221条件概率
《概率统计教学资料》第1-3随机试验、样本空间和随机事件及概率节

有一个事件发生时,“指示灯不亮”,即D发生.
故D A (BC )
_____________
或D A(B C) A (BC )
4/4/2020
25
例如 将一枚硬币抛掷5次、50次、500次,各做7 遍,观察正面出现的次数及频率.
123 4 5 6 7
试验 序号
n5
n 50
n 500
nH
23
例: 设有3个事件A, B, C ,试用事件的运算关系 表示以下事件:
(1) 只有A发生 ABC (2) 至少有一个发生 A B C
(3) 恰好有一个发生 ABC ABC ABC (4)三个都不发生 ABC
(5) 至少有一个不发生 A B C 或= ABC
最多有一件事发生
4/4/2020
4.事件的交(积)(A B,或AB)
“事件A,B都发生” 也是一个事件.
4/4/2020
19
5.事件的差(B-A)
B A {x | x B,且x A}
B发生且A不发生
B
A
差积转化公式 B A BA B AB (其中AB B)
6.事件的互不相容 若A与B不能同时发生,即AB=φ, A B
注: 1o 必然事件S与不可能事件互逆;
2o 互斥与互逆的关系;
4/4/2020
21
事件运算定律(4种)
(1)交换律
A B B A.
AB BA.
(2)结合律 (A B) C A (B C). (AB)C A(BC).
(3)分配律 A(B C) AB AC.
A (BC) (A B)(A C).
概率论 (Probability theory) ——研究和揭示随机现象的统计规律性的科学。
条件概率的独立性1

条件概率的独⽴性1第三章条件概率的独⽴性习题3 ⼀.填空题1.设A.B 为两个互相独⽴事件,若P (A )=0.4,P (B )=0.3,则(P B A ?)=2.在⼀次实验中A 发⽣的概率为p ,现在进⾏n 次独⽴重复试验,那么事件A ⾄少发⽣1次的概率为3.设A.B.C 构成⼀完备事件组,且P(A)=0.4,P(B )=0.7,则P (C )= ,p(AB)=4.若P(A)=21,P(B)=31,P(A B )=32,则P(B A )= 5.某⼈向同⼀⽬标重复独⽴射击,每次命中⽬标的概率为P(02次命中⽬标的概率为⼆.选择题1. 同⼀⽬标进⾏5次射击,每次命中的概率为0.8,则恰好命中两次的概率为() (A) 0.00512 (B) 0.64 (C) 0.256 (D) 0.05122. 5⼈以摸彩的⽅式决定谁从五张彩票中摸的⼀张电影票,设Ai 表⽰“第i 次个⼈摸到电影票”(i=1,2,3,4,5),则下列结果不正确的是() (A) P(1A 2A )=41 (B) P(2A )= 54 (C) P(2A )=51 (D) 53)(21=A A P 3 袋中有5个球(3个新球,2个旧球),现每次取⼀个,⽆放回的抽取两次,则第⼆次取到新球的概率为( )53)(A 43)(B 42)(c 103)(D 4,对于任意两个事件A 与B ,下⾯结论正确的是() (A)若P(A)=0,则A 是不可能事件(B)若P(A)=0,P(B)≥0,则事件B 包含事件A(C)若P(A)=0,则P(B)=1,则事件A 与事件B 对⽴ (D)若P(A)=0,则事件A 与B 独⽴三,计算题1.设A 与B 是两个随机事件,且P(A)=41,31)(=A B P ,21)(=B A P ,试求P(B A ?). 2.设A 与B 是两个随机事件,P(A)=0.7,P(B)=0.6,,4.0)(=A B P 试求P(B A ?).3.如果每次试验成功的概率都是P ,并且已知在三次独⽴重复试验中⾄少成功⼀次的概率为2719,试求P 的值. 4.设随机事件A 与B 互相独⽴,P(A)=P(B)=a-1,P()B A ?=97,求a 的值. 四.应⽤题1.三⼈独⽴的同时解答⼀道题,他们每⼈能够解出的概率为21,4131,,求此题能破解出的概率.2.设在全部产品中有2%是废品,⽽合格产品中有85%是⼀级品,求随机抽出⼀个产品是⼀级品的概率.3.汽车保险公司得到投保⼈资料如表3-1所⽰:5.设10个考签中4个难签,今有3⼈按甲先,⼄次,丙最后的次序参加抽签(不放回),求:(1)甲没有抽到难签⽽⼄抽到难签的概率;(2)甲,⼄,丙都抽到难签的概率.6.设有4个独⽴⼯作的原件1,2,3,4 他们的可靠性都是p,将他们按图3.2的⽅式联接,求整个系统的可靠性.7.甲,⼄两⼈独⽴的对同⼀⽬标射击⼀次,其命中率分别是0.6和0.5,现已知⽬标被击中,求他是甲击中的概率。
超分辨率算法综述

超分辨率复原技术的发展The Development of Super2Re solution Re storation from ImageSequence s1、引言在图像处理技术中,有一项重要的研究内容称为图像融合。
