储层五敏性实验
储层敏感性流动实验评价方法在储层保护中的作用研究

2020年22期方法创新科技创新与应用Technology Innovation and Application储层敏感性流动实验评价方法在储层保护中的作用研究李亚群(中国石油大港油田公司,天津300280)储层敏感性是储层伤害和储层保护的重要研究内容,而岩心实验分析是确定储层敏感性最权威的手段。
本次利用岩心对M 断块开展储层敏感性流动实验研究,通过得出的敏感性结论,指导M 断块今后在实施钻井、注水开发及实施增产措施时,入井液匹配性选择,对开展储层保护工作具有指导意义[1-4]。
1油田概况M 断块储层岩性主要为含砾不等粒长石砂岩、岩屑长石砂岩和长石岩屑砂岩,泥质胶结为主,储层孔隙度9.7-27.4%,平均17.3%,渗透率14.26-769.51md ,平均276.5md ,为中孔中高渗储层。
粘土矿物主要为伊利石,其次为绿泥石,再次为高岭石。
根据胶结物及粘土矿物成分分析,该区储层可能存在一定程度的储层敏感性问题。
2储层敏感性实验评价2.1水流速敏实验初始水流量0.124cm 3/min ,初始渗透率81.06×10-3μm 2,随着水流量的增加,渗透率逐渐增大,当水流量为2.007cm 3/min ,渗透率达到最大,为97.88×10-3μm 2,后随着水流量的增大,渗透率逐渐减小,最终渗透率85.43×10-3μm 2。
实验结果表明该区储层无速敏。
(表1)2.2水敏实验M 断块水敏实验测试结果如表2所示。
实验结果显示该区储层表现为弱水敏,需要进行盐敏实验确定临界矿化度。
摘要:在油田勘探、开发的整个过程中,都会有不同流体进入储层,这些流体与储层发生物理、化学作用,造成储层伤害,导致油田产量降低。
储层敏感性研究是实现储层保护,减小储层伤害的必要手段。
本次通过实验手段,在M 断块开展储层敏感性研究,确定研究区为无速敏、弱水敏、弱碱敏、中等偏弱酸敏储层,指导今后在区内开展钻井、注水及储层改造措施时储层保护工作。
《油层物理学》第5节:储层岩石的敏感性研究

油藏物理学——储层岩石的敏感性研究
华北坳陷第三系:
接触胶结中的φ:23~30%,K:(50~1000)×10-3μm2 孔隙胶结中的φ:18~25%,K:(1~150)×10-3μm2 基底胶结中的 φ:8~17%, K < 1×10-3μm2
油藏物理学——储层岩石的敏感性研究
5. 影响粘土膨胀的因素:effect factor on clay swelling 粘土类型 clay type 含量 clay content 分布clay distribution 水的矿化度 water saltiness/salinity 阳离子交换性cation exchange
第五节 储层岩石的敏感性研究
Research on sensitivity of reservoir rock
油藏物理学——储层岩石的敏感性研究
讲课提纲
一. 问题的提出 二. 胶结物与胶结类型 三. 敏感矿物
●水敏性矿物 ●盐敏性矿物 ●酸敏性矿物 ●碱敏性矿物 ●速敏性矿物 ● 盐敏 四. 储层敏感性的评价方法 ●推荐程序 ●试验流程 ●发展趋势
油藏物理学——储层岩石的敏感性研究
(1)粘土遇水膨胀 ― 水敏性矿物
Clay swelling ——water sensitivity mineral 1. 起因:晶层间联系的牢固性 水敏性矿物由于其在晶层间的吸水引起的膨 胀,砂粒上的粘土颗粒的絮解和在粘土片外表形 成的定向水化层。
如:蒙脱石是硅氧四面体结构,晶层间的 距离与所嵌离子的离子半径的差会引起阳离子 的交换,或水分子的进入,因而引起膨胀。
