3.3.3简单的线性规划问题1
人教版高中数学必修5第三章不等式-3

在可行域内打出网格线,
y
B(3,9)
x y0
M(18 , 39) 55
C(4,8)
x
O
2x+y=15 x+2y=18 x+3y=27
直线 x y=12 经过整点B(3,9)和C(4,8),
它们是最优解.
z最小值 =12.
答:要截得所需三种规格的钢板,且使所截两种钢板 张数最小的方法有两种,第一种截法是第一种钢板3 张,第二种钢板9张;第二种截法是截第一种钢板4 张,第二种钢板8张;这两种截法都至少要两种钢板 12张.
或最后经过的点为最优解; (4)求出最优解并代入目标函数,从而求出目标函数的
最值.
简单线性规划问题的图解方法
例1 设 z=2x+y,式中变量x、 y满足下列条件:
x 4 y 3,
3x 5 y 25, 求z的最大值和最小值.
x 1,
分析:作可行域,画平行线,解方程组,求最值.
y x1
第2课时 简单线性规划的应用
1.体会线性规划的基本思想,并能借助几何直观解决 一些简单的实际问题; 2.利用线性规划解决具有限制条件的不等式; 3.培养学生搜集、整理和分析信息的能力,提高数学 建模和解决实际问题的能力.
在实际问题中常遇到两类问题: 一是在人力、物力、资金等资源一定的条件下,
如何使用它们来完成最多的任务;
获利3万元,每生产一件乙产品获利2万元,
又当如何安排生产才能获得最大利润?
(2)由上述过程,你能得出最优解与可行域之间的关 系吗?
设生产甲产品x件乙产品y件时,工厂获得的利润为
z,则z=3x+2y.
把z 3x 2 y变形为y 3 x z ,这是斜率为 3 ,
高中数学 3.3.3 简单的线性规划问题(第1课时)教案 必修5

3.3.3 简单的线性规划问题第1课时简单的线性规划问题(教师用书独具)●三维目标1.知识与技能(1)从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决;(2)了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念,会根据条件建立线性目标函数;(3)了解线性规划的图解法,并会用图解法求线性目标函数的最大(小)值;(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合、等价转化的数学思想.2.过程与方法(1)本节课是以二元一次不等式(组)表示的平面区域的知识为基础,将实际生活问题通过数学中的线性规划问题来解决;(2)考虑到学生的知识水平和消化能力,教师可通过激励学生探究入手,讲练结合,真正体现数学的工具性,同时,借助计算机的直观演示可使教学更富趣味性和生动性.3.情感、态度与价值观(1)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新;(2)渗透集合、数形结合、化归的数学思想,培养学生“数形结合”的应用数学的意识,激发学生的学习兴趣.●重点、难点重点:线性规划问题的图解法,寻求线性规划问题的最优解.难点:利用图解法求最优解.为突出重点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法,将实际问题数学化,代数问题几何化.解决难点的方法是精确作图,利用数形结合的思想将代数问题几何化.(教师用书独具)●教学建议从内容上看,简单的线性规划问题是在学习了不等式、直线方程的基础上展开的,它是对二元一次不等式的深化和再认识、再理解.它是用数学知识解决实际问题,属于数学建模,是初等数学中较抽象的,对学生要求较高,又是必须予以掌握的内容.考虑到学生的认知水平和理解能力,建议教师可以通过激励学生探究入手,讲练结合,培养学生对本节内容的学习兴趣,培养学生数形结合的意识,让学生体味数学的工具性作用.另外,教师还可借助计算机直观演示利用图解法求最优解的过程,增强教学的趣味性和生动性.●教学流程创设问题情境,引导学生了解线性约束条件、线性目标函数、可行域、线性规划问题等概念.⇒结合教材让学生掌握线性规划问题的图解法.⇒通过例1及其变式训练使学生巩固掌握利用图解法求最优解的步骤.⇒通过例2及其变式训练使学生掌握利用线性规划研究字母参数的方法.⇒通过例3及其变式训练使学生掌握求非线性目标函数的最值的方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双达达标,巩固所学知识,并进行反馈矫正.