圆的最值问题归纳-与圆有关的最值问题

合集下载

巧解与圆有关的最值问题

巧解与圆有关的最值问题

巧解与圆有关的最值问题与圆有关的最值一般与圆的切线或圆心和半径有关系.解决这类问题大致可以分两步:1.将题目所给的式子赋予几何意义;2.数形结合解题;常见的数形结合点是过两点的斜率,两点见的距离,圆方程,直线方程,直线在y 轴上的截距等.例:已知实数y x ,满足03422=+-+x y x . 1>.ax b y --型,表示过点()y x ,与点()b a ,的斜率; 如:求2+x y 的最大值;它表示点()02,-与点圆上任意点()y x ,连线的斜率最大值,先设过这两点的直线为()2+=x k y 由图可知直线与圆在第一象限相切时,k 取最大值.此时有41==⊥AC PC AP CP ,,所以1515=∠=PAC k tan .所以2+x y 的最大值为1515.2>.by ax +型,令by ax +t =,则b t x b a y --=.bt -是在y 轴上的截距. 如:x y 2-的最小值;令x y 2-t =,则t x y +=2.t 是直线t x y +=2在y 轴上的截距.由图可知当直线t x y +=2与圆C 在第四象限相切时,()0 t t 取最小值.此时有134=+t,43--=t .所以x y 2-的最小值为43--.3>.()()22b y a x -+-型,表示点()y x ,与点()b a ,之间距离的平方,也可以看成以()b a ,为圆心的圆的标准方程.如:()()2243++-y x 的最值.它表示圆上的点()y x ,与点()43-,的距离的平方的最值.如图所示:很显然两点之间距离的最大值是1AP 1+=AC =117+,最小值是2AP 1-=AC 117-=. 所以()()2243++-y x 的最大值就是()2117+,最小值是()2117-.4>.求直线方程;如:1.经过点⎪⎭⎫ ⎝⎛2123,的且被圆截得的弦长最长的直线方程.弦长最长即就是该弦为直径时,圆心坐标()02,已知,利用两点式可以写出直线方程;2. 经过点A ⎪⎭⎫⎝⎛2123,的且被圆截得的弦长最短的直线方程.如图所示:当弦长最短时,AC l ⊥,1-=*L AC K K ,所以1=L k .则直线l 的方程利用点斜式可以写为2321-=-x y ,即:1-=x y。