油藏物理学——储层岩石的敏感性研究
储层的敏感性特征及开发过程中的变化

储层的敏感性特征及开发过程中的变化摘要:由于储层岩石和流体的性质,储层往往存在多种敏感性,即速敏、水敏、盐敏、酸敏、碱敏、应力敏感性和温度敏感性等七种敏感性。
不同的敏感性产生的条件和产生的影响都有各自的特点。
本文主要从三个部分研究分析了储层的敏感性特征。
即:粘土矿物的敏感性;储层敏感性特征;储层敏感性在开发过程中的变化。
通过这三个方面的研究,希望能给生产实际提供理论依据,进而指导合理的生产。
关键词:粘土矿物;储层;敏感性1.粘土矿物的敏感性特征随着对储层研究进一步加深,除了进行常规的空隙结构和空隙度、渗透率、饱和度等的研究外,还必须对储层岩心进行敏感性分析,以确定储层与入井工作液接触时,可能产生的潜在危险和对储层可能造成伤害的程度。
由于各种敏感性多来至于砂岩中粘土矿物,因此它们的矿物组成、含量、分布以及在空隙中的产出状态等将直接影响储层的各种敏感性。
1.1 粘土含量在粒度分析中粒径小于5um者皆称为粘土,其含量即为粘土总含量。
当粘土矿物含量在1%~5%时,则是较好的油气层,粘土矿物超过10%的一般为较差的油气层[1]。
1.2 粘土矿物类型粘土矿物的类型较多,常见的有蒙皂石、高岭石、绿泥石、伊利石以及它们的混层粘土[2]。
粘土矿物的类型和含量与物源、沉积环境和成岩作用阶段有关。
不同类型的粘土矿物对流体的敏感性不同,因此要分别测定不同储集层出现的粘土矿物类型,以及各类粘土矿物的相对含量。
目前多彩采用X射线衍射法分析粘土矿物。
常见粘土矿物及其敏感性如表1所示。
1.3 粘土矿物的产状粘土矿物的产状对储层内油气运动影响较大,其产状一般分为散状(充填式)、薄层状(衬底状)和搭桥状[1]。
在三种粘土矿物类型中,以分散式储渗条件最好;薄层式次之;搭桥式由于孔喉变窄变小,其储渗条件最差。
除此之外,还有高岭石叠片状,伊/蒙混层的絮凝状等,而且集中粘土矿物的产状类型也不是单一出现的,有时是以某种类型为主,与其它几种类型共存。
储层敏感性研究

二、外来流体与岩石的相互作用
1. 粘土矿物的水化膨胀 外来流体使地层内一些粘土矿物发生水化、 膨胀,堵塞孔喉。 2. 地层内部微粒迁移
外来流体流动速度及压力波动使地层内部微粒发生 迁移,堵塞孔喉,使渗透率降低,或疏通孔喉,使 渗透率升高。速敏性
3. 酸化过程中的化学沉淀 酸化增产措施中,若配方不合适,或措施不当,酸 化后可发生再沉淀,堵塞孔喉,使渗透率降低。
膨胀后的水敏矿物:蒙脱石、伊蒙混层 胶结不坚固的碎屑微粒:石英、长石等 油层酸化处理后释放的碎屑微粒
3. 流体性质对速敏性的影响
盐度、 PH值、分散剂 低盐度流体: 水敏矿物水化、膨胀和分散,
在较低流速下发生迁移。
高PH值:减弱颗粒与基质间结构力,胶结差的地层微粒
释放到流体中,使地层微粒增加。
(3)油水分层流动的情况
在油流区,水 湿微粒受束缚 水影响被约束 不移动; 在水流区水湿 微粒会移动。
(由于压力波动,一般不形成稳定的桥堵)
(4)混性润湿微粒在油流中的迁移情况
(当储层中的油流动时,微粒位于束缚水与油的油水界面处, 微粒受油的拉力而沿油-水界面运动)
(5)在注入油-水互溶剂时的微粒迁移情况
发生迁移: 堵塞孔隙; 解堵
加入油-水互溶剂时,会使得本来由于润湿性和界面张力 控制而固定的微粒发生迁移作用。相反,发生解堵作用。
三、储层酸敏性
酸化液进入地层后,与地层中的 酸敏矿物发生反应,产生沉淀或释放 微粒,使地层渗透率下降的现象。 酸敏矿物:
HCl: 含铁矿物(绿泥石、铁碳酸盐等) 生成Fe(OH)3 SiO2 HF: 高含钙矿物(如方解石、钙长石、沸石等) CaF2 SiO2
与喉道微粒匹配的微粒 开始移动,形成“桥堵” 速度大,移动微粒数量 骤然增加。
注水储层敏感性及其试验方法

油气储层损害总的来说不外乎在各作业 期间外来流体进入储层与储层中的液体、岩 石表面、所含矿物相互作用或带入的固相微 粒对储层的堵塞等原因造成的。
储层水敏性、盐敏性、速敏性、酸敏性、碱敏性
二、储层损害的机理
• 储层的敏感性是由储层岩石中含有的敏感性矿 物所引起的。敏感性矿物是指储层中与流体接 触易发生物理、化学或物理化学反应,并导致 渗透率大幅下降的一类矿物,它们一般粒径很 小(<20μm),比表面积很大。
影响因素
流体性质的影响
多相流体共存及微粒润湿 性影响
(二)、储层速敏性
1、外来流体速度的影响 减渗速敏现象:储层质量由很差到中等。临界流速Vc •V<Vc:迁移微粒细小、数量少,难于形成稳定“桥 堵”。 •Vc<V<某一定值Vkmin:启动与喉道直径匹配的微粒, 同时迁移微粒量较多,稳定“桥堵”大量形成,致使渗 透率骤然下降。 •V>Vkmin:迁移微粒粒径过大、流速过大,冲击、破坏 “桥堵”,渗透率增加。
(三)、储层酸敏性
盐酸: 酸敏性矿物:含铁高的矿物,包括绿泥石(鲕绿泥石、 蠕绿泥石);绿/蒙混层矿物、海绿石、水化黑云母、 铁方解石;铁白云石、赤铁矿、黄铁矿、菱铁矿等; 反应产物:Fe(OH)3↓、SiO2胶体、 氢氟酸: 酸敏性矿物:含钙高的矿物,方解石、白云石、钙长 石、沸石类(浊沸石、钙沸石、斜钙沸石、片沸石、 辉沸石等) 反应产物:CaF2↓、SiO2胶体
•已存在的“桥堵”由于加 入油-水互溶剂而发生解堵
加入油-水互溶剂,能释放被润湿 力和界面张力而固定的微粒,从 而导致微粒在高浓度溶中的酸敏矿物 发生反应,产生沉淀或释放出微粒,使储层渗透率 下降的现象。 •HCl:碳酸盐岩油层、含碳酸盐胶结物较多的砂岩 油层 •土酸(HCl+HF):碳酸盐含量较低、泥质含量较 高的砂岩油层
5 压力敏感性伤害特征

不会恢复到原始状态。 岩石渗透率也有一定的恢复,也不会恢复到原始
渗透率,存在一定的不可恢复量。造成一定的永久 性伤害。
4.2 渗透率的不可恢复量
实际储层多属弹塑性地层。 在地层压力降低的情况下,会发生压力敏感性伤害。 当地层压力恢复到原始状态时,储层渗透率有一定的
产能和有效压力关系曲线
(六)压力敏感性伤害的 防治措施
早期注水,保持压力开采。 控制合理的生产井井底流压,井底流压 降低不宜过大。
谢谢
当油田投入开发后,尤其是在投产后依靠天然能量开发阶段 和采取消耗式开采的情况下,随着地层流体的采出,地层压力逐 渐降低。这时储层岩石骨架在上覆地层压力的作用下承受了额外 的力,称之为有效压力。有效压力的大小为储层上覆地层压力与 岩石中孔隙压力之差。
有效压力 =上覆地层压力—地层压力
在有效压力的作用下,岩石骨架会受到压缩而发生变形,岩 石孔隙结构发生变化,从而影响岩石的孔隙度和渗透率,使其发 生变化。这种因地层压力降低而引起的储层渗透能力的降低称之 为压力敏感性伤害。
原始渗透率为28.9753×10-3μm2和17.6515×10-3μm2, 属一般低渗储层岩石。
K (× 10-3μ m2)
32
史131-37
史131-45
30
28
26
24
22
20
18
16
14
12
2
4
6
8
10
12
14
16
Δ P(MPa)
(b)
2.3 压力敏感性伤害实验曲线 3
– 原始渗透率为131.6978×10-3μm2属中渗储层岩石。
10第十章 储层敏感性解析