(对应学生用书第56页)课标解读1.了解目标函数、约束条件、可行域、最优解等基本概念.2.掌握线性规划问题的求解过程,特别是确定最优解的方法.(重点、难点)可行域约束条件所表示的平面区域,称为可行域.线性规划求线性目标函数在线性约束条件下的最大值或最小值问题,通常称为线性规划问题,上述只含两个变量的简单线性规划问题可用图解法解决.(对应学生用书第56页)线性规划问题设z =3x +5y ,式中变量x 、y 满足条件⎩⎪⎨⎪⎧x +2y ≥3,7x +10y ≥17,x ≥0,y ≥0.求z的最小值.【思路探究】【自主解答】 画出约束条件表示的点(x ,y )的可行域, 如图所示的阴影部分(包括边界直线).把z =3x +5y 变形为y =-35x +z 5,得到斜率为-35,在y 轴上的截距为z5,随z 变化的一族平行直线.作直线l :3x +5y =0,把直线向右上方平行移至l 1的位置时,直线经过可行域上的点M ,此时l 1:3x +5y -z =0的纵截距最小,同时z =3x +5y 取最小值.解方程组⎩⎪⎨⎪⎧x +2y =3,7x +10y =17,得M (1,1).故当x =1,y =1时,z min =8.1.由本例可以看出,解线性规划问题时,一定要注意最优解的对应点是最大值点,还是最小值点.对于目标函数z =ax +by ,当b >0时,直线截距最大时,z 有最大值,截距最小时,z 有最小值;当b <0时,则相反.2.图解法是解决线性规划问题的有效方法,其关键是利用z 的几何意义求解.平移直线ax +by =0时,看它经过哪个点(哪些点)时最先接触可行域和最后离开可行域,则这样的点即为最优解,最优解一般是在可行域的边界取得.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为多少.【解】 作可行域如图所示,解⎩⎪⎨⎪⎧x -y +2=0,x +y -8=0得⎩⎪⎨⎪⎧x =3,y =5,∴A (3,5).解⎩⎪⎨⎪⎧x +y -8=0,x -5y +10=0得⎩⎪⎨⎪⎧x =5,y =3,∴B (5,3).平移直线3x -4y =z 可知,直线过A 点时,z 取最小值,过B 点时,z 取最大值. ∴z min =3×3-4×5=-11,z max =3×5-4×3=3.利用线性规划求字母参数的值(或范围)已知x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y ≤25,x ≥1,设z =ax +y (a >0),若当z 取最大值时,对应的点有无数多个,求a 的值.【思路探究】【自主解答】 作出可行域如图所示.由⎩⎪⎨⎪⎧3x +5y =25,x -4y +3=0,得⎩⎪⎨⎪⎧x =5,y =2,∴点A 的坐标为(5,2).由⎩⎪⎨⎪⎧x =1,3x +5y =25,得⎩⎪⎨⎪⎧x =1,y =4.4,∴点C 的坐标为C (1,4.4).当直线z =ax +y (a >0)平行于直线AC ,且直线经过线段AC 上任意一点时,z 均取得最大值,此时有无数多点使z 取得最大值,而k AC =-35,∴-a =-35,即a =35.1.本题中,z 取最值时对应的点有无数多个,故这无数多个对应点构成平面区域的一段边界.2.解线性规划问题时一般要结合图形(平面区域)及目标函数的几何意义解题.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是________.【解析】 作出可行域,让目标函数所表示的直线过定点,观察斜率的范围,构建不等式求参数范围.如图所示,约束条件所表示的平面区域为三角形,目标函数z =ax +2y ,即y =-a 2x +z 2仅在点(1,0)处取得最小值,故其斜率应满足-1<-a 2<2,即-4<a <2.故填(-4,2).【答案】 (-4,2)求非线性目标函数的最值已知x ,y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.(1)求u =x 2+y 2的最大值和最小值; (2)求z =yx +5的最大值和最小值. 【思路探究】【自主解答】 画出不等式组所表示的平面区域,如图所示.(1)∵u =x 2+y 2,∴u 为点(x ,y )到原点(0,0)的距离,结合不等式组所表示的平面区域可知,点B 到原点的距离最大,而当(x ,y )在原点时,距离为0.