蛋白质芯片技术

合集下载

蛋白质芯片

蛋白质芯片

蛋白质芯片
蛋白质芯片是一种高通量的蛋白功能分析技术,可用于蛋白质表达谱分析,研究蛋白质与蛋白质的相互作用,甚至DNA-蛋白质、RNA-蛋白质的相互作用,筛选药物作用的蛋白靶点等。

蛋白质芯片的原理蛋白芯片技术的研究对象是蛋白质,其原理是对固相载体进行特殊的化学处理,再将已知的蛋白分子产物固定其上(如酶、抗原、抗体、受体、配体、细胞因子等),根据这些生物分子的特性,捕获能与之特异性结合的待测蛋白(存在于血清、血浆、淋巴、间质液、尿液、渗出液、细胞溶解液、分泌液等),经洗涤、纯化,再进行确认和生化分析;它为获得重要生命信息(如未知蛋白组分、序列。

体内表达水平生物学功能、与其他分子的相互调控关系、药物筛选、药物靶位的选择等)提供有力的技术支持。

目前蛋白芯片主要有三类:蛋白质微阵列;微孔板蛋白质芯片,适合蛋白质的大规模、多种类的筛选;
蛋白质芯片的应用
用于基因表达的筛选
特异蛋白质的筛选及研究
性抗原抗体的检测
生化反应的检测
药物筛选
疾病诊断
它具有以下优点:
1. 直接用粗生物样品(血清、尿、体液)进行分析
2. 同时快速发现多个生物标记物
3. 小量样品(as few as 2000 cells for LCM samples)
4. 高通量的验证能力(with 1000s of samples a month)
5. 发现低丰度蛋白质
6. 测定疏水蛋白质: 与“双相电泳加飞行质谱”相比,除了有相似功能外,并可增加测定疏水蛋白质
7. 在同一系统中集发现和检测为一体特异性高利用单克隆抗体芯片,可鉴定未知抗原/蛋白质,以减少测定蛋白质序列的工作量。

蛋白质芯片的原理及应用

蛋白质芯片的原理及应用

蛋白质芯片的原理及应用蛋白质芯片(Protein microarray)是一种基于高通量技术的生物芯片,用于检测和研究蛋白质在生物样本中的相互作用和功能。

这种芯片可以同时测试上千种蛋白质的相互作用,具有高灵敏度、高效率和高通量的特点,成为生物医学和生物化学领域的重要工具。

蛋白质芯片的基本原理是将蛋白质分子定向固定在芯片表面,利用特定的探针与这些固定的蛋白质相互作用,通过检测这些相互作用来研究蛋白质的功能和相互关系。

下面将从芯片制备、实验步骤以及应用领域三个方面详细介绍蛋白质芯片的原理和应用。

1.芯片制备:蛋白质芯片的制备需要首先选择目标蛋白质,并克隆、表达和纯化这些目标蛋白质;然后将纯化得到的蛋白质标记上非放射性示踪剂,如荧光染料或酶;接下来,将标记后的蛋白质溶液滴在玻璃片或硅片上,并干燥形成固相阵列;最后,在固相阵列的表面上进行一系列的化学修饰,形成蛋白质芯片。

2.实验步骤:使用蛋白质芯片进行实验一般包括以下几个步骤:首先,先将芯片表面进行预处理,以去除非特异性的背景信号;然后,将待测样品或探针标记的配体加入芯片孔中,与芯片上的固相蛋白质进行反应;接下来,将芯片进行洗涤,去除无特异性结合的物质;最后,使用合适的检测方法,如荧光、酶反应等进行信号检测和定量分析。

3.应用领域:蛋白质芯片广泛应用于生物医学和生物化学领域,以下是几个典型的应用领域:(1)蛋白质相互作用研究:蛋白质芯片可以快速、平行地测定蛋白质与其他蛋白质、核酸或化合物之间的相互作用,有助于揭示蛋白质在细胞信号传导、代谢途径和疾病发生中的作用机制。