通常的成像系统由于受到成像条件和成像方式的限制,只能从场景中获取部分信息,如何有效地弥补观测图像上的有限信息量是一个需要解决的问题。
图像融合技术的含义就是把相关性和互补性很强的多幅图像上的有用信息综合在一起,产生一幅(或多幅)携带更多信息的图像,以便能够弥补原始观测图像承载信息的局限性。
(图象融合就是根据需要把相关性和互补性很强的多幅图象上的有用信息综合在一起,以供观察或进一步处理,以弥补原始单源观测图象承载信息的局限性,它是一门综合了传感器、图象处理、信号处理、计算机和人工智能等技术的现代高新技术,于20 世纪70 年代后期形成并发展起来的。
由于图象融合具有突出的探测优越性,在国际上已经受到高度重视并取得了相当进展,在医学、遥感、计算机视觉、气象预报、军事等方面都取得了明显效益。
从图象融合的目标来看,主要可将其归结为增强光谱信息的融合和增强几何信息的融合。
增强光谱信息的融合是综合提取多种通道输入图象的信息,形成统一的图象或数据产品供后续处理或指导决策,目前在遥感、医学领域都得到了比较广泛的应用。
增强几何信息的融合就是从一序列低分辨率图象重建出更高分辨率的图象(或图象序列) ,以提高图象的空间分辨率。
对图象空间分辨率进行增强的技术也叫超分辨率(super2resolution) 技术,或亚像元分析技术。
本文主要关注超分辨率(SR) 重建技术,对SR 技术中涉及到的相关问题进行描述。
)(我们知道,在获取图像的过程中有许多因素会导致图像质量的下降即退化,如光学系统的像差、大气扰动、运动、离焦和系统噪音,它们会造成图像的模糊和变形。
图像复原的目的就是对退化图像进行处理,使其复原成没有退化前的理想图像。
运用Gumbel-Logistic模式模拟区域暴雨的试验

第5 卷 第1 期
2 1 年 2月 01
沙 漠 与 绿 洲 气 象
De e ta d Oa i e e r lg s r n ssM t o oo y
运用 G m e L g t 模式模拟区域 u bl oii — sc 暴雨的试验
谢 敏, 江志红 , 丁裕 国
rs ac eerh
研究表明,由于暴雨或强降水实际上涉及到降
收稿 日期 :0 0 1— 5 2 1 — 0 1
水的历时 、 强度 、 面积 、 深度等多方面 的时空分布特 征, 它既有一定的持续时间, 占据一定的区域面积 又
或范围, 更有量级和强度大小 , 因此, 这类极值问题 仅仅运用一维极值分布模式来描述其特征 ,并不能 满足实际工作的需要 ,而应用二维或多维极值分布 式描述其全方位特征则较为恰当。 近年来 , 国际上 有不少 学者利用二维极值分布模式研究区域和单
通讯作 者 : 丁裕 国(9 1 , , 14 一)男 教授 , 长期从 事气候变化 与极端气候 研究 。E mald gi 2 . m — i ynm@16e : o
沙 漠 与 绿 洲 气 象
—
第 5卷 第 1期
2 1 年 2月 01
De。。 ’。。。’。。。。t。r’。 y —。e。 ’。。。。。。。。。。 。。。 ’。。‘ 。d。 。。 ‘。e。o。— 。。’。。。。s。。’。。 。o — 。 a。。O 。s。。。。 。。 。r n s。t’ 。 。a。。M e。o l。 i 。 。 。g
式中, P是积矩关系系数 , 可由下式计算 :
坚
o' 9 7 Y o
式 中 ,/ , ) ( ) 别 是 和 y 的平 均 ( x 和 / , 分 x 值 和标 准差 。 当 m= l时 ,二 维 分布 为两 个边 缘分 布 的乘积 ,
1-4全概率公式与贝叶斯公式

P(C A) P( A C ) P(C ) P( A C ) P(C ) P( A C ) P(C ) 0.087.
13
返回 上页 下页 结束
例4 对以往数据分析结果表明,当机器调整得良 好时,产品的合格率为98%,而当机器发生某种 故障时,其合格率为55%. 每天早上机器开动时, 机器调整良好的概率为95%. 试求已知某日早上 第一件产品是合格品时,机器调整得良好的概率 是多少? 解 设A为事件“产品合格”,B为事件“机器调 整良好”.已知P(A∣B)=0.98,P(A∣ )=0.55, P(B)=0.95,P( )=0.05,由贝叶斯公式得
由概率的可列可加性 P(A)=P(AB1)+P(AB2)+…+P(ABn). 利用乘法定理即得 B1
B4 B3 A
B2
P A i 1 P Bi P A Bi .
n
3
返回 上页 下页 结束
例1 考卷中一道选择题有4个答案,仅有一 个是正确的,设一个学生知道正确答案或不知道 而乱猜是等可能的. 如果这个学生答对了,求它 确实知道正确答案的概率. 解 样本空间可以划分为事件A:知道正确答案与 :不知道.以B表示事件:学生答对,则A B, P(AB)=P(A)=1/2.P(B∣A)=1,而P(B∣ )= 1/4. 由全概率公式 P(B)=P(A)P(B∣A)+P( )P(B∣ )=5/8, 故 P(A∣B)=P(AB)/P(B)=4/5.