由⎩⎪⎨⎪⎧7x -5y -23=0,4x +y +10=0得点B 的坐标为(-1,-6),∴(x 2+y 2)max =(-1)2+(-6)2=37,(x 2+y 2)min =0. (2)z =yx +5=y -0x --5,所以求z 的最大值和最小值,即是求可行域内的点(x ,y )与点(-5,0)连线斜率的最大值和最小值.设点M 的坐标为(-5,0),由⎩⎪⎨⎪⎧x +7y -11=0,4x +y +10=0得点C 的坐标为(-3,2),由(1)知点B 的坐标为(-1,-6),∴k max =k MC =2-0-3--5=1,k min =k MB =-6-0-1--5=-32,∴yx +5的最大值是1,最小值是-32. 1.本题中,(1)x 2+y 2是平面区域内的点(x ,y )到原点的距离的平方;(2)y x +5=y -0x --5可看成平面区域内的点(x ,y )与点(-5,0)连线的斜率.2.解决此类问题,应先准确作出线性约束条件表示的平面区域,然后弄清非线性目标函数的几何意义.已知x ,y 满足⎩⎪⎨⎪⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0.(1)求z =x 2+y 2+2x -2y +2的最小值; (2)求z =|x +2y -4|的最大值. 【解】 (1)作出可行域,如图所示, ∵z =(x +12+y -12)2,∴z 可看作是可行域内任意一点(x ,y )到点M (-1,1)的距离的平方. 由图可知z min 等于原点到直线x +y -4=0的距离的平方, ∴z min =(|-4|2)2=8.(2)∵z =|x +2y -4|=5·|x +2y -4|5, ∴z 可看作是可行域内任意一点(x ,y )到直线x +2y -4=0的距离的5倍. 由图可知点C 到直线x +2y -4=0的距离最大.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0得点C (7,9),∴z max =|7+2×9-4|5×5=21.(对应学生用书第58页) 直线的倾斜程度判断不准致误已知⎩⎪⎨⎪⎧11x +4y ≤44,7x +5y ≤35,6x +7y ≤42,x ≥0,y ≥0,求z =x +y 的最大值.【错解】 作出可行域,如图所示.作出直线l 0:x +y =0,将它移至点B ,则点B 的坐标是可行域中的最优解,它使z 达到最大值.解方程组⎩⎪⎨⎪⎧11x +4y =44,7x +5y =35,得点B 的坐标为(8027,7727).所以z max =8027+7727=15727.【错因分析】 将直线l 0向上移动时,最后离开可行域的点不是点B 而是点A ,这是由于直线倾斜程度不准确引起的,由于三条边界直线的斜率依次是-67,-75,-114,而目标函数z =x +y 的斜率为-1,它夹在-67与-75之间,故经过点B 时,直线x +y =z 必在点A 的下方,即点B 不是向上平移直线时最后离开可行域的点,而是点A .【防范措施】 解决线性规划问题时,可行域一定要准确,关键点的位置不能画错,若数据比较大,不易画图,也可用斜率分析法确定关键点或取得最值点.【正解】 作出二元一次不等式组所表示的平面区域如上图.作出直线l ′0:x +y =0,将它向上平移,当它经过点A 时,z 取得最大值.解方程组⎩⎪⎨⎪⎧7x +5y =35,6x +7y =42,得⎩⎪⎨⎪⎧x =3519,y =8419,故z max =3519+8419=119191.基础知识: (1)可行域; (2)线性规划. 2.基本技能: (1)解线性规划问题;(2)利用线性规划求字母参数的值(或范围); (3)求非线性目标函数的最值. 3.思想方法: (1)数形结合思想; (2)函数思想; (3)转化思想.(对应学生用书第58页)1.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +5≥0,x ≤3,x +y ≥0,则目标函数z =x +2y 的最小值为________.【解析】 画出不等式组表示的平面区域,由图可知目标函数在点(3,-3)处取得最小值-3.【答案】 -3图3-3-72.