立体几何求夹角方法总结
用空间向量法求解立体几何问题典例及解析

用空间向量法求解立体几何问题典例及解析以多面体为载体,以空间向量为工具,来论证和求解空间角、距离、线线关系以及线面关系相关问题,是近年来高考数学的重点和热点,用空间向量解立体几何问题,极大地降低了求解立几的难度,很大程度上呈现出程序化思想。
更易于学生们所接受,故而执教者应高度重视空间向量的工具性。
首先,梳理一下利用空间向量解决立体几何的知识和基本求解方法 一:利用空间向量求空间角 (1)两条异面直线所成的夹角范围:两条异面直线所成的夹角的取值范围是 。
向量求法:设直线,a b 的方向向量为a,b ,其夹角为θ,则有cos ___________.θ= (2)直线与平面所成的角定义:直线与平面所成的角是指直线与它在这个平面内的射影所成的角。
范围:直线和平面所夹角的取值范围是 。
向量求法:设直线l 的方向向量为a ,平面的法向量为n ,直线与法向量所成角的余弦值为|cos |___________.θ=直线与平面所成的角为ϕ,则有sin ___________.ϕ=或在平面内任取一个向量m ,则|cos |___________.θ=.(3)二面角二面角的取值范围是 . 二面角的向量求法:方法一:在两个半平面内任取两个与棱垂直的向量,则这两个向量所成的 即为所求的二面角的大小;方法二:设1n ,2n 分别是两个面的 ,则向量1n 与2n 的夹角(或其补角)即为所求二面角的平面角的大小。
二:利用空间向量求空间距离 (1)点面距离的向量公式平面α的法向量为n ,点P 是平面α外一点,点M 为平面α内任意一点,则点P 到平面α的距离d 就是 ,即d =||||MP ⋅n n . (2)线面、面面距离的向量公式平面α∥直线l ,平面α的法向量为n ,点M ∈α、P ∈l ,平面α与直线l 间的距离d 就是MP 在向量n 方向射影的绝对值,即d = .平面α∥β,平面α的法向量为n ,点M ∈α、P ∈β,平面α与平面β的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n . (3)异面直线的距离的向量公式设向量n 与两异面直线a 、b 都垂直,M ∈a 、P ∈b ,则两异面直线a 、b 间的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n .三:利用空间向量解证平行、垂直关系1:①所谓直线的方向向量,就是指 的向量,一条直线的方向向量有 个。
立体几何-空间角求法题型(线线角、线面角、二面角)

空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。
空间角是线线成角、线面成角、面面成角的总称。
其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。
下面举例说明。
一、异面直线所成的角:例1如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =,12AA =。
E 、F 分别是线段AB 、BC 上的点,且1EB FB ==。
求直线1EC 与1FD 所成的角的余弦值。
思路一:本题易于建立空间直角坐标系,把1EC 与1FD 所成角看作向量EC 1与FD 的夹角,用向量法求解。
思路二:平移线段C 1E 让C 1与D 1重合。
转化为平面角,放到三角形中,用几何法求解。
(图1)解法一:以A 为原点,1AB AD AA 、、分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有 D 1(0,3,2)、E (3,0,0)、F (4,1,0)、C 1(4,3,2),于是11(1,3,2),(4,2,2)EC FD ==-设EC 1与FD 1所成的角为β,则:112222221121cos 14132(4)22EC FD EC FD β⋅===⋅++⨯-++ ∴直线1EC 与1FD 所成的角的余弦值为2114解法二:延长BA 至点E 1,使AE 1=1,连结E 1F 、DE 1、D 1E 1、DF , 有D 1C 1//E 1E , D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形。
则E 1D 1//EC 1 于是∠E 1D 1F 为直线1EC 与1FD 所成的角。
线面角的求法总结

线面角的求法总结线面角是立体几何中的一个重要概念,指的是直线与平面之间的夹角。