§1.4 全概率公式与贝叶斯公式
一.全概率公式 二.贝叶斯公式
1
鲁科版高中数学人教版目录

高中数学目录必修一第一章1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法第二章2.1函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.1.5用计算机作函数图像(选学)2.2一次函数和二次函数2.2.1一次函数的性质与图像2.2.2二次函数的性质与图像2.3函数的应用(1)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法----二分法第三章基本初等函数(1)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(2)必修二第一章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱棱锥棱台的结构特征1.1.3圆柱圆锥圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱棱锥棱台和球的表面积1.1.7柱锥台和球的体积1.2点线面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系1.2.3空间中的垂直关系第二章平面解析几何初步2.1平面直角坐标系中的基本公式2.1.1数轴上的基本公式2.1.2平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的集中形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系2.4.1空间直角坐标系2.4.2空间两点距离公式必修三第一章算法初步1.1算法与程序框图1.1.1算法的概念1.1.2程序框图1.1.3算法的三种基本逻辑结构和框图表示1.2基本算法语句1.2.1赋值输入输出语句1.2.2条件语句1.2.3循环语句1.3中国古代数学中的算法案例第二章统计2.1随机抽样2.1.1简单的随机抽样2.1.2系统抽样2.1.3分层抽样2.1.4数据的收集2.2用样本估计总体2.2.1用样本的频率分布估计总体的分布2.2.2用样本的数字特征估计总体的数字特征2.3变量的相关性2.3.1变量间的相互关系2.3.2两个变量的线性相关第三章概率3.1事件与概率3.1.1随机现象3.1.2事件与基本事件空间3.1.3频率与概率3.1.4概率的加法公式3.2古典概型3.2.1古典概型3.2.2概率的一般加法公式(选学)3.3随机数的含义与应用3.3.1几何概型3.3.2随机数的含义与应用3.4概率的应用必修四第一章基本的初等函数(2)1.1任意角的概念与弧度制1.1.1角的概念的推广1.1.2弧度制和弧度制与角度制的换算1.2任意角的三角函数1.2.1三角函数的定义1.2.2单位圆与三角函数线1.2.3同角三角函数的基本关系式1.2.4诱导公式1.3三角函数的图像与性质1.3.1正弦函数的图像与性质1.3.2余弦函数正切函数的图像与性质1.3.3已知三角函数值求角第二章平面向量2.1向量的线性运算2.1.1向量的概念2.1.2向量的加法2.1.3向量的减法2.1.4数乘向量2.1.5向量共线的条件和轴上向量坐标运算2.2向量的分解和向量的坐标运算2.2.1平面向量基本定理2.2.2向量的正交分解与向量的直角坐标运算2.2.3用平面向量坐标表示向量共线条件2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律2.3.3向量数量积的坐标运算与度量公式2.4向量的应用2.4.1向量在几何中的应用2.4.2向量在物理中的应用第三章三角恒等变换3.1和角公式3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2倍角公式和半角公式3.2.1倍角公式3.2.2半角的正弦余弦和正切3.3三角函数的积化和差与和差化积必修五第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理1.1.2余弦定理1.2应用举例第二章数列2.1数列2.1.1数列2.1.2数列的递推公式(选学)2.2等差数列2.2.1等差数列2.2.2等差数列的前n项和2.3等比数列2.3.1等比数列2.3.2等比数列的前n项和第三章不等式3.1不等关系与不等式3.1.1不等关系与不等式3.1.2不等式性质3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单的线性规划问题3.5.1二元一次不等式(组)所表示的平面区域3.5.2简单线性规划选修2-1第一章常用逻辑用语1.1命题与量词1.1.1命题1.1.2量词1.2基本逻辑联结词1.2.1且与或1.2.2非(否定)1.3充分条件必要条件与命题的四种形式1.3.1推出与充分条件必要条件1.3.2命题的四种形式第二章圆锥曲线方程2.1曲线方程2.1.1曲线与方程的概念2.1.2由曲线求它的方程由方程研究曲线性质2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第三章空间向量与几何体3.1空间向量及其运算3.1.1空间向量的线性运算3.1.2空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2空间向量在立体几何中的应用3.2.1直