(2)药物筛选和靶点识别:蛋白质芯片可以用于大规模的药物筛选,通过检测药物与蛋白质间的相互作用来筛选潜在的药物靶点和药物候选化合物。

这在新药研发中具有重要意义。

(3)诊断和预后标志物鉴定:蛋白质芯片可用于发现和鉴定疾病相关的生物标志物,通过检测患者血清中某些蛋白质的表达水平变化,可以进行疾病的早期诊断、治疗预后评估等。

SELDI

SELDI

SELDI蛋白质芯片技术传统蛋白质研究的方法如色谱分离纯化技术、二维电泳、质谱等方法因操作过程繁锁、耗时冗长、重复性差、检测样本量小等缺点而不适合对蛋白质开展大规模的筛选研究,蛋白质组学研究迫切需要一种高通量、快速、全自动化的用于对批苗蛋白质进行快速研究的仪器。

SELDI蛋白质芯片技术,又称为表面增强激光解吸离子化飞行时间质谱(surface-enhanced laser desorption/ionization-time of flight-mass spectrometry,SELDI-TOF-MS)。

自2002年日本科学家田中耕一因发明该技术而荣获诺贝尔化学奖后。

该技术发展十分迅速,目前已经广泛应用于生物技术、药学、基因学、临床诊断、生物信息等诸多领域。

其在临床实验诊断学中的主要工作原理是利用蛋白质芯片(proteinchip)和表面增强激光解吸离子化飞行时间质谱仪对体液中各种蛋白质.包括疾病早期最微小基因表达产物如低分子量蛋白质、多肽等。

进行动态、全景的分析。

获得待检标本中各种蛋白的含量及其分子量等信息,绘制成蛋白质指纹图谱。

再通过计算机软件将正常人、亚健康状态人群、良性疾病和癌症病人的指纹图谱库对照。

比较分析差异。

就能快速、敏感和特异地发现和捕获新的与疾病相关的蛋白。

目前发现通过SELDI蛋白质芯片技术所获得的生物标记物.大多是特异性肿瘤微环境所产生的低分子量的蛋白质,通过对多种肿瘤的检测表明。

其敏感性和特异性均优于传统的肿瘤标记物.对某些肿瘤的敏感性已达到100%。

特异性也超过95%。

因而该技术能在肿瘤早期诊断中具有很重要的临床应用价值。

1 SELDI-TOF-MS系统的组成1.1蛋白质芯片又称蛋白质微阵列(protein mieroarray)。

把制备好的蛋白质样品固定于经化学修饰的玻片或硅片等载体上。

蛋白质与载体表面结合。

同时仍保留蛋白质的理化性质和生物活性,可以高效地大规模获取生物体中蛋白质的信息。

《蛋白质芯片技术》课件

《蛋白质芯片技术》课件
蛋白质芯片技术
蛋白质芯片技术将蛋白质的检测和分析提升到了一个全新的水平。本课件将 介绍蛋白质芯片技术的定义、背景和应用领域。
蛋白质芯片技术的原理和工作原理
1
蛋白质捕捉
使用特定的探针将目标蛋白质捕捉在
蛋白质检测
2
芯片表面。
通过不同的检测方法(如质谱法和光
学传感器),定量和鉴定捕获的蛋白
质。
3
数据分析
蛋白质芯片技术的未来发展方向
1
高通量筛选
加速药物筛选过程,发现更多具有潜力的药物靶点。
2
疾病标志物发现
通过广泛的蛋白质组学分析,发现新的疾病标志物,促进早期诊断和治疗。
3
个性化医疗
结合基因组学和蛋白质组学,实现个体化的医疗方案。
总结和展望
蛋白质芯片技术的发展为蛋白质研究和生物医学领域带来了巨大的机遇和挑 战。我们期待在未来看到更多创新和突破。
高通量、高灵敏度、精准定量、并行分析多种蛋白质。
2 挑战
技术复杂性、芯片设计和制备的困难、数据分析的挑战。
蛋白质芯片技术的最新研究进展
单细胞蛋白质芯片
实现对单个细胞中蛋白质 的高通量检测。
多组学整合
将蛋白质芯片技术与基因 组学、转录组学等多个组 学领域进行整合。
微流控芯片
通过微型流体控制,在芯 片上实现更复杂的蛋白质 反应和分析。
对蛋白质芯片产生的海量数据进行分 析和解读,从中发现关键的生物学信 息。
蛋白质芯片技术的应用领域
癌症研究
药物研发
通过分析肿瘤标记物等蛋白质, 提供个体化的治疗方案。
加速药物靶点的鉴定和药效评 估,提高药物研发效率。
Байду номын сангаас