在实际问题中,线面角的求法有多种方法,包括正投影法、平行线交线法、倾斜线投影法等。
下面将从这些不同的求法角度,总结线面角的求法方法。
一、正投影法正投影法是线面角的一种常用求法方法。
具体的求法步骤是:首先,以直线上的两点为基点,分别作两条垂直于平面的直线,将平面上的两个点投影到这两条垂直线上。
然后,连接两个投影点与基点,即可得到线面角。
简单来说,就是将线段的两个端点在平面上做垂线,再连接垂线与线段的两个端点所构成的三角形。
二、平行线交线法平行线交线法是另一种求解线面角的常用方法。
它适用于直线与平面的交点在平行线上的情况。
具体的求法步骤是:首先,找到平行于直线的两条线,并找出这两条线与交线的交点。
然后,以这两个交点为基点,分别作两条直线与交线相交,再连接交线两个端点与这两个交点,即可得到线面角。
简单来说,就是在平行线上找到与线段相交的两条线,将线段的两个端点与两个交点连线所构成的三角形。
三、倾斜线投影法倾斜线投影法是应用于倾斜线与平面的角的求法方法。
具体的求法步骤是:首先,判断倾斜线是否与平面相交,如果相交,则找到交点。
然后,以交点为基点,分别作两条垂直于平面的直线,并将交点投影到这两条垂直线上。
最后,连接两个投影点与交点,即可得到线面角。
简单来说,就是将倾斜线段的一个端点与交点连线,再以交点为顶点做一个角的投影。
四、线面角的特殊情况求解除了以上常用的求解线面角的方法外,还有一些特殊情况需要考虑。
例如,如果线段与平面平行,则线面角为无穷大;如果线段垂直于平面,则线面角为直角,即90度;如果线段在平面上,则线面角为0度。
这些特殊情况可以根据实际问题的需要灵活运用,以求解线面角。
总之,线面角的求法有多种方法,根据具体的问题和实际情况选择合适的方法进行求解。
正投影法、平行线交线法和倾斜线投影法是常用的求解方法,可以满足大多数情况下的求解需要。
高中数学必修二立体几何角的问题-教师版(含几何法和向量法)

立体几何线线、线面、面面所成角的问题几何法1、两异面直线及所成的角:不在同一个平面的两条直线,叫做异面直线,已知异面直线a,b,经过空间任一点O 作直线a '∥a ,b '∥b ,我们把a '与b '所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).如果两条异面直线所成的角是直角,我们就说这两条直线互相垂直.2、直线和平面所成的角:一条直线PA 和一个平面α相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A 叫做斜足。
过斜线上斜足以外的一点向平面引垂线PO ,过垂足O 和斜足A 的直线 AO 叫做斜线在这个平面上的射影。
平面的一条斜线和它在平面内的摄影所成的锐角,叫做这条直线和这个平面所成的角。
一条直线垂直于平面,我们就说它们所成的角是直角。
一条直线和平面平行,或在平面内,我们说它们所成的角是00.3、二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
在二面角βα--l 的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的∠AOB 叫做二面角的平面角。
二面角的大小可以可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度。
常见角的取值范围:① 异面直线所成的角⎥⎦⎤ ⎝⎛20π,,直线与平面所成的角⎥⎦⎤⎢⎣⎡20π,,二面角的取值范围依次[]π,0② 直线的倾斜角[)π,0、到的角[)π,0、与的夹角的取值范围依次是⎥⎦⎤⎢⎣⎡20π,4、点到平面距离:求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 向量法1、两异面直线及所成的角:设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.2、直线和平面所成的角:设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.3、二面角:设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.4、点到平面距离:点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.例题例1.长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A.1010B.3010C.21510D.31010 解析:建立空间直角坐标系如图.