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离(选学)选修2-2第一章导数及其应用1.1导数1.1.1函数的平均变化率1.1.2瞬时速度与导数1.1.3导数的几何1.2导数的运算1.2.1常数函数与幂函数的导数1.2.2导数公式表及数学软件的应用1.2.3导数的四则运算法则1.3导数的应用1.3.1利用导数判断函数的单调性1.3.2利用导数研究函数的极值1.3.3导数的实际应用1.4定积分与微积分的基本定理1.4.1曲边梯形面积与定积分1.4.2微积分基本定理第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法2.3数学归纳法2.3.1数学归纳法2.3.2数学归纳法应用举例第三章数系的扩充与复数3.1数系的扩充与复数的概念3.1.1实数系3.1.2复数的概念3.1.3复数的几何意义3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法3.2.3复数的除法选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与实践的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布第三章统计案例3.1独立性检验3.2回归分析选修4-4第一章坐标系1.1直角坐标系平面上的伸缩变换1.1.1直角坐标系1.1.2平面上的伸缩变换1.2极坐标系1.2.1平面上点的极坐标1.2.2极坐标与直角坐标的关系1.3曲线的极坐标方程1.4圆的极坐标方程1.4.1圆心在极轴上且过极点的圆1.4.2圆心在点(a,∏/2)处且过极点的圆1.5柱坐标系和球坐标系1.5.1柱坐标系1.5.2球坐标系第二章参数方程2.1曲线的参数方程2.1.1抛射体的运动2.1.2曲线的参数方程2.2直线与圆的参数方程2.2.1直线的参数方程2.2.2圆的参数方程2.3圆锥曲线的参数方程2.3.1椭圆的参数方程2.3.2双曲线的参数方程2.3.3抛物线的参数方程2.4一些常见曲线的参数方程2.4.1摆线的参数方程2.4.2圆的渐开线的参数方程。
统计学牛牛概率

统计学牛牛概率一、随机事件及其概率试验: 在同一组条件下, 对某物或现象所进行的观察或实验。
事件: 观察或试验的结果。
随机事件(randomevent):也叫偶然事件, 简称“事件”, 记作A、B、C等。
必然事件(certainevent): Ω不可能事件(impossibleevent): Φ基本事件(elementaryevent): 又叫简单事件, 即一个不能分解成两个或更多个事件的事件。
在一次试验中, 只能观察到一个且仅有一个简单事件。
样本空间:又叫基本空间, 一个试验中所有的简单事件的全体, 记为Ω。
事件A的概率(probability):描述的是事件A在试验中出现的可能性大小的一种度量, 可能性数值记为P(A)。
A.概率的古典定义:1、结果有限, 即基本空间中只含有限个元素;2.各个结果出现的可能性被认为是相同的。
具有这种特点的随机试验称为古典概型或等可能概型。
计算古典概型概率的方法称为概率的古典定义或古典概率。
P(A)=事件A所包含的基本事件个数/样本空间所包含的基本事件个数=m/n局限性: 随机试验只有有限个可能结果的范围,B.概率的统计定义:在相同条件下随机试验n次, 某事件A出现m次(m≤n), 则比值m/n称为事件A发生的频率。
随n的增大, 该频率围绕某一常数P上下波动, 且波动的幅度逐渐减小, 趋于稳定, 这个频率的稳定值即为该事件的概率, 记为P(A)=m/n=p。
C.概率的主观定义:主观概率:对一些无法重复的试验, 只能根据以往的经验, 人为确定这个事件的概率;定义是, 一个决策者根据本人掌握的信息对某事件发生可能性的判断。
二、概率的性质与运算法则A.概率的基本性质(概率的公理化定义)1.对任一随机事件A, 有0≤P(A)≤12.必然事件的概率为1, 而不可能事件的概率为0, 即P(Ω)=1, P(Φ)=03、若A与B互斥, 则P(A∪B)=P(A)+P(B)由此可推广到多个两两互斥的随机事件。
条件概率题库题

条件概率题库一、单选题1.10张奖券中有4张“中奖”奖券,甲乙两人先后参加抽奖活动,每人从中不放回抽取一张奖券,甲先抽,乙后抽,在甲中奖条件下,乙没有中奖的概率为()A.35B.23C.34D.4152.已知某种产品的合格率是79,合格品中的一级品率是45.则这种产品的一级品率为()A.2845B.3536C.45D.233.接种疫苗是预防和控制传染病最经济、有效的公共卫生干预措施.根据实验数据,人在接种某种病毒疫苗后,有80%不会感染这种病毒,若有4人接种了这种疫苗,则最多1人被感染的概率为()A.512625B.256625C.113625D.16254.某大学进行“羽毛球”、“美术”、“音乐”三个社团选拔.某同学经过考核选拔通过该校的“羽毛球”“美术”、“音乐”三个社团的概率依次为1,,2a b,已知三个社团中他恰好能进入两个的概率为15,假设该同学经过考核通过这三个社团选拔成功与否相互独立,则该同学一个社团都不能进入的概率为()A.12B.35C.34D.3105.电视机的使用寿命与显像管开关的次数有关,某品牌的电视机的显像管开关了10000次还能继续使用的概率是0.8,开关了15000次后还能继续使用的概率是0.6,则已经开关了10000次的电视机显像管还能继续使用到15000次的概率是()A.0.20B.0.48C.0.60D.0.756.