蛋白质芯片技术

蛋白质芯片技术

蛋白质芯片技术蛋白质芯片技术(Protein Microarray Technology)是一种高通量蛋白质分析技术,它使用了类似于DNA芯片的方法,将大量的蛋白质样品固定在玻璃板或硅片上,并通过检测分析蛋白质与其他分子的相互作用,实现对蛋白质功能和相互作用网络的研究。

蛋白质芯片技术的原理是将蛋白质样品以阵列的形式固定在芯片上,然后通过添加不同的检测试剂,可以对蛋白质样品进行鉴定和分析。

常用的固定方法有基于化学反应或机械固定等。

蛋白质芯片技术主要有两种类型,一种是功能蛋白芯片,另一种是相互作用蛋白芯片。

功能蛋白芯片是将蛋白质样品固定在芯片上,然后通过添加特定的底物和检测试剂,可以对蛋白质的功能进行分析。

例如,可以通过测量底物与蛋白质的结合以及反应产物的生成来确定蛋白质的酶活性。

这种芯片技术可以广泛应用于蛋白质酶活性、底物特异性和抑制物筛选等领域的研究。

相互作用蛋白芯片则是将蛋白质样品固定在芯片上,并与其他分子(如抗体、小分子化合物等)进行相互作用实验。

例如,可以将抗体或其他相互作用分子固定在芯片上,然后通过检测蛋白质样品与抗体的结合来确定抗体的特异性和亲和力。

这种芯片技术可以广泛应用于蛋白质-蛋白质、蛋白质-抗体、蛋白质-药物相互作用等领域的研究。

蛋白质芯片技术具有以下几个优点:首先,它可以同时分析大量的蛋白质样品,具有高通量性能。

这对于研究复杂的蛋白质功能和相互作用网络非常有用。

其次,蛋白质芯片技术对样品的需求量较小,可以节省宝贵的蛋白质样品,并可以使用多种不同的检测试剂进行分析。

此外,蛋白质芯片技术的操作相对简便,可以快速进行实验,并可以大大提高实验效率。

蛋白质芯片技术在生物医药研究和临床诊断中具有广泛的应用前景。

例如,在药物研发中,可以利用蛋白芯片技术进行靶点筛选、药物靶点鉴定和药物相互作用研究。

在生物标志物鉴定和诊断中,可以通过蛋白质芯片技术对体液中的蛋白质进行快速高通量的分析,从而实现对疾病的早期诊断和预防。

蛋白质芯片技术研究及应用

蛋白质芯片技术研究及应用

蛋白质芯片技术研究及应用近年来,蛋白质芯片技术在生命科学领域研究中扮演越来越重要的角色。

蛋白质是组成细胞的重要基础,存在于细胞的各个组分中,包括核糖体、线粒体、内质网等。

蛋白质芯片技术能够对蛋白质进行高通量分析和筛选,能够为研究蛋白质结构和功能提供重要的支持和帮助。

本文将介绍蛋白质芯片技术的基本原理、发展历程、应用领域以及未来的发展趋势。

一、蛋白质芯片技术的基本原理蛋白质芯片技术基于DNA芯片技术的基础上,采用微阵列技术制备出数千到数百万种蛋白质的阵列芯片,通过特异性结合的方法检测样品中的蛋白质分子。

其基本原理类似于ELISA法,但在ELISA法中,检测蛋白质需要用到特异性的抗体,而蛋白质芯片技术则是利用特异性的配体(如抗体、酶、选择性结合因子等)对蛋白质进行特异性识别和检测。