有关圆的最值问题几种类型及方法

有关圆的最值问题几种类型及方法

有关圆的最值问题几种类型及方法圆形是初中数学中常见的图形,它有很多特殊的性质。

其中一项重要性质就是它具有最小和最大值。

在圆形的几何学中,有不同的最值问题类型,本文将介绍其中几种类型和解决方法。

问题类型1. 半周长最大问题描述:在一个固定的圆中,找到一个周长为定值的最大圆。

解决方法:利用相似三角形比值和性质,通过求出最大圆的半径得出周长最大的圆。

2. 面积最大问题描述:在一个固定的圆中,找到面积最大的圆。

解决方法:通过对已知条件进行约束,运用微积分的极值问题求解最大面积圆的面积。

3. 离心率最大问题描述:在一个固定的圆中,找到一点使得其到圆的距离与到圆心的距离之比最大。

解决方法:通过对于点到圆心的距离公式的推导,结合相关性质,使用数学分析方法解决问题。

4. 切线长度最短问题描述:如何从一个外圆割出一个内接圆的形状,且切线的长度最短。

解决方法:通过运用切线长度公式和勾股定理,推导出最短切线的长度公式,通过微积分求解最小值。

解决方法方法1:运用几何知识在解决这些最值问题时,通过几何知识、特殊性质、面积比和相似性质等直观的方法,可以解决一些简单的最值问题。

例如,第一类问题可以通过找到两个相似三角形的比值,解出最大圆的半径;第二类问题可以通过勾股定理求出直角三角形的面积比例。

方法2:微积分方法对于一些复杂的最值问题,采用微积分的方法计算可能更为简便。

通过设出方程,运用微积分的极值问题方法求出函数的最值点,并验证其确为最值点,就可以直接求解最大或最小值。

例如,第二类问题就是一个极大值问题,可以通过设定面积函数,求该函数的一阶和二阶导数,分析得出最大值点的位置和最大面积值。

方法3:从物理学的角度出发物理学的一些基本定理也可以用来解决圆的最值问题。

例如,第一类问题中,最大圆对应的角速度是圆心角的一半,这是由圆周运动的基本物理定律所得。

将圆周运动和相似三角形的比例性质联系起来,可以解出最大圆的半径。

圆是初中数学中比较基础的图形,但在解决圆的最值问题时,需要综合运用几何知识、微积分知识和物理学知识等多方面的知识。

2021年高考数学真题逐题解析:与圆有关的最值问题(原卷)

2021年高考数学真题逐题解析:与圆有关的最值问题(原卷)

