(完整word版)统计学计算公式

合集下载

(完整word)统计学原理知识点及公式,推荐文档

(完整word)统计学原理知识点及公式,推荐文档

统计学原理知识点及公式第一章统计总论•1.统计一词的三种含义•2.统计学的研究对象及特点•3.统计学的研究方法•4.统计学的几个基本概念:总体与总体单位、标志与标志表现、变异与变量、统计指标的概念、特点及分类。

•5.国家统计兼有的职能第二章统计调查•1.统计调查的概念和基本要求•2.统计调查的种类•3.统计调查方案的构成内容•4.统计调查方法:普查、抽样调查、重点调查、典型调查•5.调查误差的种类第三章统计整理•1.统计整理的概念和方法•2.统计分组的概念、种类•3.统计分组的关键•4.统计分组的方法:品质分组方法、变量分组的方法•5.分配数列的概念、构成及编制方法变量数列的编制基本步骤为:第一步:将原始资料按数值大小依次排列。

第二步:确定变量的类型和分组方法(单项式分组或组距分组)。

第三步:确定组数和组距。

当组数确定后,组距可计算得到:组距= 全距÷组数全距= 最大变量值-最小变量值。

第四步:确定组限。

(第一组的下限要小于或等于最小变量值,最后一组的上限要大于最大变量值。

)第五步:汇总出各组的单位数(注意:不同方法确定的组限在汇总单位数时的区别),计算频率,并编制统计表。

间断式确定组限:汇总各组单位数时,按照“上下限均包括在本组内”的原则汇总。

重叠式确定组限:汇总各组单位数时,按照“上组限不在内”的原则汇总。

因为有了“上组限不在内”的原则,实际工作中,对于离散型变量也经常采用重叠式确定组限的方法。

•6.统计表的结构和种类第四章综合指标•1.总量指标的概念、种类和计量单位•2.相对指标的概念、指标数值的表现形式、相对指标的种类。

相对指标包括:结构相对指标、比例相对指标比较相对指标、强度相对指标动态相对指标、计划完成程度相对指标●3.平均指标的概念、作用和种类。

算术平均数、调和平均数、众数、中位数●4.变异指标的概念、作用和种类。

●全距、平均差、标准差、变异系数第五章 抽样估计•1.抽样推断的概念、特点、和内容。

统计学计算公式

统计学计算公式

《统计学原理》复习资料(计算公式)一、编制分配数列(次数分布表)统计整理公式a)组距=上限-下限b)组中值=(上限+下限)÷2 c)缺下限开口组组中值=上限-1/2邻组组距d)缺上限开口组组中值=下限+1/2邻组组距二、算术平均数和调和平均数的计算加权算术平均数公式xfx f (常用)fx x f(x 代表各组标志值,f 代表各组单位数,ff 代表各组的比重)加权调和平均数公式mx mx (x 代表各组标志值,m 代表各组标志总量)三、变异系数比较稳定性、均衡性、平均指标代表性(通常用标准差系数V x 来比较)公式:标准差: 简单σ= ;加权σ=四、总体参数区间估计(总体平均数区间估计、总体成数区间估计)具体步骤:①计算样本指标x 、;p③由给定的概率保证程度()F t 推算概率度t⑤估计总体参数区间范围x x x X x ;p pp P p 抽样估计公式1.平均误差:重复抽样:n x np p p )1(不重复抽样:)1(2Nn n x2.抽样极限误差xx t 3.重复抽样条件下:平均数抽样时必要的样本数目222x t n 成数抽样时必要的样本数目22)1(p p p t n4.不重复抽样条件下:平均数抽样时必要的样本数目22222t N Ntn x 五、相关分析和回归分析相关分析公式1.相关系数2222)()(y y n x x n y x xy n2.配合回归方程y=a+bx22)(x x ny x xy nb xb y a 3.估计标准误:22n xy b y a y s y 五、指数分析计算指数分析公式一、综合指数的计算与分析(1)数量指标指数0001p q p q 此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。