给出平面区域(包含边界)如图3-3-7所示,若使目标函数z =ax +y (a >0)取得最大值的最优解有无数多个,则a 的值为________.【解析】 由题意知-a =k AC =-35,∴a =35.【答案】 353.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2<0,x >1,x +y -7<0,则yx的取值范围是________.【解析】 目标函数y x 是可行域上的动点(x ,y )与原点连线的斜率,最小值是k OC =95,最大值是k AO =6,又可行域边界取不到,∴95<yx<6.【答案】 (95,6)4.已知x 、y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0,求z =4x -3y 的最值.【解】 原不等式组表示的平面区域如图所示: 其中A (4,1)、B (-1,-6)、C (-3,2). 作与4x -3y =0平行的直线l :4x -3y =t , 即y =43x -t3,则当l 过C 点时,t 最小; 当l 过B 点时,t 最大.∴z max =4×(-1)-3×(-6)=14,z min =4×(-3)-3×2=-18.(对应学生用书第97页)一、填空题1.(2013·微山高二检测)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤1,y ≤x ,y ≥-2,则z =3x +y 的最大值为________.【解析】 不等式组表示的平面区域如图所示:把z =3x +y 变形为y =-3x +z 得到斜率为-3,在y 轴截距为z 的一族平行直线,由图当直线l :y =-3x +z 过可行域内一点M 时,在y 轴截距最大,z 也最大.由⎩⎪⎨⎪⎧x +y =1,y =-2,∴⎩⎪⎨⎪⎧x =3,y =-2,即M (3,-2).∴当x =3,y =-2时,z max =3×3+(-2)=7. 【答案】 72.(2013·苏州高二检测)变量x ,y 满足⎩⎪⎨⎪⎧2x +y ≥12,2x +9y ≥36,2x +3y ≥24,x ≥0,y ≥0,则使得z =3x +2y 的值最小的(x ,y )是________.【解析】 不等式组表示的平面区域如图所示:把z =3x +2y 变形为y =-32x +z 2,作与直线l 0:y =-32x 平行的直线l ,显然当l 经过可行域内点M 时在y 轴上截距最小,z 也最小.由⎩⎪⎨⎪⎧2x +y =12,2x +3y =24,∴⎩⎪⎨⎪⎧x =3,y =6,即M (3,6)时,z =3x +2y 的值最小. 【答案】 (3,6)3.设z =2y -2x +4,式中的x ,y 满足条件⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1,则z 的取值范围是________.【解析】 作出满足不等式组⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1的可行域(如图所示),作直线2y -2x =0,并将其平移,由图象可知当直线经过点A (0,2)时,z max =2×2-2×0+4=8; 当直线经过点B (1,1)时,z min =2×1-2×1+4=4.所以z 的取值范围是[4,8]. 【答案】 [4,8]4.(2013·连云港检测)设实数x ,y 满足⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,则yx的最大值是________.【解析】 不等式组表示的平面区域如图所示: 又y x =y -0x -0表示过平面区域内一点(x ,y )与原点(0,0)的直线的斜率,由图知(x ,y )在平面区域内A 点处时直线斜率最大.由⎩⎪⎨⎪⎧x +2y -4=0,2y -3=0得⎩⎪⎨⎪⎧x =1,y =32,∴A (1,32),∴y x 的最大值为32.【答案】 325.(2013·无锡检测)二元一次方程组⎩⎪⎨⎪⎧x <0,y <0,x +y +4>0表示的平面区域内,使得x +2y 取得最小值的整点坐标为________.【解析】 不等式组表示的平面区域如图所示: ∵平面区域不包括边界,∴平面区域内的整点共有(-1,-1),(-1,-2),(-2,-1)三个. 代入检验知,整点为(-1,-2)时x +2y 取得最小值. 【答案】 (-1,-2)6.