第11题与圆有关的最值问题一、原题呈现【原题】已知点P 在圆 225516x y 上,点 4,0A 、 0,2B ,则()A.点P 到直线AB 的距离小于10B.点P 到直线AB 的距离大于2C.当PBA 最小时,PB D.当PBA 最大时,PB 【答案】ACD【解析】圆 225516x y 的圆心为 5,5M ,半径为4,直线AB 的方程为142x y,即240x y ,圆心M 到直线AB11545,所以,点P 到直线AB的距离的最小值为425 ,最大值为4105,A 选项正确,B 选项错误;如下图所示:当PBA 最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ,BM,4MP ,由勾股定理可得BP选项正确.故选ACD.【就题论题】本题涉及的与圆有关的最值问题是高考的热点问题.由于圆既能与平面几何相联系,又能与圆锥曲线相结合,命题方式比较灵活,故与圆相关的最值问题备受命题者的青睐.在运动变化中,动点到直线、圆的距离会发生变化,圆上点到动直线的距离也会发生变化,在变化过程中,就会出现一些最值问题,如距离、角最二、考题揭秘【命题意图】本题考查圆的方程及直线与圆的位置关系,考查直观想象、逻辑推理及数学抽象的核心素养.难度:中等【考情分析】圆的方程及直线与圆的位置关系一直是高考热点,通常作为客观题考查,长度、面积的计算,参数问题及最值问题是考查热点.【得分秘籍】(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.注意圆的弦长或切线段的长通常利用勾股定理转化为圆心到直线距离或点到圆心距离(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法.①形如u =y -bx -a 型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离平方的最值问题.(3)与距离最值有关的常见的结论:①圆外一点A 到圆上距离最近为AO r ,最远为AO r ;②过圆内一点的弦最长为圆的直径,最短为该点为中点的弦;③直线与圆相离,则圆上点到直线的最短距离为圆心到直线的距离d r ,最近为d r ;④过两定点的所有圆中,面积最小的是以这两个定点为直径端点的圆的面积.⑤直线外一点与直线上的点的距离中,最短的是点到直线的距离;⑥两个动点分别在两条平行线上运动,这两个动点间的最短距离为两条平行线间的距离.(4)与圆有关的面积的最值问题或圆中与数量积有关的最值问题,一般转化为寻求圆的半径相关的函数关系或者几何图形的关系,借助函数求最值的方法,如配方法,基本不等式法等求解,有时可以通过转化思想,利用数形结合思想求解.【易错警示】(1)不善于借助图形进行分析,导致解法方法错误(2)不善于运用圆的几何性质进行转化,导致运算量过大,以致运算失误三、以例及类(以下所选试题均来自新高考Ⅰ卷地区2020年1-6月模拟试卷)一、单选题1.(2021山东省淄博市高三一模)圆22280x y x 截直线 1y kx k R 所得的最短弦长为()A .B .C .D .22.(2021江苏省百师联盟高三下学期3月联考)已知圆22:4230C x y x y ,过原点的直线l 与圆C 相交于,A B 两点,则当ABC 的面积最大时,直线l 的方程为()A .0y 或43y xB .2y x 或12y x C .0x 或13y xD .34y x3.(2021湖南省郴州市高三下学期3月第三次质量监测)设点M 在圆222(0)x y r r 外,若圆O 上存在点N ,使得4OMN,则实数r 的取值范围是()A .B .C .D .4.(2021福建省龙岩市高三5月模拟)已知P 是圆C :2246110 x y x y 外一点,过P 作圆的两切线,切点为A ,B ,则PA PB的最小值为()A .6B .4 C .2D .5.(2021福建省宁德市高三第一次质量检查)已知点(2,4)M ,若过点(4,0)N 的直线l 交圆于C :22(6)9x y 于A ,B 两点,则||MA MB的最大值为()A .12B .C .10D .6.(2021河北省邯郸市高三三模)已知点P 在直线4x y 上,过点P 作圆22:4O x y 的两条切线,切点分别为A ,B ,则点(3,2)M 到直线AB 距离的最大值为()A B C .2D .7.(2021江苏省苏州市高三5月三模)在平面直角坐标系xOy 中,点Q 为圆M :22(1)(1)1x y 上一动点,过圆M 外一点P 向圆M 引-条切线,切点为A ,若|PA |=|PO |,则||PQ 的最小值为()A 1B 1C 1D .1 8.(2021山东省济宁市高三二模)“曼哈顿距离”是由赫尔曼 闵可夫斯基所创的词汇,是一种使用在几何度量空间的几何学用语.例如在平面直角坐标系中,点 11,P x y 、 22,Q x y 的曼哈顿距离为:1212PQ L x x y y .若点 1,2P ,点Q 为圆22:4C x y 上一动点,则PQ L 的最大值为()A .1B .1C .3D .3 9.(2021山东省日照市高三第二次模拟)若实数x y 、满足条件221x y ,则21y x 的范围是()A .B .3,5 C .,1 D .3,410.(2021江苏省南通市高三阶段性测试)在平面直角坐标系xOy 中,给定两点(1,2)M ,(3,4)N ,点P 在x 轴的正半轴上移动,当MPN 取最大值时,点P 的横坐标为()A .52B .53C .3D .10311.(2021湖南省怀化市高三下学期3月一模)若实数,x y 满足x 则x 最大值是()A .4B .18C .20D .2412.(2021湖北省鄂州高三3月月考)已知直线1:310l mx y m 与直线2:310l x my m 相交于点P ,线段AB 是圆22:(1)(1)4C x y 的一条动弦,且||AB ,则||PA PB的最大值为()A .B .C .D .2二、多选题13.(2021山东省淄博市高三三模)已知圆221:230O x y x 和圆222:210O x y y 的交点为A ,B ,则()A .圆1O 和圆2O 有两条公切线B .直线AB 的方程为10x y C .圆2O 上存在两点P 和Q 使得||||PQ ABD .圆1O 上的点到直线AB 的最大距离为214.(2021江苏省南通学科基地高三全真模拟)集合M 在平面直角坐标系中表示线段的长度之和记为M .若集合22,925A x y xy , ,B x y y x m , ,2C x y y kx k 则下列说法中正确的有()A .若AB ,则实数m 的取值范围为 m m B .存在k R ,使AC C .无论k 取何值,都有A CD .A C ∩的最大值为415.(2021河北省沧州市高三三模)已知点 2,4P ,若过点 4,0Q 的直线l 交圆C : 2269x y 于A ,B 两点,R 是圆C 上一动点,则()A .AB 的最小值为B .P 到l 的距离的最大值为C .PQ PR的最小值为12 D .PR 的最大值为316.(2021河北省张家口市、沧州市高三下学期二模)已知直线:0l kx y 与圆22:2210M x y x y ,则下列说法中正确的是()A .直线l 与圆M 一定相交B .若0k ,则直线l 与圆M 相切C .当1k 时,直线l 与圆M 的相交弦最长D .圆心M 到直线l 三、填空题17.(2021湖北省襄阳市高三5月第二次模拟)阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两个定点A 、B 的距离之比为λ(λ>0,λ≠1),那么点M 的轨迹就是阿波罗尼斯圆.若已知圆O :x 2+y 2=1和点1,02A,点B (4,2),M 为圆O 上的动点,则2|MA |+|MB |的最小值为___________18.(2021华大新高考联盟高三下学期3月教学质量测评)已知点M 在抛物线C :24y x 上运动,圆C 过点 5,0, , 3,2 ,过点M 引直线1l ,2l 与圆C 相切,切点分别为P ,Q ,则PQ 的取值范围为__________.19.(2021湖南省益阳市高三下学期4月模拟)已知圆O :x 2+y 2=1,A (3,3),点P 在直线l :x ﹣y =2上运动,则|PA |+|PO |的最小值为___________.20.(2021江苏省南通市高三下学期5月四模)舒腾尺是荷兰数学家舒腾(1615-1660)设计的一种作图工具,如图,O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处的铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动.当点D 在滑槽AB 内作往复移动时,带动点N 绕O 转动,点M 也随之而运动.记点N 的运动轨迹为1C ,点M 的运动轨迹为2C .若1ON DN ,3MN ,过2C 上的点P 向1C 作切线,则切线长的最大值为___________.。