(01p q -00p q )此差额说明由于数量指标的变动对价值量指标影响的绝对额。

(2)质量指标指数0111p q p q 此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度。

统计学公式大全

统计学公式大全

3 i1 N3
峰度
(概念要点)
• 1. 数据分布扁平程度的测度 • 2. 峰度系数=3扁平程度适中 • 3. 偏态系数<3为扁平分布 • 4. 偏态系数>3为尖峰分布 • 5. 计算公式为
K Xi X 4 Fi
4 i1 N 4
时间序列的分类
时间序列
绝对数序列 相对数序列 平均数序列
时期序列 时点序列
线性模型法
(a和b的最小二乘估计)
1. 根据最小二乘法得到求解 a 和 b 的标准方程为
Ynab t tYa tb
t2
解得:b
ntY tY
nt 2 t2
a Y bt
2. 取时间序列的中间时期为原点时有 t=0,上
式可化简为
Y na tY bt 2
a Y
解得:
b
tY t2
增1% 长 绝对环 值 逐 比 = 期 增 增 1长 0 长 0前 速 1量 期 0度 0水
甲企业增长1%绝对值=500/100=5万元 乙企业增长1%绝对值=60/100=0.6万元
时间序列的构成要素与模型
(要点)
1. 构成因素
– 长期趋势 (Secular trend ) – 季节变动 (Seasonal Fluctuation ) – 循环波动 (Cyclical Movement ) – 不规则波动 (Irregular Variations )
3. 平均数时间序列
– 一系列平均数按时间顺序排列而成
绝对数序列的序时平均数
(计算方法)
时期序列
n

计算公 式:
Y Y1 Y2
Yn
Yi
i1
n
n
【例11.1】 根据表11.1中的国内生产总值 序列,计算各年度的平均国内生产总值

统计学主要计算公式

统计学主要计算公式

统计学主要计算公式统计学是研究数据收集、整理、分析、解释和呈现的科学。

在统计学中,有许多重要的计算公式被广泛应用于统计分析和推断,以下是一些常见的计算公式:1.平均值:平均值是一组数据的总和除以数据的数量。

公式:平均值=总和/数据数量2.中位数:中位数是一组有序数据中的中间值,将数据从小到大排列,若数据的数量为奇数,则中位数为中间的数值;若数据的数量为偶数,则中位数为中间两个数值的平均值。