二、蛋白质芯片技术的发展历程蛋白质芯片技术起源于上世纪90年代,最早由美国的Affymax公司和Genentech公司研发而来。

最初只是在微阵列技术基础上对蛋白质进行筛选,后来随着科技的发展,蛋白质芯片技术发展成为一种高通量、能够同时检测多种蛋白质的技术。

目前,蛋白质芯片技术已经成为快速筛查疾病诊断、病原体检测和药物筛选等领域中的重要手段。

三、蛋白质芯片技术的应用领域3.1 疾病诊断蛋白质芯片技术在医学领域中的应用越来越广泛。

对于一些蛋白质变化与疾病相关的情况下,利用蛋白质芯片技术进行快速定量检测、疾病诊断和疾病预测,具有极高的灵敏度和特异性。

3.2 药物筛选蛋白质芯片技术可以应用在药物筛选和新药研发中。

在药物筛选中,比较不同药物分子的相互作用性能,选取作用效果最好、最适合治疗特定疾病的药物。

同时,蛋白质芯片技术也能够对药物通量、结合常数以及与靶标的特异性等进行快速检测。

3.3 生命科学在生命科学领域中,蛋白质芯片技术也被广泛应用。

例如,在分离和鉴定蛋白质互作关系、研究蛋白质结构与功能、为体外抗体生产提供高通量筛选手段等方面发挥着重要作用。

蛋白质芯片技术

蛋白质芯片技术

蛋白质芯片技术
1 蛋白质芯片技术
蛋白质芯片技术是基于科学实验,将蛋白质片被载入一定的固定支架的技术。

这一技术的开发,可以帮助科学家们快速、准确地检测基因的序列以及蛋白质内部的变化。

蛋白质芯片技术概念源于自动免疫图谱,在蛋白质分析中应用较为广泛。

2 基本原理
蛋白质芯片技术可以检测多种蛋白质,因为它可以将大量的蛋白质样品固定在支架上,以便能够进行整体分析,而不必繁琐地进行每一次实验。

该技术使用了特定的物质来承载细胞中活性物质的载体,这些物质被包括在称作支架的有机结构中。

支架是由数种支架蛋白组成的多孔层,这些支架蛋白被固定在表面上,然后按照程序依次放上实验中所需的物质。

支架的特点是具有较高的数据空间,能够将大量的蛋白质信息载入支架中,完成多蛋白质的整体分析。

3 应用
蛋白质芯片技术能够快速、准确地检测蛋白质序列,从而研究基因表达的差异和生物体表型的变化。

同时,该技术在药物筛选中也有广泛的应用,可以帮助分析药物的作用机制,进而提升药物的合理使用。

此外,蛋白质芯片技术也可以大大地降低实验成本,使得蛋白质研究变得更加精准高效,同时也能够减少对动物实验的依赖性。

4 展望
蛋白质芯片技术由来已久,但近年来在技术和应用方面都发生了巨大变化,可以有效抵制人体疾病发病过程,可以提供有效的筛查和诊断工具,并改善病人的治疗工作,皆因有良好的技术基础和大量的学术研究的支持。

蛋白质芯片技术具有极为广泛的应用,希望在未来还能有更大的发展,以研发出更多高效的应用,成为医学研究领域的重要技术手段。

蛋白芯片法igg

蛋白芯片法igg

蛋白芯片法(IgG)1. 引言蛋白芯片法(IgG)是一种用于检测和研究蛋白质相互作用的技术。

在生物医学研究和临床诊断中,蛋白质相互作用扮演着重要的角色。

蛋白芯片法(IgG)通过将多种蛋白质固定在芯片上,并利用抗体与特定蛋白质相互作用的原理,实现对蛋白质相互作用的高通量分析。

本文将详细介绍蛋白芯片法(IgG)的原理、应用、优势和局限性,并展望其未来的发展方向。

2. 原理蛋白芯片法(IgG)的原理基于蛋白质的特异性相互作用。

首先,在芯片上固定多种蛋白质,可以使用不同的方法,如化学交联、光化学固定等。

然后,将待测的样品(如血清或细胞提取物)与芯片上的蛋白质相互作用。

最后,使用特异性的抗体来检测与待测样品中的蛋白质结合的蛋白质。

具体而言,蛋白芯片法(IgG)通常分为两个步骤:蛋白芯片制备和蛋白质检测。

•蛋白芯片制备:选择需要固定在芯片上的蛋白质,将其固定在芯片上的特定位置。

可以使用化学交联、光化学固定等方法实现蛋白质的固定。

•蛋白质检测:将待测样品与固定在芯片上的蛋白质相互作用,使待测样品中的蛋白质与芯片上的蛋白质结合。

然后,使用特异性的抗体来检测与待测样品中的蛋白质结合的蛋白质。

最常用的检测方法是荧光标记的二抗法,其中荧光标记的二抗与特异性抗体结合,形成荧光信号。

通过检测荧光信号的强度,可以确定蛋白质的相互作用。

3. 应用蛋白芯片法(IgG)在生物医学研究和临床诊断中具有广泛的应用。

以下是蛋白芯片法(IgG)的一些主要应用领域:3.1 蛋白质相互作用研究蛋白质相互作用是生物体内许多重要生物过程的基础。

蛋白芯片法(IgG)可以高通量地检测和分析蛋白质相互作用,帮助研究人员深入了解蛋白质的功能和调控机制。

通过蛋白芯片法(IgG),可以筛选出与特定蛋白质相互作用的潜在配体或抑制剂,为新药开发提供重要线索。

3.2 疾病标志物筛选蛋白芯片法(IgG)可以用于筛选疾病标志物,即与特定疾病相关的蛋白质。

通过比较正常样品和疾病样品中蛋白质的相互作用模式和强度,可以鉴定出与疾病相关的蛋白质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