则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2).BC 1→=(-1,0,2),AE →=(-1,2,1),cos 〈BC 1→,AE →〉=BC 1→·AE →|BC 1→|·|AE →|=3010.所以异面直线BC 1与AE 所成角的余弦值为3010.答案:B例 2.已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点.(1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角. 证明:在ADE ∆中,222AD AE DE =+,∴AE DE ⊥ ∵PA ⊥平面ABCD ,DE ⊂平面ABCD ,∴PA DE ⊥又PA AE A ⋂=,∴DE ⊥平面PAE (2)DPE ∠为DP 与平面PAE 所成的角在Rt PAD ∆,PD =Rt DCE ∆中,DE =在Rt DEP ∆中,2PD DE =,∴030DPE ∠=例3.如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD . (1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥;(3)求二面角A BC P --的大小.证明:(1)ABD ∆为等边三角形且G 为AD 的中点,∴BG AD ⊥ 又平面PAD ⊥平面ABCD ,∴BG ⊥平面PAD(2)PAD 是等边三角形且G 为AD 的中点,∴AD PG ⊥ 且AD BG ⊥,PG BG G ⋂=,∴AD ⊥平面PBG ,PB ⊂平面PBG ,∴AD PB ⊥(3)由AD PB ⊥,AD ∥BC ,∴BC PB ⊥ 又BG AD ⊥,AD ∥BC ,∴BG BC ⊥∴PBG ∠为二面角A BC P --的平面角在Rt PBG ∆中,PG BG =,∴045PBG ∠=例4.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AA 1、BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为( D ) A.3 B.22C.32λ D.55练习:1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点,(1)求证:EFGH 是平行四边形;(2)若BD=AC=2,EG=2。
高中数学第二章空间向量与立体几何夹角的计算空间向量求二面角的方法素材

空间向量求二面角的方法方法一:先作出二面角的平面角,再利用向量的内积公式求解:设∠AOB 是二面角l αβ--的一个平面角,则向量OA 与OB 所成的角就是所求的二面角的大小.例1 正四面体ABCD 中,求相邻两个面所成的二面角.解析:如图1,取BC 边的中点E,连结AE 、DE ,则AE⊥BC,DE⊥BC,所以∠AED 就是正四面体的两个相邻面ABC 与DBC 所成二面角的平面角,且BC⊥平面ADE ,∴BC⊥AD,∴0EC DA =.设正四面体棱长为1.∵()()ED EA EC CD EC CD DA =+++ =222EC EC CD EC DA CD DA CD ++++ 11121cos120011cos1201424=+⨯⨯⨯++⨯⨯+=. 又在△ABC 与△BCD 中,可求得32ED EA ==, ∴cos ED EAED EA ED EA =,11433322==⨯. 故正四面体的两个相邻面所成的二面角大小为1arccos3.方法二:利用法向量求解:设1n 是平面α的法向量,2n 是平面β的法向量.①若两个平面的二面角如图2所示的示意图,则1n 与2n 之间的夹角θ就是欲求的二面角;②若两个平面的二面角如图3所示的示意图,设1n 与2n 之间的夹角为θ.则两个平面的二面角为πθ-. 例2 如图4,△ABC 是以∠B 为直角的直角三角形,SA⊥平面ABC ,SA=BC=2,AB=4,D 、N 分别是BC 、AB 的中点.求二面角S —ND-A 的余弦值.解析:平面ABC 的法向量是AS ,设平面SND 的法向量为BC AB AS λμ=++n .∵SA⊥平面ABC ,∴SA⊥BC,SA⊥AB,∴0AS BD =,0AS BN =,0AS BC =,0AS AB = 又AB⊥BC,∴0BC BN =,0AB BD =,0BC NA =. 由()()ND BC AB AS BD BN λμ=++-n 280BC BD AB BN λμλμ=-=+=。