3.众数:众数是一组数据中出现最频繁的值。

4.方差:方差是一组数据与其平均值的差的平方的平均值。

公式: 方差= (∑(xi-平均值)^2) / 数据数量5.标准差:标准差是方差的平方根,用于衡量一组数据的离散程度。

公式:标准差=√方差6.相关系数:用于衡量两个变量之间线性相关程度的统计量。

公式: r = Cov(X,Y) / (SD(X) * SD(Y))其中,Cov(X,Y)表示X和Y的协方差,SD(X)和SD(Y)分别表示X和Y的标准差。

7.正态分布概率密度函数:正态分布是统计学中最重要的分布之一,其概率密度函数可以描述随机变量的分布。

公式:f(x)=(1/(σ*√(2π)))*e^(-(x-μ)^2/(2σ^2))其中,μ表示均值,σ表示标准差,e表示自然常数。

8.合并概率公式:用于计算多个事件同时发生的概率。

公式:P(A∩B)=P(A)*P(B,A)其中,P(A)表示A事件发生的概率,P(B,A)表示在A事件发生的条件下B事件发生的概率。

9.条件概率公式:用于计算在已知其中一事件发生的条件下另一事件发生的概率。

公式:P(A,B)=P(A∩B)/P(B)其中,P(A,B)表示在B事件发生的条件下A事件发生的概率。

10.抽样误差公式:用于计算样本估计值与总体参数之间的误差。

公式:误差=Z*(标准误差)其中,Z表示置信水平对应的标准正态分布的分位数,标准误差表示样本估计的标准差。

这些计算公式是统计学中非常重要的工具,用于帮助我们理解和解释数据的特征和关系。

(完整word版)医学统计学公式整理

(完整word版)医学统计学公式整理

集中趋势的描述算术均数: 频数表资料(X0为各组段组中值)n fX ffX x OO∑∑∑==几何均数:n nX X X G ...21= 或)log (log 1nX G ∑-=频数表资料:⎥⎦⎤⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡=∑∑∑--n X f f X f G log lg log log 11 中位数:(1)*21+=n XM (2) )(21*12*2++=n n X X M百分位数⎪⎭⎫⎝⎛-⋅+=L X X f n X f i L P 100其中:L 为欲求的百分位数所在组段的下限 , i 为该组段的组距 , n 为总频数 , X f 为该组段的的频数 , L f 为该组段之前的累计频数方差: 总体方差为:式(1); 样本方差为 式(2) (1)N X 22)(μσ-∑=(2)1)(22--∑=n X X S标准差:1)(2--∑=n X X S或 1/)(22-∑-∑=n nX X S频数表资料计算标准差的公式为1/)(22-∑∑∑-∑=f f fx fx S变异系数:当两组资料单位不同或均数相差较大时,对变异大小进行比较,应计算变异系数%100⨯=X SCV常用的相对数指标 (一)率 (二)相对比(三)构成比1.直接法标准化NpN p ii∑='∑=i i p NN p )('2.间接法标准化预期人数实际人数=SMR∑=ii P n rSMRSMR P P ⨯='正态分布:密度函数:)2/()(2221)(σμπσ--=X e X f分布函数: 小于X 值的概率,即该点正态曲线下左侧面积 )()(x X P x F <=特征:(1)关于x=μ对称。

(2)在x=μ处取得该概率密度函数的最大值,在σμ±=x 处有拐点,表现为钟形曲线。

(3)曲线下面积为1。

(4)μ决定曲线在横轴上的位置,σ决定曲线的形状 .(5)曲线下面积分布有一定规律标准正态分布:对任意一个服从正态分布的随机变量,作如下标准化变换σμ-=X u ,u 服从总体均数为0、总体标准差为1的正态分布。

统计学p值计算公式

统计学p值计算公式

p值计算公式是根据不同的假设检验方法而定的,下面列出几个常见的假设检验及其p 值计算公式:
1. 单样本t检验:
H0: μ= μ0 vs H1: μ≠μ0
计算公式:p = 2 * (1 - t分布的累积分布函数的值),其中t分布的自由度为n-1,t值为样本均值减去假设值μ0,再除以样本标准差除以√n得到的t值。

2. 独立样本t检验:
H0: μ1 = μ2 vs H1: μ1 ≠μ2
计算公式:p = 2 * (1 - t分布的累积分布函数的值),其中t分布的自由度为n1+n2-2,t 值为两组样本均值之差减去假设值0,再除以合并标准差除以√(1/n1+1/n2)得到的t值。

3. 配对样本t检验:
H0: μd = 0 vs H1: μd ≠0
计算公式:p = 2 * (1 - t分布的累积分布函数的值),其中t分布的自由度为n-1,t值为样本平均差减去假设值0,再除以样本平均差的标准误差得到的t值。

4. 单样本z检验:
H0: μ= μ0 vs H1: μ≠μ0
计算公式:p = 2 * (1 -标准正态分布的累积分布函数的值),其中标准正态分布的z值为样本均值减去假设值μ0,再除以样本标准差除以√n得到的z值。

5. 独立样本z检验:
H0: μ1 = μ2 vs H1: μ1 ≠μ2
计算公式:p = 2 * (1 -标准正态分布的累积分布函数的值),其中标准正态分布的z值为两组样本均值之差减去假设值0,再除以合并标准差除以√(1/n1+1/n2)得到的z值。