2024专题4.4圆---利用“阿氏圆”模型求最值-中考数学二轮复习必会几何模型剖析(全国通用)

2024专题4.4圆---利用“阿氏圆”模型求最值-中考数学二轮复习必会几何模型剖析(全国通用)
当BPD三点共线且P点位于BD之间时,PB+PD最小,此
时2PB+PC最小,最小值为2BD,延长CD交AB于H,则
CH⊥AB,
O D P
B
A
H


易求得DH= ,BH=3,∴BD= ,


C
O
P
∴2PB+PC的最小值为3 .
B
C
针对训练
变式一 系数需要转化(提系数)
知识点三
1.在平面直角坐标系中,A(2,0),B(0,2),C(4,0),D(3,2),P是△AOB外部的
P(x,y),PA=kPB,即:(x+m)2+y2 =k (x-m)2+y2
∴(x+m)2+y2=k2(x-m)2+k2y2
∴(k2-1)(x2+y2)-(2m+2k2m)x+(k2-1)m2=0
2m
2m+2k
∴x2+y2- k2-1 x+m2=0
知识点二
新知探究
解析式满足圆的一般方程,故P点所构成的图形是圆,且圆心与AB共线.除
则 PD+4PC的最小值为_____.
D
A
P
B
C
典例精讲
变式三 求差最大的问题
知识点五
求带系数的两条线段差最大的问题,转化方法和前面所讲完全一样,只是
最后求最值时有所不同,前面求和最小都是运用两点之间线段最短的原理,
求差最大,我们需要运用“三角形两边只差小于第三边”这一原理来解决.
【例6】(1)如图1,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上
【引例】如图,在Rt△ABC中,∠ACB=90º,CB=4,CA=6,⊙C半径为2,P为圆上

高中数学与圆有关的最值问题

高中数学与圆有关的最值问题

高中数学与圆有关的最值问题
在解决与圆有关的最值问题时,我们可以使用以下方法:
1. 建立坐标系:将问题转化为在坐标系中求最值的问题。

2. 确定变量:确定影响最值的变量,并建立函数关系式。

3. 利用函数的性质:利用函数的单调性、对称性、最值等性质,求出最值。

4. 结合圆的性质:利用圆的性质,如半径、弦长、圆心等,求出最值。

下面是一个例子:
求圆x^2 + y^2 = 4 上一点到原点的距离的最大值和最小值。

解:设圆上的点为(2cosθ, 2sinθ),则该点到原点的距离为√(4cos^2θ+ 4sin^2θ) = 2。

因此,最大值为2+2=4,最小值为2-2=0。

与圆相关的最值问题

与圆相关的最值问题

最值问题
点与圆在位置关系
1,基础图形与应用
已知,圆O的半径是2,OE的长是5,点F在圆O上运动,则EF的取值范围是(),
应用
1,已知,线段AB=3,线段MN垂直平分AB,垂足为N,,点C与M在AB的两侧,∠ACB=30°线段MC的取值范围是()
2,如图,在○O中,弦AD等于半径,B为弧AD上的一动点,等腰三角形ABC的底边BC所在直线经过点D,若圆O的半径等于2,则OC的取取值范围是()。