甲、乙两人进行围棋比赛,若其中一人连续赢两局,则比赛结束.已知每局比赛结果相互独立,且每局甲胜的概率为0.6(没有平局),若比赛在第三局结束,则甲获胜的概率为()A.0.6B.0.4C.0.36D.0.1447.已知盒子里有10个球(除颜色外其他属性都相同),其中4个红球,6个白球甲、乙两人依次不放回地摸取1个球,在甲摸到红球的情况下,乙摸到红球的概率为()A.13B.25C.35D.2158.甲、乙两名同学相约学习某种技能,该技能需要通过两项考核才能拿到证书,每项考核结果互不影响.已知甲同学通过第一项考核的概率是45,通过第二项考核的概率是12;乙同学拿到该技能证书的概率是13,那么甲、乙两人至少有一人拿到该技能证书的概率是()A.1315B.1115C.23D.359.把一枚骰子连续抛掷两次,记事件M为“两次所得点数均为奇数”,N为“至少有一次点数是5”,则()P N M等于()A.23B.59C.12D.1310.围棋起源于中国,据先秦典籍《世本》记载:“尧造围棋,丹朱善之”,至今已有四千多年历史.围棋不仅能抒发意境、陶冶情操、修身养性、生慧增智,而且还与天象易理、兵法策略、治国安邦等相关联,蕴含着中华文化的丰富内涵.在某次国际围棋比赛中,甲、乙两人进入最后决赛.比赛采取五局三胜制,即先胜三局的一方获得比赛冠军,比赛结束.假设每局比赛甲胜乙的概率都为23,且各局比赛的胜负互不影响,则在不超过4局的比赛中甲获得冠军的概率为()A.19B.827C.1627D.178111.某单位举行知识竞赛,给每位参赛选手设计了两道题目,已知某单位参赛者答对每道题的概率均为4 5,且各次答对与否相互独立,则该参赛者答完两道题目后至少答对一题的概率为()A.45B.1625C.125D.242512.某班级举办投篮比赛,每人投篮两次.若小明每次投篮命中的概率都是0.6,则他至少投中一次的概率为()A.0.24B.0.36C.0.6D.0.8413.为向国际化大都市目标迈进,某市今年新建三大类重点工程,它们分别是30项基础设施类工程、20项民生类工程和10项产业建设类工程.现有3名民工相互独立地从这60个项目中任选一个项目参与建设,则这3名民工选择的项目所属类别互异的概率是()A.12B.13C.14D.1614.一个盒子中装有6个完全相同的小球,将它们进行编号,号码分別为1、2、3、4、5、6,从中不放回地随机抽取2个小球,将其编号之和记为S.在已知S为偶数的情况下,S能被3整除的概率为()A.14B.13C.512D.2315.袋内有8个白球和2个红球,每次从中随机取出一个球,然后放回1个白球,则第4次恰好取完所有红球的概率为()A.0.0324B.0.0434C.0.0528D.0.056216.设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立,则同一工作日至少3人需使用设备的概率为()A .0.25B .0.30C .0.31D .0.3517.盒中有10个零件,其中8个是合格品,2个是不合格品,不放回地抽取2次,每次抽1个.已知第一次抽出的是合格品,则第二次抽出的是合格品的概率是()A .15B .29C .79D .71018.袋中有5个球(3个白球,2个黑球)现每次取一球,无放回抽取2次,则在第一次抽到白球的条件下,第二次抽到白球的概率为()A .3/5B .3/4C .1/2D .3/1019.甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询这三个项目,每人限报其中一项,记事件A 为“恰有2名同学所报项目相同”,事件B 为“只有甲同学一人报关怀老人项目”,则()|P B A =()A .16B .13C .23D .5620.长春气象台统计,7月15日净月区下雨的概率为415,刮风的概率为215,既刮风又下雨的概率为110,设事件A 为下雨,事件B 为刮风,那么()|P A B =()A .12B .34C .25D .3821.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A 为“三个人去的景点不相同”,B 为“甲独自去一个景点”,则概率P (A |B )等于()A .49B .29C .12D .1322.甲、乙、丙、丁四名同学分别从篮球、足球、排球、羽毛球四种球类项目中选择一项进行活动,记事件A 为“四名同学所选项目各不相同”,事件B 为“只有甲同学选羽毛球”,则()|P A B =()A .89B .29C .38D .3423.将两枚质地均匀的骰子各掷一次,设事件A ={两个点数互不相同},B ={出现一个5点},则()P B A =().A .12B .13C .14D .1524.已知6个高尔夫球中有2个不合格,每次任取1个,不放回地取两次.在第一次取到合格高尔夫球的条件下,第二次取到不合格高尔夫球的概率为()A .35B .25C .23D .31025.根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为830,则在吹东风的条件下下雨的概率为()A .89B .25C .911D .81126.现从4名男医生和3名女医生中抽取两人加入“援鄂医疗队”,用A 表示事件“抽到的两名医生性别相同”,B 表示事件“抽到的两名医生都是女医生”,则()P B A =()A .13B .47C .23D .3427.