储集层损害是由储集层内部潜在损害因素及 外部条件共同作用的结果。 内部潜在损害因素主要指储集层的岩性、物 性、孔隙结构、敏感性及流体性质等储集层固 有的特性。 外部条件主要指施工作业过程中引起储集层 孔隙结构及物性的变化,使储集层受到损害的 各个外界因素。
一、岩石成分及孔隙结构对储集层损害 的影响 1、敏感性矿物的影响 2、孔隙结构的影响
可能损害地层的几类敏感性矿物
2、孔隙结构的影响
孔隙结构也是影响储集层损害的一个重 要因素,特别是喉道的大小、几何形状对 储集层的伤害最为敏感。
二、外来流体与储集层相互作用导致 储集层的损害
1、外来流体中固相颗粒的侵入
固相颗粒可分为两大类: 一类是为了达到流体某种性质而加入的添加剂;
另一类是混入流体中的矿物或其它杂质的碎屑。
1、敏感性矿物的影响
敏感性矿物的概念
指储集层中与流体接触易发生物理、化学或物理化 学反应并导致渗透率大幅度下降的一类矿物。
常见的敏感性矿物可分为水敏性矿物、酸敏性矿物 、碱敏性矿物、盐敏性矿物及速敏性矿物。矿物当与水溶液作用时,将产生晶 格膨胀或分散破碎,从而堵塞孔隙或喉道,使储集层 渗透率下降,此类矿物称之为水敏性矿物,通常具有 阳离子交换容量大的特点。
2、储集层内部颗粒运移
储集层中的细小矿物颗粒在外来流体的流速过大或 存在压力激烈波动时,在流体冲刷作用下,未胶结或胶 结疏松的颗粒发生运移,至狭窄的喉道处,形成堵塞。 有时还会形成“油井出砂”。
3、储集层内部化学沉淀或结垢
外来流体与组成储集岩的矿物或储集岩中流体相接 触时,在地层条件下,经物理、化学、生物作用,将在 孔隙壁上形成化学沉淀或结垢,使孔隙缩小、吼道堵塞 ,储集层物性变差。 乳化物、有机结垢、无机结垢、某些化 学沉淀物
旅大5-2油田储层敏感性实验评价

() 3 在经 过驱 盐酸 处理 之后 , 储层 地 层水 渗透 率 提 升 了3 %~ 5 , 3 5 % 酸敏 损 害程 度 为无 。在 经过 驱 土 酸处 理 之后 , 层地 层 水 渗透 率 提 升 了9 1% , 储 %~ 9 酸 敏损 害程 度 为无 。可 知盐 酸与 土酸都 能 够达 到增 加 储 层 渗透 率 的 目的 。 ( ) 层 为弱 到 中等偏 弱碱 敏损 害 。 层碱 敏损 4储 储
容 易发 生物 理化 学作 用 ,使油气 天 然生 产能 力或 注 入 能力 下 降 , 发生 油 气层 损 害 。损 害程 度 可 用 油 即
气层 渗透 率 的下 降 幅度 来 表 示 , 也 是 室 内敏 感性 这 评 价 的依 据 。 此 笔者 根 据 中 国石 油天 然气 总 公 司 在
( ) C ̄ 水 正 向测 出恢 复 渗透 率K 。 3, NK I
土酸 酸敏 实验 步骤 为 :
( ) 向注入 1 孔 隙体 积 的 1%HC前 置 液 , 2反 倍 5 1 接 着 反 向注入 05 1 倍 孑 隙 体 积 的土 酸 , 闭 阀 门反 .~ . 0 L 关
应 l: h
程度。 临界 流 速反 映粘 土微结 构 破坏 的难 易程 度 , 临 界流 速越 高 , 明粘 土 微结构 越稳 定 。 表 实验 方法 是 以不 同的流 动速 度 向主力 储层 岩心 中注人模 拟地层 水 ,并 测定不同流动速度下岩心 的渗
旅 大5 2 田储 层 以 高孑 高 渗 为 主 。其次 为高 —油 L
() 3 注入 1 倍孑 隙体 积 的第 二 级碱 水 , 0 L 浸泡 2 — 0