存在的问题
成本过高, 需一系列昂贵的尖端仪器
芯片的标准化问题 提高芯片的特异性、简化样品制备和标记 操作程序、增加信号检测的灵敏度和消除 芯片背景对于结果分析的影响等等
展望—蛋白质芯片未来的发展重点
建立快速、廉价、高通量的蛋白质表达和纯化方法, 高通量制备抗体并定义每种抗体的亲和特异性。
Au 的尺寸及其与Dy633的比例 对 信号的影响 5 nm Au-particle 10 nm Au-particle.
Sauera U,et al., Sensors and Actuators B, 2005, 107, 178–183.
Protein Microarray Sted
亲和结合 亲和结合
蛋白连接强度高、特异和高密度,低背景 蛋白连接强度高、特异和高密度,低背景 表面蛋白分布均一容量
蛋白需生物素化 蛋白需His x6标记
Agarose thin film 3D gel pad 扩散 无需蛋白修饰过程,高结合容量
制作难,未商品化
TeleChem /
药物开发
G-蛋白偶联受体芯片
肾上腺素受体 芯片(含三个 亚型)筛选抑 制剂
抑制剂
Fang Y,et al., ChemBioChem 2002, 3, 987- 991.
• SELDI把基质改为
/vpc/ seldi/seldiprocess/
Markus F, et al., DDT, 2002, 7,815-822.
微流控芯片
/
Bertone P,et al., FEBS Journal, 2005, 272 , 5400–5411.
研究蛋白质芯片的意义
蛋白质是基因表达的最终产物, 接近生命活动的物 质层面;
His6-RB/GST-E7相互作用抑 制剂筛选微阵列图
加入His6-RB 加入含 PepC抑制剂的 His6-RB A 1500 个点阵的微阵列
B 局部点阵放大图及SPR信号
Jung SO, et al., Proteomics 2005, 5, 4427–4431.
蛋白质组学
人动脉平滑肌细胞蛋白谱
化学发光检测
酶免疫标记检测 胶体金标记检测
表面等离子体共振检测技术
(surface plasmon resonance, SPR)
原子力显微镜检测技术
(atomic force microscope, AFM )
蛋白质芯片的应用
疾病诊断和预警
药物开发
蛋白质组学
疾病诊断
定量检测组织提取液中的肿瘤标记物
It is suitable for a variety of proteomic applications including Micro Multianalyte Immunoassays, protein-antibody, antibody-protein, antibody-antigen, protein-protein, and protein-drug microarray assays.
吸附,共
价偶联
无需蛋白修饰过程,高密度, 高分辨检测 高密度,高分辨检测
非特异吸附,分布随机
Aldehyde-coated Epoxy-activated
PDMS nanowell Gold coated silicon
分布随机,表面有吸附
共价 偶联
高密度,适合复杂的生化分析 高密度,低背景,易与SPR或MS 联用 分布随机,制作难,未商品化
4.7% 抗原(一组细胞-细胞间相 互作用分子)表达上调; 13.4%抗原(结构蛋白,体液响 应蛋白)表达下降
细胞经oxidized low density lipoprotein作用后的蛋白谱 揭示了oxidized low density lipoprotein 诱导人动脉平滑肌细胞的作用模式 Sukhanov S and Delafontaine P,Proteomics, 2005, 5, 1274–1280.
探针蛋白特异性高、亲和力强, 可简化样品前处理, 甚至可直接利用生物材料(血样、尿样、细胞及组 织等)进行检测; 适合高通量筛选与靶蛋白作用的化合物;
有助于了解药物或毒物与其效应相关蛋白质的相 互作用。
蛋白质芯片的分类
蛋白质检测芯片
蛋白质功能芯片
Poetz O et. al, Mechanisms of geing and Development, 2005, 126 ,161–170.
Seminar I
蛋白质芯片研究进展
内容提要
蛋白质芯片概述
蛋白质芯片的关键技术 蛋白质芯片的应用 展望
蛋白质芯片的定义
生 物 芯 片
基因芯片
蛋白质芯片, 又称蛋白质阵列