异面直线所成角求解方法:平面投影与夹角计算

异面直线所成角求解方法:平面投影与夹角计算
在立体几何中,求解异面直线所成的角,可以采用以下步骤:
1.确定两条异面直线,并选择其中一条作为基准。
2.在这条基准直线上选择一个点,作为求解异面直线所成角的起点。
3.分别过这条基准直线上的点和另一条异面直线作平面,这两个平面会相交
于一条直线。
4.计算这条交线与基准直线的夹角,即为异面直线所成的角。
具体来说,假设两条异面直线分别为$l_1$和$l_2$,其中$l_1$为基准直线,点$P$在$l_1$上,过点$P$和$l_2$作平面$\alpha$和$\beta$,两平面相交于直线$m$。
由于$m$与$l_1$的夹角是异面直线$l_1$和$l_2$所成的角,记作$\angle l_1 m l_2$。
为了求解$\angle l_1 m l_2$,可以在平面$\alpha$上过点$P$作直线$n \parallel l_2$,交直线$m$于点$Q$。
由于$\angle l_1 PQ$是两平面$\alpha$和$\beta$的夹角,也是直线$l_1$和直线$m$的夹角,记作$\angle l_1 m l_2'$。
因此,异面直线所成的角$\angle l_1 m l_2 = \angle l_1 m l_2'$。
通过以上步骤,我们可以求解出异面直线所成的角。
求解立体几何问题的两种常用方法

构特性、体积、一、几何法何法解题,据几何中的性质、之间的平行、得空间角、距离,例1.如图1,AB =BC =2,AD =线段PC 上的点.(Ⅰ)证明:BD (Ⅱ)若G 是PC 角的正切值;(Ⅲ)若G 满足(Ⅰ)证明:∵∴PA ⊥BD ;∵设AC 与BD ∴O 为AC 而PA ∩AC =A (Ⅱ)解:若G ∴GO ,可得GO ⊥平面ABCD ,⊥平面PAC ,与平面PAC 所成的角;=12PA =;AB ∙BC ∙cos ∠ABC =12,3;OD =CD 2-CO 2,,tan ∠DGO =OD OG ;PC ⊥面BGD ,OG ⊂平面BGD ,=PA 2+AC 2=15;,可得GC AC =OCPC ,GC 15-=32.需利用线面垂直的判定定理;解答再根据相似.运用几何法解题,只需定义、定理,寻找其定义、定理进行求解.几何意义、运算法则往往需根或建立合适的空间给点赋予坐标,通过向备考指南50量运算求得空间角、距离,判定空间中点、线、面的位置关系.例2.如图2,在四棱锥M-ABCD中,底面ABCD是边长为2的正方形,侧棱AM的长为3,且AM和AB、AD的夹角都是60°,N是CM的中点,求BN的长.图2解:∵N是CM的中点,设a=AB,b=AD,c=AM,底面ABCD是边长为2的正方形,∴ BN=12( BC+ BM )=12( AD+ BA+ AM)=12 a+12 b12 c;由题意可得:|a|=|b|=2,|c|=3,a⋅b=0,a⋅c=2×3×cos60°=3,b⋅c=2×3×cos60°=3,∴ BN2=(-12 a+12 b+12 c)2=1+1+94-12×3+12×3=174,∴| BN|即BN的长为.设a=AB,b=AD,c=AM,并将其作为基底表示出其它的线段,便可根据向量的三角形法则、平行四边形法则、数量积公式、模的公式求得|BN|,即可解题.运用向量法求解,可将立体几何问题转化为向量问题,这样不仅能转换解题的思路,还能简化解题的过程.例3.如图3,在直三棱柱ABC-A1B1C1中,点D在棱A1B1上,E,F分别是CC1,BC的中点,AE⊥A1B1,AA1=AB=AC=2;当D为A1B1的中点时,求平面DEF与平面ABC所成锐二面角的余弦值.图3解:由直三棱柱ABC-A1B1C1的性质可知AA1⊥A1B1,又AE⊥A1B1,AA1∩AE=A,AA1,AE⊂平面AA1C1C,所以A1B1⊥平面AA1C1C,又A1C1⊂平面AA1C1C,则A1B1⊥A1C1,故AB⊥AC,AB⊥AA1,AC⊥AA1,建立空间直角坐标系,如图4所示,图4则C(2,0,0),B(0,0,2),A(0,0,0),A1(0,2,0),F(1,0,1),E(2,1,0),设D(0,2,t),则FD=(-1,2,t-1),AE=(2,1,0),因为FD⋅AE=(-1,2,t-1)⋅(2,1,0)=0;故DF⊥AE;当D为A1B1的中点时,D(0,2,1),又EF=(-1,-1,1),FD=(-1,2,0),设平面DEF的法向量为n=(x,y,z),则ìíîn⋅EF=0,n⋅FD=0,即ìíîx+y-z=0,x-2y=0,令y=1,则x=2,z=3,故n=(2,1,3),取平面ABC的一个法向量m=(0,1,0),则|cos< n, m>|=|n⋅m|| n|| m|故平面DEF与平面ABC所成锐二面角的余弦值为.