经典
1.已知如图,三角形ABC中,角ACB=45°,AM∥BC,P点是AM上一动点,连接BP交过点A,P,C的三点圆于点D,则AD的最小值。

第1题图第2题图
2.已知如图,边长为4厘米的正方形ABCD中,E是直线AD上的一个动点,DF 垂直CE,连接AF、BF,则△ABF的面积的取值范围是平方厘米.
练习
3.四边形ABCD中,AD∥BC,AB⊥AD,AB=3
2,BC=4,AD=2,点M是CD的中点,E是AD上一个动点,点N在线段BE,∠ANE=60°,线段MN的取值范围是的.
变式:四边形ABCD中,AD∥BC,AB⊥AD,AB=3,BC=4,AD=1,E是AD上一个动点,点P是点A关于直线BE的对称点,则△PCD的面积的取值范围是 .。

高中数学 数形结合_巧解“与圆有关的最值问题” 知识点+例题

高中数学 数形结合_巧解“与圆有关的最值问题” 知识点+例题

数形结合,巧解“与圆有关的最值问题”例1 平面上有两点A (1-,0),B (1,0),P 为圆x y x y 2268210+--+=上的一点,试求S AP BP =+||||22最小值.解析:把已知圆的一般方程化为标准方程得()()x y -+-=34422,设点P 的坐标为(,)x y 00,则2222220000||||(1)(1)S AP BP x y x y =+=+++-+222002(1)2(1)x y OP =++=+ 要使22||||BP AP S +=最小,需||OP 最小,即使圆上的点到原点的距离最小.结合图形,容易知道325||min =-=-=r OC OP ,所以20)13(22min =+=S .点评:设 P (x ,y ),使要求的式子转化为求圆上的点到原点的距离问题,利用数形结合法求最值,实质上是利用初中学过的“连结两点的线段中,直线段最短”这一性质.例2 点A 在圆()()x y -+-=53922上,则点A 到直线3420x y +-=的最短距离为( )A. 9B. 8C. 5D. 2解析:过C 作CD ⊥直线3420x y +-=于D ,交圆C 于A , 则AD CD r =-为所求 .∴AD例3 )0,3(P 在圆0122822=+--+y x y x 内一点.求(1)过P 的圆的最短弦所在直线方程(2)过P 的圆的最长弦所在直线方程解析:圆方程可以化成5)1()4(22=-+-y x ,圆心)1,4(O 1=OP k∴ 短l :)3(--=x y 即 03=-+y x ; 长l :)3(-=x y 即03=--y x . 点评:最长弦当然是直径了,而最短弦是与直径垂直的弦.例4 已知实数x ,y 满足方程22(2)3x y -+=.(1) 求y x的最大值与最小值; (2) 求y x -的最大值与最小值; (3) 求22x y +的最大值和最小值.分析:22(2)3x y -+=为圆的方程,(,)P x y 是圆心为(2,0)点.y x的几何意义是圆上一点与原点连线的斜率,y x -的几何意义是直线y x b =+在轴上的截距,22x y +的几何意义是圆上一点到原点距离的平方.解:(1)设y k x=,即y kx =.当直线y kx =与圆相切时,斜率k 取最大值与最小值,=k =.所以y xk = (2)设y x b -=,当直线y x b -=与圆相切时,纵截距b 取得最大值与最小值,=解得2b =-所以y x -的最大值为2-,最小值2-.(3表示圆上一点到原点距离,由平面几何知识知,其最大值为圆心到原点的距离加上圆的半径,其最小值为圆心到原点的距离减去圆的半径,分别是2与222x y +的最大值和最小值分别为7+7-.例5 过直线1y =上一点P (x ,y )作圆22(1)(1)1x y +++=的切线,求切线长的最小值.解析:如图所示,切线长2221PM PC CM PC =-=-,所以要求PM 的最小值,只需求PC 的最小值.PC 是直线上一点到圆心的距离,由于经直线外一点所引直线的垂线段的长度是该点到直线的距离的最小值,所以当PC 垂直于直线时,min 2PC =,此时,切线长最小,为3.小结与提升:圆的知识在初中与高中都要学习,是一典型的知识交汇点.现在的数学高考非常重视初高中知识的衔接问题,所以同学们在处理与圆有关的小题时,一定要数形结合,多联想一下与之有关的平面几何知识,以免“小题大作”.。