设A ,B 为两个事件,且()0P A >,若12(),()33P AB P A ==,则()|P B A 等于()A .49B .19C .29D .1228.2020年初,我国派出医疗小组奔赴相关国家,现有四个医疗小组甲、乙、丙、丁,和有4个需要援助的国家可供选择,每个医疗小组只去一个国家,设事件A =“4个医疗小组去的国家各不相同”,事件B =“小组甲独自去一个国家”,则P (A |B )=()A .29B .13C .49D .5929.一个不透明的袋子中,放有大小相同的5个小球,其中3个黑球,2个白球,如果不放回的依次取出2个球.在第一次取出的是黑球的条件下,第二次取出的是白球的概率是()A .12B .310C .35D .2530.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出次品的条件下,第二次摸到正品的概率是()A .35B .25C .59D .2331.近几年新能源汽车产业正持续快速发展,动力蓄电池技术是新能源汽车的核心技术.已知某品牌新能源汽车的车载动力蓄电池充放电次数达到800次的概率为90%,充放电次数达到1000次的概率为36%.若某用户的该品牌新能源汽车已经经过了800次的充放电,那么他的车能够达到充放电100次的概率为()A .0.324B .0.36C .0.4D .0.5432.甲、乙两地都位于长江下游,根据天气预报的记录知,一年中下雨天甲市占20%,乙市占18%,两市同时下雨占12%.则甲市为雨天,乙市为雨天的概率为()A .0.6B .0.7C .0.8D .0.6633.一袋中共有10个大小相同的黑球和白球,若从袋中任意摸出2个球,至少有1个白球的概率为1315,现从中不放回地取球,每次取1球,取2次,若已知第2次取得白球的条件下,则第1次取得黑球的概率为()A .49B .59C .79D .131834.甲、乙、丙、丁四名同学报名参加4100⨯接力比赛,记事件A 为“甲同学跑第一棒”,事件B 为“乙同学跑第二棒”,则()|P B A 的值为()A .14B .13C .34D .1235.从0,1,2,3,4中任取2个不同的数,则在“取到的2个数之和为偶数”的前提下“取到的2个数均为奇数”的概率为()A .14B .35C .16D .31036.已知()310P AB =,()35P A =,则()|P B A 等于()A .950B .12C .910D .1437.端午节是我国的传统节日,每逢端午家家户户都要吃粽子,现有5个粽子,其中3个咸蛋黄馅2个豆沙馅,随机取出2个,事件A =“取到的2个为同一种馅”,事件B =“取到的2个都是豆沙馅”,则()P B A =()A .14B .34C .110D .31038.从1,2,3,4,5,6,7中任取两个不同的数,事件A 为“取到的两个数的和为偶数”,事件B 为“取到的两个数均为偶数”,则()P B A =()A .47B .12C .37D .1339.某学校高三(5)班要从8名班干部(其中5名男生,3名女生)中选取3人参加学校优秀班干部评选,事件:A 男生甲被选中,事件:B 有两名女生被选中,则()P B A =()A .18B .17C .38D .3740.根据历年气象统计资料,某市七月份吹南风的概率为931,下雨的概率为1131,既吹南风又下雨的概率为831,则在吹南风的条件下下雨的概率为()A .89B .811C .25D .91141.一副扑克牌去掉大小王还有52张,充分洗牌后随机不放回的依次摸出2张牌,在第1次摸出黑桃的条件下,第2次也摸出黑桃的概率是()A .113B .117C .417D .122142.若某地区刮风的概率为215,下雨的概率为415,即刮风又下雨的概率为110,则在下雨天里,刮风的概率为()A .12B .34C .38D .822543.假定男女出生率相等,某个家庭有两个小孩,已知该家庭至少有一个女孩,则两个小孩都是女孩的概率是()A .12B .13C .14D .1644.在[]0,2上有两个连续型随机数x ,y ,记事件A :x y >,事件B :2x y >,则()|P B A =()A .512B .1124C .56D .111245.抛掷两枚均匀骰子,观察向上的点数,记事件A 为“两个点数不同”,事件B 为“两个点数中最大点数为4”,则()P B A =()A .112B .16C .15D .5646.小红的妈妈为小红煮了7个汤圆,其中3个黑芝麻馅,4个五仁馅,小红随机取出两个,事件A =“取到的两个是同一种馅”,事件B =“取到的两个都是黑芝麻馅”()|P B A =()A .23B .13C .34D .1647.抛掷一颗质地均匀的骰子的基本事件构成集合{}123456S =,,,,,,令事件{}13,5A =,,{}1,2,4,5,6B =,则()P A B 的值为()A .13B .25C .12D .3548.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“─”和阴爻“--”,如图就是一重卦.在所有重卦中随机取一重卦,记事件A =“取出的重卦中至少有2个阴爻”,事件B =“取出的重卦中恰有3个阳爻”.则()P B A =()A .516B .1132C .2132D .205749.现有3道理科题和2道文科题共5道题,若不放回地依次抽取2道题,则在第1次抽到理科题的条件下,第2次抽到理科题的概率为().A .18B .14C .25D .1250.小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A 为“4个人去的景点不完全相同”,事件B 为“小赵独自去一个景点”,则()|P B A =()A .37B .47C .57D .6751.