蛋白质芯片
或蛋白质微阵列,是指以蛋白质
分子作为配基,将其有序地固定
在固相载体的表面形成微阵列; 用标记了荧光的蛋白质或其他它 分子与之作用,洗去未结合的成 分,经荧光扫描等检测方式测定 芯片上各点的荧光强度,来分析 蛋白之间或蛋白与其它分子之间 的相互作用关系。
蛋白质芯片的关键技术
1
提出生物学问题
(实验目的)
2
蛋白质芯片制备
6
数据分析和建模
(图象量化,标准化,
采集蛋白信息,建立模型)
样品预处理
(重组蛋白,制备一、二级抗体,
荧光标记,配蛋白印记缓冲液)
3
检测
(荧光和比色扫描或拍照, 参数设置)
生化反应
化学偶合,加底物, 反应温度和时间, 冲洗条件
5
Schena M, Protein microarrays,2005, 7.
改进基质材料的表面处理技术以减少蛋白质的非特异 性结合。 提高芯片制作的点阵速度;提供合适的温度和湿度以 保持芯片表面蛋白质的稳定性及生物活性。 研究通用的高灵敏度、高分辨率检测方法,实现成像 与数据分析一体化。
参考文献
[1] Markus F, et al., DDT, 2002, 7,815-822. [2] Bertone P,et al., FEBS Journal, 2005, 272 , 5400–5411. [3] Poetz O et. al, Mechanisms of geing and Development, 2005, 126 ,161– 170. [4] 李瑶,基因芯片与功能基因组,2004,32-33 [5] Zhu H et.al, Current Opinion in chemical Biology, 2003,755-63. [6] Weissenstein U, Proteomics 2006, 6, 1427–1436. [7] Fang Y,et al., ChemBioChem 2002, 3, 987- 991. [8] Sukhanov S and Delafontaine P,Proteomics, 2005, 5, 1274–1280.
[9] Jung SO, et al., Proteomics 2005, 5, 4427–4431.
[10] Schena M, Protein microarrays,2005, 7.
蛋白质芯片检测信号的提高
优化芯片制作过程各种参数;
使用金粒子作为辅助标记分子;
添加SiO2和TiO2层提高表面反 射 Au-labelled anti-rabbit IgG放大照片
孵育后的微阵列荧光图 A 含抗原 B 无抗原
uPA 尿激酶型纤溶酶原激活因子 PAI-1血浆纤溶酶原激活因子抑制因子
VEGT 血管内皮生长因子
微阵列方法与ELISA方法检出结果比较 Weissenstein U, Proteomics 2006, 6, 1427–1436.
药物开发
高通量筛选蛋白-蛋白作用抑制剂
Zhu H et.al, Current Opinion in chemical Biology,2003,7,55-63.
蛋白质芯片检测
探针标记检测法
同位素标记检测 荧光标记检测
无探针标记检测法
表面增强激光解吸离子化技术
(Surface enhanced laser desorption/ionization, SELDI)
5.微阵列的封闭
主要封闭试剂:BSA或Gly
李瑶,基因芯片与功能基因组,2004,32-33.
蛋白质芯片比较
表面
PVDF Nitrocellulose
蛋白固定方式
吸附 吸附
优点
无需蛋白修饰过程,高结合容量 无需蛋白修饰过程,高结合容量
缺点
非特异吸附,分布随机 非特异吸附,高背景,低密度
Poly-lysine coated
4
蛋白质芯片的制备
1. 固相载体及其处理
载体(滴定板、滤膜、凝胶、载 玻片)
4.固定微阵列上的蛋 白样点
膜为载体:芯片放入湿盒, 37°C 1h 载玻片为载体:化学修饰产生醛 基固定蛋白
2. 蛋白质的预处理
选择具有较高纯度和完好生物活 性的蛋白进行溶解
3. 点制微阵列
可使用点制基因微阵列的商品化 点样仪或喷墨法等
• The Protein Microarray System is a complete microarray platform that includes microarray manufacturing, processing, surface chemistry, detection and analysis.
相关文档
最新文档