专题09 圆中的范围与最值问题(知识梳理+专题过关)(解析版)

专题09 圆中的范围与最值问题(知识梳理+专题过关)(解析版)

专题09圆中的范围与最值问题【知识梳理】涉及与圆有关的最值,可借助图形性质,利用数形结合求解.一般地:(1)形如ax by --=μ的最值问题,可转化为动直线斜率的最值问题.(2)形如by ax t +=的最值问题,可转化为动直线截距的最值问题.(3)形如22)()(b y a x m -+-=的最值问题,可转化为曲线上的点到点(a ,b )的距离平方的最值问题解决圆中的范围与最值问题常用的策略:(1)数形结合(2)多与圆心联系(3)参数方程(4)代数角度转化成函数值域问题【专题过关】【考点目录】考点1:斜率型考点2:直线型考点3:距离型考点4:周长面积型考点5:长度型【典型例题】考点1:斜率型1.(2021·江西·高二期中(理))已知圆22:(1)1C x y +-=,点(3,0)A 在直线l 上,过直线l 上的任一点P 引圆C 的两条切线,若切线长的最小值为2,则直线l 的斜率k =()A .2B .12C .2-或12D .2或12-【答案】C【解析】圆22:(1)1C x y +-=的圆心为(0,1)C ,半径为1,因为切线长的最小值为2,所以min ||PC =所以圆心C 到直线l :(3)l y k x =-,即30kx y k --=,所以圆心(0,1)C 到直线30kx y k --==,=22320k k +-=,解得12k =或2k =-.故选:C2.(2021·山东泰安·高二期中)设点(),P x y 是曲线y =上的任意一点,则24y x --的取值范围是()A .1205⎡⎤⎢⎥⎣⎦,B .21255⎡⎤⎢⎥⎣⎦,C .[]0,2D .2,25⎡⎤⎢⎥⎣⎦【答案】B【解析】曲线y =表示以()1,0为圆心,2为半径的下半圆,如图所示:24y x --可表示点(),P x y 与点()4,2Q 连线斜率k 当直线PQ 与圆相切时:设直线方程为()24y k x -=-,即420kx y k --+=圆心到直线距离2d ==,解得125k =或0k =,又0y ≤,所以125k =,当直线经过点()1,0A -时,2245y x -=-,综上21255k ⎡⎤∈⎢⎥⎣⎦,故选:B.3.(2021·上海市控江中学高二期中)若直线:3(1)l y k x -=-与曲线:C y =不同公共点,则实数k 的取值范围是()A .4,3⎛⎫+∞ ⎪⎝⎭B .43,32⎛⎤⎥⎝⎦C .40,3⎛⎫ ⎪⎝⎭D .43,32⎛⎫ ⎪⎝⎭【答案】B【解析】直线:3(1)l y k x -=-过定点(1,3),曲线:C y =(0,0)为圆心,1为半径,且位于y 轴上半部分的半圆,如图所示当直线l 过点(1,0)-时,直线l 与曲线有两个不同的交点,此时03k k =-+-,解得32k =.当直线l 和曲线C 相切时,直线和半圆有一个交点,圆心(0,0)到直线:3(1)l y k x -=-的距离1d ==,解得43k =结合图像可知,当4332k <≤时,直线l 和曲线C 恰有两个交点故选:B4.(多选题)(2021·湖北宜昌·高二期中)实数,x y ,满足22++20x y x =,则下列关于1yx -的判断正确的是()A .1yx -B .1yx -的最小值为C .1y x -的最大值为3D .1y x -的最小值为33-【答案】CD【解析】由题意可得方程22++20x y x =为圆心是()10C -,,半径为1的圆,则1yx -为圆上的点与定点()10P ,的斜率的值,设过()10P ,点的直线为()+1y k x =,即+0kx y k -=,则圆心到到直线+0kx y k -=的距离d r =1=,整理可得231k =,解得33k =±,所以1y x ⎡∈⎢-⎣⎦,即1y x -33-.故选:CD.5.(2021·广东·兴宁市叶塘中学高二期中)已知实数x ,y 满足方程22410x y x +-+=,求:(1)yx的最大值;(2)22x y +的最小值.【解析】(1)()222241023x y x x y +-+=⇒-+=,圆心()2,0,半径r =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的问题探究高中数学中,研究最多一种曲线是圆。