2 h 在低 于 临 界流 速 的 条 件下 , 4, 用第 二 级 碱 水测 出 岩 心稳 定 的渗 透率 . 。 ( ) 变 注 入盐 水 的 p 4改 H值 , 复 步骤 ( ) 直 至 重 3, 测 出最 后一 级 碱水处 理 后 的岩心 稳定 渗透 率K. 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
储集层敏感性及五敏试验1.基本概念所谓储集层敏感性,是指储集层岩石的物性参数随环境条件(温度,压力)和流动条件(流速,酸,碱,盐,水等)而变化的性质。
岩石的物性参数,我们主要研究孔隙度和渗透率。
衡量储集层岩石的敏感程度我们常用敏感指数来,敏感指数被定义为在条件参数变化一定数值时,岩石物性减小的百分数,习惯上用SI 来表示。
我们以渗透率这个物性参数为例,给出其一个基本公式:i ik p K K K SI -= (1-1)上标表示岩石物性参数,用下标表示条件参数。
上式定义的是渗透率对地层压力的敏感指数。
敏感指数的物理含义是指条件参数变化一定数值以后,岩石物性参数损失的百分数(主要是孔隙度和渗透率)。
所以我们要想了解油藏的敏感指数就必须了解条件参数的变化幅度,从而我们可以求出敏感指数。
在实际矿场中,渗透率比孔隙度更能影响储集层产能。
因此渗透率的研究尤为重要。
储集层渗透率因为地层压力的改变而呈现出的敏感性质,称作储集层的压力敏感,压力敏感指数用符号P SI 表示。
由以上可以知道下面的概念。
储集层渗透率因为地层温度的改变而呈现出的敏感性质,称作储集层的温度敏感,简称热敏,用T SI 表示。
储集层渗透率因为渗流速度的改变而呈现出的敏感性质,称作储集层的温度敏感,简称热敏,用v SI 表示。
储集层渗透率因为注入液体的盐度的改变而呈现出的敏感性质,称作储集层的盐度敏感,简称盐敏,用salSI 表示。
储集层渗透率因为注入液体的酸度的改变而呈现出的敏感性质,称作储集层的酸度敏感,简称酸敏,用aciSI 表示。
储集层渗透率因为注入液体的碱度的改变而呈现出的敏感性质,称作储集层的碱度敏感,简称酸敏,用alk SI 表示。
储集层渗透率因为注入淡水而呈现出的敏感性质,称作储集层的水敏性质,简称水敏,用w SI 表示。
其中我们最常用的就是五敏:速敏,水敏,盐敏,酸敏,碱敏,实验室常做五敏实验来判断油藏性质。
如果一个油藏水敏,那么我们一定要对其做盐敏实验。
通过做五敏实验,我们可以有选择的去选择钻井液和射孔液,以防止对储层造成伤害。
2.储集层敏感机理储集层岩石是由固体骨架颗粒和粒间孔隙构成的,储集层渗透率的大小反映了岩石孔隙的性质,而孔隙又主要受到骨架颗粒尺度及排列方式的影响。
如果在条件改变时,骨架颗粒的尺度和排列方式没有发生变化,岩石的渗透率一定不会发生变化,即储集层不会敏感;如果在条件改变时,骨架颗粒尺度及排列方式发生了变化,进而改变了岩石的孔隙性质,岩石的渗透率一定会发生变化,即储层出现了敏感。
储集层的敏感机制大概有以下几种类型:2.1速敏速敏是岩石骨架颗粒排列方式的改变由此导致油田储集层渗透率改变的情形。
在岩石骨架颗粒中,有一些尺度极小的颗粒,它们杂乱无章的分布在岩石的空隙中,它们在流体低速流动时并不会有明显的改变,对储集层的渗透率产生太大的影响。
但是,如果流速增大,这些颗粒的排列方式将发生显著改变,颗粒将发生运移,从而堵塞流体运动的通道,致使岩石的渗透率降低。
从而影响油井的产量,这就是速敏的原则。
产生速敏的固体颗粒往往是一些特定的粘土矿物成分,如高岭石等。
高岭石英文名为kaolinite,是长石和其它硅酸岩矿物天然蚀变的产物,是一种含水的铝硅酸岩。
它们总是以极微小的微晶或隐晶状态存在,并以致密块状或土状集合体产生。
此外,一些外来颗粒随液体侵入地层,也会造成机械堵塞,如钻井,完井过程中工作液的虑失作用。