需要注意的是,在计算p值时,需要选择正确的分布来计算。

如果样本分布不符合正态分布,需要进行数据转换或使用非参数检验方法。

(整理)统计学计算公式

(整理)统计学计算公式

第4章)(公式计划实际总2-4%100⨯=∑∑XX K计划任务数为平均数时)(公式计划实际平3-4%100⨯=X X K(ⅰ)当计划任务数表现为提高率时)(公式计划提高百分数实际提高百分数4-4%10011⨯++=Kⅱ)当计划任务数表现为降低率时时间进度=)(公式全期时间截止到本期的累计时间7-4%100⨯8)-4(%100公式数计划期间计划规定累计数计划期间实际完成累计计划完成程度相对指标⨯=)(公式水平计划规定末期应达到的平计划末期实际达到的水计划完成程度相对指标9-4%100⨯=(%100公总体的全部数值总体中某一部分数值结构相对指标⨯=)11-4(公式总体中另一部分数值总体中某一部分数值比例相对指标=)12-4(公式单位)的同一指标数值同时期乙地区(部门或的某一指标数值甲地区(部门或单位)比较相对指标=%100⨯=计划任务数实际完成数计划完成程度相对指标5)-4( %100-11公式计划降低百分数实际降低百分数⨯-=K %100⨯=全期的计划任务数本期内累计实际完成数计划执行进度)13-4(公式联系的总量指标数值另一性质不同但有一定某一总量指标数值强度相对数=14)-4(%100公式该指标基期数值某指标报告期数值动态相对数⨯=对于分组数据,众数的求解公式为:df f f f f f M m m m m m m ⨯-+---≈+-+)()(U 1110上限公式: df f f f f f M m m m m m m ⨯-+---≈+-+)()(U 1110上限公式:对于分组的数值型数据,中位数按照下述公式求解:对于分组的数值型数据,四分位数按照下述公式求解:LLL L L d f S n L Q ⨯-+≈-14 u U U U U d f S nL Q ⨯-+≈-143(1)简单算数平均数 (2)加权算数平均数nxx ni i∑==1∑∑∑∑====⋅==ki ki iii ki iki ii ff x f fx x 1111各变量值与算术平均数的离差之和为零。

统计学原理计算公式

统计学原理计算公式

位值平均数计算公式1众数:是一组数据中出现次数最多的变量值L m o:代表众数组下限;丄1二fm 。

一 fm °—1 :代表众数组频数一众数组前一组频数dm 0 :代表组距; 2 ~ f m 0 一 f m 0 1 :代表众数组频数一众数组后一组频数2、中位数:是一组数据按顺序排序后,处于中间位置上的变量值。

n 十1中位数位置分组向上累计公式:2Sme-1Sme-1 :代表中位数所在组之前各组的累计频数;fm e 代表中位数组频数;d m e代表组距3、四分位数:也称四分位点,它是通过三个点将全部数据等分为四部分,其中每部分包含25%处在25唏口 75%分位点上的数值就是四分位数。

实例数据总量:7, 15, 36, 39, 40, 41 一共6项Q1 的位置=(6+1) /4=1.75 Q2 的位置=(6+1) /2=3.5 Q3 的位置=3( 6+1) /4=5.25Q1 = 7+ ( 15-7 ) X( 1.75-1 ) =13, Q2 = 36+ ( 39-36 )X( 3.5-3 ) =37.5 , Q3 = 40+ ( 41-40 ) X( 5.25-5 ) =40.25组距式分组下限公式:M 。

A 1 A + A 1 2dm om em em eLm e 代表中位数组下限;其公式为:Q1 = Q 2(中位数)3(n 1) 4数值平均数计算公式1、简单算术平均数:是将总体单位的某一数量标志值之和除以总体单位。

3、加权算术平均数的频率:其公式为:x = X i 」X 2;次「"X\f4、调和平均数:由于只掌握每组某个标志的数值总和(M )而缺少总体单位数(f )的资 料,不冃匕直接采用加权算术平均数法计算干均数,贝U 应采用加权调和平 均数。