在研究圆相关问题时,最值问题又是研究的重点和热点,现把常见的与圆相关的最值问题,总结如下。

希望对读者有些启发。

类型一、“圆上一点到直线距离的最值”问题分析:求圆上一点到直线距离的最值问题,总是转化成求圆心到定直线的距离问题来解决。

1、求圆C: (x-2)2+(y+3)2=4上的点到直线l :x-y+2=0的最大、最小距离. 解析:作CH l ⊥交于H ,与圆C 交于A ,反向延长与圆交于点B 。

所以max min 2; 2.222CH BH AH d d d d d ===+==-2、求圆C: (x-1)2+(y+1)2=2上的点与直线l : x-y+4=0距离的最大值和最小值. 解析:方法同第一题, max min BH d d d ==== 3、圆222=+y x 上的点到直0254=+y 的距离的最小值为________________.解析:方法同第一题, min 5d =类型二、“圆上一点到定点距离的最值”问题分析:本质是两点间距离。

涉及与圆相关的两点的距离,总是转化为圆心与定点距离问题来解决。

1.已知点P (x,y )是圆C : x 2+y 2-2x-4y+4=0上一点,求P 到原点的最大最小距离.解析:连接OC 与圆交于A ,延长OC 交于B.max min 1;1.OC OC d d r d d r =+==-=2.已知圆C :04514422=+--+y x y x 及点()3,2-Q ,若M 是圆C 上任一点,求MQ 最大值和最小值. 解析:方法同第一题,max Q min Q C C d d r d d r =+===-==3 .已知x,y 满足条件 x 2+y 2-2x-4y+4=0,求22y x +范围.解析:方程看作是圆C ,表达式几何意义是圆C 上点(,)x y 与(0,0)距离范围,求max min ,d d 即可,与第一题答案相同.4.已知x,y 满足圆C : x 2+y 2-2x-4y+4=0,求22)2()2(+++y x 范围. 解析: 表达式几何意义是圆C 上点(,)x y 与P (-2,-2)距离的最值平方.max min 22maxmin5,6, 4.36,16.[16,36].CP d d dd=====所以范围是5.已知x,y 满足圆C : x 2+y 2-2x-4y+4=0,求z=x 2+y 2+2x+2y 范围.解析: 22(1)(1)2z x y =+++-表达式几何意义是圆C 上点(,)x y 与P (-1,-1)距离的最值的平方减去2.max min 22max min 2121)212[12CP d d z z ====-=+=-=--+所以范围是 6.已知圆()()143:22=-+-y x C ,点A (-1,0),B (1,0),点P 为圆上一动点,求22PB PA d +=的最大值和最小值及对应的P 点坐标. 解析:222222max min 2()2,.2(51)274;2(51)234.[34,74].d PA PB x y d d =+=++=++==-+=几何意义是点P 与原点O 距离的平方2倍加2|OC|=5,所以答案类型三、“过定点的弦长”问题1:已知直线:2830l mx y m ---=和圆22:612200C x y x y +-++=;(1)m R ∈时,证明l 与C 总相交。

(2)m 取何值时,l 被C 截得弦长最短,求此弦长。

解析:22(28)30,280,4, 3.,.,.1k =3,=-.:350.10.3||222510215.x m y x x y P k x y AB r d ---=-===-++==-=-=直径所求直线整理得到所以进而易判断在圆内所以直线总是与圆相交是直径时弦长最长垂直直径时弦长最短此时直线为圆心到直线的距离是弦长2、已知C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R).(1)求证:不论m 取什么实数时,直线l 与圆恒交于两点;(2)求直线l 被圆C 截得的线段的最短长度以及这时直线l 的方程. 解析:方法同第一题.(1)恒过点(3,1)P (2)垂直直径的直线是250,||4 5.x y AB --==弦长类型四、“切线长”问题分析:切线长问题总是转化为圆心到直线距离问题1、在直线2x +y +3=0上求一点P ,使由P 向圆C :x 2+y 2-4x =0引得的切线长长度为最小.解析:直线与圆相离,假设切点为Q ,组成直角三角形PQC ,切线长22||||r CP PQ -=,那么当||CP 最小时||PQ 最小。