2.2水敏(颗粒膨胀)在岩石骨架颗粒中,有一些尺度极小的颗粒,它们往往都是一些粘土矿物成分。
其中一些粘土矿物成分,比如蒙脱石,这类具有特殊的物质结构,这部分粘土矿物在原始状态下于高矿物地层水处于一种平衡状态,它们的存在并不影响孔隙中流体的流动。
但是,如果外来流体进入改变了地层水原来的矿度及其化学成分,这些粘土矿物将打破原来的平衡,通过阳离子交换进行吸水或排水,从而使自身体积发生膨胀或萎缩。
颗粒膨胀将减少流体通过的孔隙通道,致使储集层渗透率降低;颗粒萎缩将增大流体通过的孔隙通道,致使储集层渗透率升高。
由于地层水的环境所致,而外来流体的矿化度通常很低,因此层中粘土颗粒吸水发生膨胀,使储层造成伤害的概率比较大。
蒙脱石,又名微晶高岭石,是一种层状结构,片状结构的硅酸岩晶体,因其最初发现于法国的蒙脱域而著名。
当温度达到100-200摄氏度时,蒙脱石的水分子会逐渐跑掉,失水后的蒙脱石可以重新吸收水分子,并且膨胀超过原体积的几倍。
在矿场上,粘土颗粒膨胀对储层的影响程度与岩石的粘土含量有很大关系。
当粘土含量较低是,并不会对储层造成较大的伤害,而较高的粘土含量,则是储层伤害的潜在因素。
当粘土含量小于5%时,储层受到伤害的可能性较小;当粘土含量超过5%时,储层受伤害的可能性也随之増大。
2.3化学反应化学反应导致储层敏感性变化的方式很多,并且反应原理不同。
有些化学反应生成了沉淀,随着流体的流动,堵塞了岩石孔隙,从而降低了岩石渗透率;而有些化学反应则溶蚀了骨架颗粒,扩大了岩石孔隙,从而提高储层渗透率。
现场上比较注重的酸敏和碱敏实验,皆属于这种情况。
所谓的酸敏,就是酸液就入储层后与酸敏物质发生反应,产生沉淀或释放颗粒,使储层渗透率下降的可能性及其程度。
所谓的碱敏,就是碱液进入储层后与碱敏物质发生反应,产生沉淀,从而使储层渗透率降低的情况。
下面我们举例来说明。
在岩石孔隙中,地层水溶解了大量物质,若外来流体(钻井液或注入水)与地层水不配伍,则发生化学反应,生成的沉淀就会都会堵塞孔隙,从而降低储集层渗透率。
注水开发过程中,常会因为携带的二氧化碳与地层水发生反应,生成不溶解的碳酸钙在底层中甚至管线中结构,从而影响油气生产。
一些含铁的粘土矿物(如绿泥石),遇酸沉淀,也会导致储层敏感。
此外,有些化学反应可以提高储层渗透率。
若外来流体与岩石中的固体矿物发生化学反应,并将其溶解,结果使储层孔隙变大,从而提高了储层渗透率。
比如我们提高采收率常常会采用的酸化方法,就是利用化学反应提高储层渗透率。
2.4机械变形岩石中的固体骨架颗粒,受到应力作用即产生变形。
如果应力作用变大,储层岩石就会被压缩;如果应力作用减少,储层岩石就会膨胀。
储层岩石的上覆地层压力通常不会发生变化。
但是,孔隙中流体压力则随着流体的采出而降低,随着流体的注入而升高。
根据应力平衡方程,地层压力等于流体压力与孔隙压力之和。
如果流体压力降低,骨架应力就增大,骨架颗粒因此而压缩,孔隙度因此而减小,储层渗透率因此而降低。
若流体压力升高,骨架应力则减小,骨架颗粒因此而膨胀,孔隙度因此而增大,储层渗透率因此而升高。
(所谓的应变,是指在外力作用下,骨架不能产生位移,它的几何形状和尺寸将发生变化,这种形变称为应变。
骨架发生形变是,在其内部产生了大小相等但方向相反的反作用力,把分布内力在一点的集度称为应力。
)温度对储层敏感性的影响,也是通过骨架颗粒的机械变形作用来实现的。
温度升高,骨架颗粒膨胀,孔隙度因此而增大,储层渗透率因此而升高。
温度降低,骨架颗粒压缩,孔隙度减小,储层渗透率因此而降低。
当然,在温度变化过程中,岩石中的粘土矿物也可能发生一些物理或化学变化,如脱水等,进而影响储集层渗透率。