已知某种动物由出生算起活到20岁的概率为0.8,活到25岁的概率为0.4,则现为20岁的这种动物活到25岁的概率是()A .0.6B .0.5C .0.4D .0.3252..三台中学实验学校现有三门选修课,甲、乙、丙三人每人只选修一门,设事件A 为“三人选修的课程都不同”,B 为“甲独自选修一门”,则概率P (A |B )等于()A .49B .12C .13D .2953.从1,2,3,4,5,6,7中取出两个不同数,记事件A 为“两个数之和为偶数”,事件B 为“两个数均为偶数”,则(|)P B A=()A.13B.17C.37D.1254.已知盒中装有3只螺口灯池与9只卡口灯泡,这些灯泡的外形都相同且灯口向下放若,现需要一只卡口灯泡,电工师傅每次从中任取一只且不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为()A.14B.944C.911D.7955.某单位在一次春游踏青中,开展有奖答题活动.从2道文史题和3道理科题中不放回依次抽取2道题,在第一次抽到理科题的前提下第二次抽到理科题的概率为()A.925B.625C.310D.1256.已知盒中装有大小形状完全相同的2个红球、4个白球、6个黑球.甲每次从中任取一球且不放回,则在他第一次拿到的是白球的前提下,第二次拿到黑球的概率为()A.16B.13C.611D.1257.设A,B为两个事件,若事件A和B同时发生的概率为310,在事件A发生的条件下,事件B发生的概率为12,则事件A发生的概率为()A.35B.310C.25D.710二、填空题58.甲、乙两名乒乓球运动员进行乒乓球单打比赛,根据以往比赛的胜负情况知道,每一局甲胜的概率为3 4,乙胜的概率为14,如果比赛采用“五局三胜”制(先胜三局者获胜),则甲获胜的概率为______.59.投掷红、蓝两颗均匀的骰子,设事件A:蓝色骰子的点数为5或6;事件B:两骰子的点数之和大于8,则已知事件B发生的条件下事件A发生的概率()P A B=______.60.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时乙得分的概率为0.6,各球的结果相互独立.在某局打成10:10后,甲先发球,乙以13:11获胜的概率为______. 61.已知甲在上班途中要经过两个路口,在第一个路口遇到红灯的概率为0.5,两个路口连续遇到红灯的概率为0.3,则甲在第一个路口遇到红灯的条件下,第二个路口遇到红灯的概率为___________.62.A ,B ,C ,D 四人之间进行投票,各人投自己以外的人1票的概率都是13(个人不投自己的票),则仅A 一人是最高得票者的概率为________.63.现有3个灯泡并联而成的闭合电路,如果在某段时间内每个灯泡能正常照明的概率都是0.9,那么在这段时间内该电路上的灯泡至少有两个能正常照明的概率是___________.64.一个医疗小队有3名男医生,4名女医生,从中抽出两个人参加一次医疗座谈会,则已知在一名医生是男医生的条件下,另一名医生也是男医生的概率是______65.如图所示,已知一个系统由甲、乙、丙、丁4个部件组成,当甲、乙都正常工作,或丙、丁都正常工作时,系统就能正常工作.若每个部件的可靠性均为()01r r <<,而且甲、乙、丙、丁互不影响,则系统的可靠度为___________.66.甲乙两人进行乒乓球比赛,约定先连胜两局者赢得比赛,假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛相互独立,则恰好进行了4局比赛结束且甲赢得比赛的概率为______.67.暑假期间,甲外出旅游的概率是14,乙外出旅游的概率是15,假定甲乙两人的行动相互之间没有影响,则暑假期间两人中至少有一人外出旅游的概率是__________.68.已知一种元件的使用寿命超过1年的概率为0.8,超过2年的概率为0.6,若一个这种元件使用到1年时还未失效,则这个元件使用寿命超过2年的概率为_____.69.2019年10月20日,第六届世界互联网大会发布了15项“世界互联网领先科技成果”,其中有5项成果均属于芯片领域,分别为华为高性能服务器芯片"鲲鹏920”、清华大学“面向通用人工智能的异构融合天机芯片”、“特斯拉全自动驾驶芯片”、寒武纪云端AI 芯片“思元270”、赛灵思“Versal 自适应计算加速平台”:现有1名学生从这15项“世界互联网领先科技成果”中分别任选3项进行了解,在其中1项选择华为高性能服务器芯片“鲲鹏920”的条件下,选出的3项中至少有2项属于芯片领域的概率为___.70.小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A 为“4个人去的景点不相同”,事件B 为“小赵独自去一个景点”,则()P A B =________.71.如果生男孩和生女孩的概率相等,则有3个小孩的家庭中女孩多于男孩的概率为________.72.三个元件T 1,T 2,T 3正常工作的概率分别为12,34,34,将T 2,T 3两个元件并联后再和T 1串联接入电路,如图所示,则电路不发生故障的概率为________.73.若()34P A =,()14P B =,()12P AB =,则()P B A =______.74.有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取两瓶,若取的两瓶中有一瓶是蓝色,则另一瓶是红色或黑色的概率为____________.75.