在找到三条相互垂直,且交于一点的直线后,便可建立空间直角坐标系,根据题意求得各个点的坐标、线段的方向向量、平面的法向量,再通过空间向量的坐标系运算求得二面角的大小.在求平面的法向量时,需根据线面垂直的判定定理,在一个平面内找到两条相交的直线,并使其与法向量垂直,利用待定系数法即可求出平面的法向量.通过搭建空间直角坐标系,将抽象的立体几何问题转化为具象的坐标运算问题,可有效避免复杂的几何推理论证.总之,几何法的适用范围较广,大部分的立体几何问题都可以用几何法求解.而向量法的适用范围较窄,只适用于求解有关正方体、长方体、直三棱柱等规则空间几何体的问题,且使用过程中的运算量较大,同学们要谨慎计算,避免出现失误和错解.(作者单位:江苏省如东县马塘中学)备考指南51。
2025届高考数学一轮复习讲义立体几何与空间向量之 空间角和空间距离

形,则在正四棱柱 ABCD - A 1 B 1 C 1 D 1中,异面直线 AK 和 LM 所成的角的大小为
(
D )
A. 30°
B. 45°
C. 60°
D. 90°
[解析] 根据题意还原正四棱柱的直观图,如图所示,取 AA 1的中点 G ,连接 KG ,
则有 KG ∥ LM ,所以∠ AKG 或其补角为异面直线 AK 和 LM 所成的角.由题知 AG =
A 1 C 1=5, BC 1=4 2 ,所以 cos
52 +52 −(4 2)2
9
1
∠ BA 1 C 1=
= < ,所以60°<
2×5×5
25
2
∠ BA 1 C 1<90°,则过点 D 1作直线 l ,与直线 A 1 B , AC 所成的角均为60°,即过一
点作直线,使之与同一平面上夹角大于60°的锐角的两边所在直线所成的角均成
2 z -1=0的交线,试写出直线 l 的一个方向向量 (2,2,1)
的余弦值为
65
9
.
,直线 l 与平面α所成角
[解析] 由平面α的方程为 x +2 y -2 z +1=0,可得平面α的一个法向量为 n =(1,
⑫ [0, ] ,二面角的
2
n1,n2>|.
范围是⑬
[0,π] .
易错警示
1. 线面角θ与向量夹角< a , n >的关系
π
2
π
2
如图1(1),θ=< a , n >- ;如图1(2),θ= -< a , n >.
图1
2. 二面角θ与两平面法向量夹角< n 1, n 2>的关系
图2(2)(4)中θ=π-< n 1, n 2>;图2(1)(3)中θ=< n 1, n 2>.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何求夹角方法总结
立体几何体现了空间中物体的立体形态,它的重要性在于能够帮助
人们更好地理解三维物体,并求出它们之间的夹角,这在数学、物理
等领域都有着广泛的应用。
本文将总结出常见的几何求夹角方法,供
读者参考。
方法一:向量求夹角
向量是几何学中的常用概念,它由矢量和标量组成。
可以通过计算两
个向量之间的夹角,得到它们之间的几何夹角。
具体做法如下:
1. 求出待求夹角的两个向量;
2. 根据向量的标准公式求出它们的数量积;
3. 分别计算出两个向量的长度;
4. 将数量积和长度带入余弦定理求出夹角。
方法二:平面法线求夹角
在三维空间中,可以通过平面的法线向量来计算两个平面之间的夹角。
具体做法如下:
1. 求出待求夹角的两个平面的法线向量;
2. 根据向量的标准公式求出它们的数量积;
3. 分别计算出两个平面的法线向量的长度;
4. 将数量积和长度带入余弦定理求出夹角。
方法三:点法线求夹角
与平面法线类似,我们也可以通过点和法线向量计算两个平面之间的
夹角。
具体做法如下:
1. 求出待求夹角的两个平面的任意一点坐标和两个平面的法线向量;
2. 根据向量的标准公式求出它们的数量积;
3. 分别计算出两个平面的法线向量的长度;
4. 将数量积和长度带入余弦定理求出夹角。
方法四:球面三角学法求夹角
该方法适用于计算球面上两个点或两个平面之间的夹角,方法稍微复杂。
具体做法如下:
1. 求出待求夹角的两个点或平面的经纬度坐标;
2. 根据球面三角学公式求出两个点之间的夹角或两个平面之间的夹角;
3. 将弧度转化为角度,得到最终的夹角。
综上所述,立体几何求夹角的方法有计算向量之间的夹角、平面法线
之间的夹角、点法线之间的夹角和球面三角学法求夹角。
每种方法都
有其适用范围和计算步骤,要根据实际情况选择合适的方法进行计算。