3.储层伤害常见来源。
储层伤害原因主要是由储层本身的岩性,物性及油气水流体性质等内在因素和在井下施工作业时,引起储层微观结构原始状态发生改变,而是得储层原始渗透率降低。
它的内因是储层的潜在伤害因素。
因此外来流体与储层的岩石以及地层流体之间的配伍性决定伤害类型和伤害程度。
储层伤害主要包括两大方面:一是由于外来流体与储层岩石不配伍造成的伤害,包括:外来固相颗粒的堵塞与侵入;敏感性伤害;储层内部微粒运移造成的伤害;出砂;细菌堵塞。
二是外来流体与地层流体不配伍造成的伤害,包括:乳化堵塞;无机垢堵塞;有机垢堵塞;铁锈与腐蚀产物的堵塞;地层内部固相沉淀的堵塞。
凡是受外界条件影响而导致储层渗透率降低的储层特性均属储层本身潜在的伤害因素,它包括岩石骨架颗粒成分,胶结类型,孔隙结构,储层敏感性矿物,岩石表面性质以及储层流体性质等。
4.储层岩石敏感性评价实验4.1速敏评价实验由于岩石孔隙中的微小固体颗粒会附着在骨架的颗粒,在流速极低时,流体的冲力不足不足以将它们脱落并使其移动,因此储层岩石在极低流速时并不敏感。
但是,随着流速的增加,流体的冲力也不断增大。
当流速超过一定限度时,流体的冲力超过了其附着力,颗粒脱落下来并开始移动,最后在孔隙吼道停留下来并堵塞孔隙,从而降低岩石渗透率,致使储层产生敏感。
在矿场上,我们把储层开始产生敏感的最小流速,称作储集层敏感的临界流V表示。
速,用e速敏评价实验的目的是确定临界流量,避免颗粒运移对地层造成的伤害,在有助于保护油气层的同时确定合理的注采速度。
4.2.水敏评价实验水敏评价的目的是为了了解外来流体的矿化的与储层中粘土物质不配伍时,引起粘土矿物水化膨胀,分散,运移而导致储层渗透率下降的现象及其程度。
水敏实验是通过粘土膨胀实验阳离子交换量来测定来实现的。
粘土膨胀实验是测量储层敏感性的评价实验的一项辅助实验,它是通过测定岩样水化后的线膨胀率来评价岩石的膨胀性及膨胀程度,可间接反应粘土矿物对储层潜在伤害的影响程度。
岩石中膨胀性粘土含量越高,表现出膨胀性越强,由粘土矿物引起的储层水敏性,盐敏性伤害也将越严重。
阳离子交换容量是粘土矿物的重要性质之一,不同粘土矿物的阳离子交换容量不同。
膨胀行粘土矿物含量越高,其阳离子交换容量越大。
阳离子容量测定试验也是储层敏感性评价试验的一项辅助试验,通通过测定岩样阳离子交换容量,也可间接反应粘土矿物对储层潜在伤害的影响程度。
岩石中膨胀性粘土含量越高,表现出阳离子交换容量也就越大,由粘土矿物引起的储层水敏性,盐敏性伤害也将越严重。
4.3.盐敏评价实验储集层岩石孔隙中的地层水,不仅矿化度非常高,其中的矿物成分也非常复杂。
当注入流体的盐度与地层水十分接近时,储层岩石就不会产生敏感,即储层渗透率不会因为注入流体而有所降低。
但是,当注入流体的盐度与地层水差别较大时,储层岩石就会产生敏感,即储层岩石渗透率会因注入外来流体而有所降低。
把储集层开始产生敏感的最大盐度,称作储集层敏感的临界盐度。
我们在实验室做盐敏评价实验就是要找到临界盐度,已使在实际油气生产过程中,将注入流体的盐度控制在临界盐度之上,以免是储集层产生降低油气生产的能力。
储集层水敏性质与储集层盐敏的性质是联系在一起的,如果储层水敏,那么下一步我们一定要做盐敏实验。
4.4酸敏性评价实验酸敏性评价的目的在于了解酸化液与储层岩石的配伍性,即反映它是改善地层还是伤害地层,了解其对地层的改善程度或伤害程度,以便优选酸液配方,提高酸化效果,减小对储层伤害度。
4.5.碱敏性评价实验碱敏性评价的目的是了解岩心渗透率随流体PH值变化而变化的现象,找出使渗透率明显下降的临界PH值。