进而计算圆心C 到直线的距离.51454549||,57min =-==PQ d2.一束光线从点A (-1,1)出发经x 轴反射到圆C :(x -2)2+(y -3)2=1的最短路程是________________. 解析:根据光学的对称原理,A 点关于x 轴的对称点是),(1-1-'A ,求.415||,5||'min '=-=-==r CA d CA 所以3.已知P 是直线0843=++y x 上的动点,PA ,PB 是圆0122:22=+--+y x y x C 的两条切线,A ,B 是切点,求四边形PACB 面积的最小值解析:四边形APBC 中连接CP ,两个三角形,PAC PBC 全等,2min 22min min 12(||)||||12||||3||||1312 2.APBC APBC S r PA PA CP CP CP S PA CP =⋅⋅⋅==-===-=-=最小值为O 到直线距离所以4. 如图,已知圆1:22=+y x O 和定点A (2,1),由圆OA外一点P (a ,b )向圆O 引切线PQ ,切点为Q ,且满足PA PQ =,(1)求实数a ,b 间满足等量关系。

(2)求线段PQ 长的最小值。

(3)若以P 为圆心所做的圆P 与圆O 有公共点,试求半径取最小值时圆P 的方程。

解析:(1)做出切线,222222222|PQ |=|P ||P |,1(2)(1),230.A r A a b a b a b -=+-=-+-+-=进而得到|OP|得到化简得到(2)22222222min |PQ |=|P ||PQ |=|P |(2)(1)64|PQ |=(2)(3-2a 1)5(),556|PQ |5A A a b a a a -+--+-=-+=因为,所以=,由(1)知道b=3-2a 代入以上表达式,当时, (3) 相切时半径最小,假设半径为r,r 11===所以所以,1.若实数x ,y 满足()3222=+-y x ,则xy 的最大值是解析:max 0:(,)(0,0)0y x y x k --==表达式的几何意义是k=即圆上的点和原点的斜率,在第一象限相切时,斜率最大。

设直线斜率为k ,直线方程是y=kx,所以圆心到直线距离所以2.已知实数x 、y 满足,求的最大值与最小值。

解析:1)1()2(22=-+-y x xy z 1+=-:(,)(0,-1)+1,yx yxk--==(1)表达式的几何意义是k=即圆上的点和原点的斜率,设直线斜率为k,直线方程是y1=kx,所以圆心到直线距离解之得到3..圆C:04514422=+--+yxyx若点()b aN,在圆上,求33+-=abμ的最大值.解析:max3:(,)(3,3)(3)ba bak----==表达式的几何意义是k=即圆上的点和原点的斜率,设直线斜率为k,直线方程是kx-y+3k+3=0,所以圆心到直线距离解之得到(2)利用直线的“斜率,截距”几何意义解决问题1.若直线bxy+-=与曲线21yx--=恰有一个公共点,则b的取值范围是__________.解析:111 1.b b bb-<≤==-<≤答案:或方程表示单位圆左半部分.数形结合即可。

相切时相交时2.设集合}0,16),{(2≠-==yxyyxM,}),{(axyyxN+==,若φ=⋂NM,求实数a的取值范围.解析:22-4b b-≤>答案:或x+y=16上半部分,不含端点.数形结合即可.变式1、若φ≠⋂NM,则实数a的取值范围是__________.4b-<≤答案:变式2、若集合NM⋂中只有一个元素,则实数a取值范围是__________.=4b b=答案:或变式3、若集合NM⋂中有两个元素,则实数a取值范围是__________.4b<<答案:。

相关文档
最新文档