设某种动物从出生算起活到20岁以上的概率为0.9,活到25岁以上的概率为0.5,现有一个20岁的这种动物,则它能活到25岁以上的概率为____.76.已知某种疾病的患病率为0.5%,在患该种疾病的条件下血检呈阳性的概率为99%,则患该种疾病且血检呈阳性的概率为______.77.伟大出自平凡,英雄来自人民.在疫情防控一线,北京某大学学生会自发从学生会6名男生和8名女生骨干成员中选出2人作为队长率领他们加入武汉社区服务队,用A 表示事件“抽到的2名队长性别相同”,B 表示事件“抽到的2名队长都是男生”,则()|P B A =______.78.袋中有5个大小完全相同的球,其中2个黑球,3个白球.不放回地连续取两次,则已知在第一次取到黑球的条件下,第二次取到白球的概率为__________.79.口袋中装有大小形状相同的红球2个,白球3个,黄球1个,甲从中不放回的逐一取球,已知在第一次取得红球的条件下,第二次仍取得红球的概率为______.80.从标有1,2,3,4,5的五张卡中,依次抽出2张(取后不放回),则在第一次抽到偶数的情况下,第二次抽到奇数的概率为________;81.一个袋中装有大小相同的5个白球和3个红球,现在不放回的取2次球,每次取出一个球,记“第1次拿出的是白球”为事件A ,“第2次拿出的是白球”为事件B ,则()P B A 是________82.一个袋中装有外形相同的6个红球和4个白球,不放回地依次摸出2个球,记第一次摸出红球为事件A ,第二次摸出红球为事件B ,则()P B A =______.83.袋中有大小相同的4个红球,6个白球,每次从中摸取一球,每个球被取到的可能性相同,现不放回地取3个球,则在前两次取出的是白球的前提下,第三次取出红球的概率为________.84.从装有3个红球2个白球的袋子中先后取2个球,取后不放回,在第一次取到红球的条件下,第二次取到红球的概率为______.85.已知()12P B A =,3()10P AB =,则()P A =__________.86.已知纸箱中装有6瓶消毒液,其中4瓶为合格品,2瓶为不合格品,现从纸箱中任取一瓶消毒液,每瓶消毒液被取到的可能性相同,不放回地取两次,若用A 表示“第一次取到不合格的消毒液”,用B 表示“第二次仍取到不合格的消毒液”,则()P BA =∣__________.87.某地区气象台统计,该地区下雨的概率是415,刮风的概率是25,既刮风又下雨的概率为110,现该地区开始刮风,则该地区会下雨的概率为__________.88.某盒中装有10只乒乓球,其中6只新球,4只旧球,不放回地依次摸出2个球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为_______.89.据统计,连续熬夜48小时诱发心脏病的概率为0.055,连续熬夜72小时诱发心脏病的概率为0.19.现有一人已连续熬夜48小时未诱发心脏病,则他还能继续连续熬夜24小时不诱发心脏病的概率为______.90.一只袋内装有大小相同的3个白球,4个黑球,从中依次取出2个小球,已知第一次取出的是黑球,则第二次取出白球的概率是____.91.把一枚均匀的硬币连续抛掷两次,事件A =“第一次出现正面”,事件B =“第二次出现正面”,则()P B A =______.92.某班有6名班干部,其中男生4人,女生2人,任选3人参加学校组织的义务植树活动,设“男生甲被选中”为事件A ,“女生乙被选中”为事件B .则()|P B A =________.93.加工某种零件需要两道工序,第一道工序出废品的概率为0.4,两道工序都出废品的概率为0.2,则在第一道工序出废品的条件下,第二道工序又出废品的概率为__________.94.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6.已知某天的空气质量为优良,则随后一天的空气质量为优良的概率为______________.95.为了营造勤奋读书、努力学习、奋发向上的文化氛围,提高学生的阅读兴趣,某校开展了“朗读者”闯关活动,各选手在第一轮要进行诗词朗读的比拼,第二轮进行诗词背诵的比拼.已知某学生通过第一关的概率为0.8,在已经通过第一关的前提下通过第二关的概率为0.5,则该同学两关均通过的概率为______.96.一个家庭中有三个小孩,假定生男、生女是等可能的.已知这个家庭中有一个是男孩,则至少有一个女孩的概率是________.三、解答题97.袋中有10个大小、材质都相同的小球,其中红球3个,白球7个.每次从袋中随机摸出1个球,摸出的球不再放回.求:(Ⅰ)第一次摸到红球的概率;(Ⅱ)在第一次摸到红球的条件下,第二次也摸到红球的概率;(Ⅲ)第二次摸到红球的概率.98.盒中有25个球,其中10个白的、5个黄的、10个黑的,从盒子中任意取出一个球,已知它不是黑球,试求它是黄球的概率.四、双空题99.根据某地区气象台统计,该地区下雨的概率是35,刮风的概率为12,既刮风又下雨的概率为110,则在刮风天里,下雨的概率为__________,在下雨天里,刮风的概率为__________.100.甲袋中有3个红球,2个白球和1个黑球,乙袋中有4个红球,1个白球和1个黑球(除颜色外,球的大小、形状完全相同).先从甲袋中随机取出1球放入乙袋,再从乙袋中随机取出1球.分别以1A ,2A ,3A 表示由甲袋取出的球是红球,白球和黑球的事件,以B 表示由乙袋取出的球是红球的事件,则P ()1|P B A =______,()P B =______.。