡度、坡角的含义及其关系,梯形问题的解题方法.
(2)在提纲第②题中,若补充条件“坝顶宽AD=4m”,你能求出坝底BC的长吗?
(3)利用解直角三角形的知识解决实际问题的一般思路:
三、评价:
1.学生学习的自我评价:在这节课的学习中你有哪些收获?掌握了哪些解题技能和方法?
2.教师对学生的评价:
(1)表现性评价:点评学生学习的主动性、小组交流协作情况、学习效果、存在问题等.
(2)纸笔评价:课堂评价检测.
3.教师的自我评价(教学反思).。