H = P其公式为:「mL ---X5、简单几何平均数: 就是n 个变量值(Xn )连乘积的n 次方根:标志变异绝对指标及成数计算公式、标志变异绝对指标:1、异众比率(又称离异比率或变差比,它是指非众数组的频数占总频数的比率)公式即,Vr2、极差(也称全距,它是一组数据的最大值与最小值这差其公式为:乂 X 「X 2nX n2、加权算术平均数:受各组组中值及各组变量值出现的频数(即权数 f )大小的影响,其公式为:x 1 f 〔 x 2 f 2f l f 2X i f i f inX x 2 x 36、加权几何平均数: 如果变量值较多,其出现的次数不同,则应米用加权几何平均数,其公式为: TxJ X 2f 2X n其公式为:n公式即:R 二X max 一X min3、平均差(总体各单位标志值对算数平均数的绝对离差的算术平均数,平均差是反映各 标志值对平均数的平均距离,平均差越大,说明总体各标志值越分散,平均差越 小,说明各标志值越集中),方差简便算法的公式即为:二2= x 2 一(x )2、是非标志的平均数、方差、标准差:是非标志:将总体分成具有某种性质和不具有某种性质的两部分,我们所关心的标志表现称为“是”,另一标志标现称为“非”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《统计学原理》复习资料(计算公式)
一、 编制分配数列(次数分布表) 统计整理公式
a) 组距=上限-下限 b) 组中值=(上限+下限)÷2
c) 缺下限开口组组中值=上限-1/2邻组组距 d) 缺上限开口组组中值=下限+1/2邻组组距 二、 算术平均数和调和平均数的计算 加权算术平均数公式 xf
x f
=
∑∑(常用) f
x x f
=⋅
∑∑
(x 代表各组标志值,f 代表各组单位数,
f
f
∑代表各组的比重)
加权调和平均数公式 m x m x
=∑∑ (x 代表各组标志值,m 代表各组标志总量)
三、 变异系数比较稳定性、均衡性、平均指标代表性(通常用标准差系数V x
σσ
=
来比较)
公式:标准差: 简单σ= ; 加权 σ=
四、 总体参数区间估计(总体平均数区间估计、总体成数区间估计) 具体步骤:①计算样本指标x σ、 ; p
③由给定的概率保证程度()F t 推算概率度t
⑤估计总体参数区间范围x x x X x -∆≤≤+∆;p p p P p -∆≤≤+∆
抽样估计公式
1.平均误差:
重复抽样: n
x σ
μ=
n
p p p )
1(-=
μ 不重复抽样: )1(2
N
n n
x -
=
σμ
2.抽样极限误差 x x t μ=∆
3.重复抽样条件下:
平均数抽样时必要的样本数目
2
22x t n ∆=
σ
成数抽样时必要的样本数目2
2)1(p
p p t n ∆-=
4.不重复抽样条件下:
平均数抽样时必要的样本数目
2222
2σσt N Nt n x +∆=
五、 相关分析和回归分析
相关分析公式 1.相关系数
[][
]
∑∑∑∑∑∑∑---=
2
2
2
2
)
()(y y n x x
n y
x xy n γ
2.配合回归方程 y=a+bx
∑∑∑∑∑--=2
2
)
(x x n y x xy n b
x b y a -=
3.估计标准误:
2
2
---=
∑∑∑n xy b y a y
s
y
五、指数分析计算
指数分析公式
一、综合指数的计算与分析
(1)数量指标指数
01p
q p q ∑∑
此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。

(
1
p q ∑ -00
p q
∑)
此差额说明由于数量指标的变动对价值量指标影响的绝对额。

(2)质量指标指数
∑∑0
1
11p
q p q
此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度。


1
1
p q ∑-0
1p q ∑)
此差额说明由于质量指标的变动对价值量指标影响的绝对额。

加权算术平均数指数=
∑∑0
0p
q p kq
加权调和平均数指数=
∑∑1
1
11
1p
q k p q
(3)复杂现象总体总量指标变动的因素分析
相对数变动分析:
11p
q p q ∑∑=
01p
q p q ∑∑×
∑∑0
1
11p
q p q
绝对值变动分析:
1
1
p q ∑-00
p q
∑=
(01p q ∑ -00p q ∑)×(11p q ∑-01p q ∑) 逐期增长量之和 累积增长量
二. 平均增长量=─────────=───────── 逐期增长量的个数 逐期增长量的个数
(1)计算平均发展速度的公式为:n
x x ∏=
(2)平均增长速度的计算
平均增长速度=平均发展速度-1(100%)。

相关文档
最新文档