已知⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,且u =x 2+y 2-4x -4y +8,则u 的最小值为________.【解析】 不等式组表示的平面区域如图所示,由已知得(x -2)2+(y -2)2=(u )2,则(u )min =|2+2-1|1+1=32,u min =92.【答案】 927.已知变量x ,y 满足约束条件1≤x +y ≤4,-2≤x -y ≤2.若目标函数z =ax +y (其中a >0)仅在点(3,1)处取得最大值,则a 的取值范围为________.【解析】 由题设知可行域为如图所示的矩形,要使目标函数z =ax +y 在点(3,1)处取得最大值,结合图形可知a >1.【答案】 (1,+∞)8.如果点P 在平面区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0内,点Q 在曲线x 2+(y +2)2=1上,那么|PQ |的最小值为________.【解析】 首先作出不等式组表示的平面区域和曲线x 2+(y +2)2=1,如图所示,从而可知点P 到Q 的距离最小值是可行域上的点到(0,-2)的最小值减去圆的半径1,由图可知|PQ |min =12+-22-1=5-1。
3.3.3简单的线性规划问题(1)

我的记录空间:
3.3.3简单的线性规划问题(1)
一、学习目标
1.理解线性规划的基本思想;
2.掌握根据约束条件求目标函数的最值。
教学重点、难点:根据约束条件求目标函数的最值
二、课前自学
1. 在生活、生产中,经常会遇到资源利用、人力调配、生产安排的等问题,本节课就学习此方面的应用。
2.问题:在约束条件410432000
x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩下,如何求目标函数2P x y =+的最大值?
分析:(1)作出约束条件所表示的平面区域-----可行域
(2)分析目标函数2P x y =+的几何意义。
(3)求出目标函数2P x y =+的最大值-----线性规划问题
三、问题探究
例1.设,x y 满足约束条件41043200
x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩
(1)求当,x y 分别为多少时,目标函数2z x y =-取得最值,并求出最值;
(2)求22z x y =+的最大值。
我的记录空间: 归纳:求z ax by =+22(0)a b +≠的最值方法。
例2.已知变量,x y 满足约束条件1422
x y x y ≤+≤⎧⎨-≤-≤⎩。
若目标函数
(0)z ax y a =+>仅在点(3,1)处取得最大值,求a 的取值范围;
变题:若目标函数(0)z ax y a =+>取得最大值的点有无数个,求a 的取值
范围;
四、反馈小结
反馈:必修五P83 练习1,2,3
小结:。
第一部分 第三章 3.3 第二课时 简单的线性规划问题

5.某公司租赁甲、乙两种设备生产A、B两类产品,甲种设 备每天能生产A类产品5件和B类产品10件,乙种设备每 天能生产A类产品6件和B类产品20件.已知设备甲每天 的租赁费为200元,设备乙每天的租赁费为300元,现该 公司至少要生产A类产品50件,B类产品140件,所需租 赁费最少为__________元.
3.3
第 三 章
二元 一次 不等 式组
第二 课时
简单
不 等 式
与简 单的 线性 规划
的线 性规 划问 题
问题
理解教材新知 把握热点考向 应用创新演练
考点一 考点二 考点三
返回
返回
第二课时 简单的线性规划问题 返回
返回
现在是信息时代,广告可以给公司带来效益.某公 司计划在甲、乙两个电视台做总时间不超过300分钟的 广告,广告总费用不超过9万元,甲、乙两个电视台的 收费标准分别为500元/分钟和200元/分钟. 问题1:设在甲、乙两个电视台做广告的时间分别为x分 钟,y分钟,试ห้องสมุดไป่ตู้出满足条件的不等关系.
答案:9
返回
2.在如下图所示的可行域内(阴影部分且包括边界), 目标函数z=x-y,则使z取得最小值的点的坐标 为____________.
解析:对直线y=x+b进行平移,注意b越大,z越 小故,四个点中,过点A(1,1)时 z取最小值0. 答案:(1,1)
返回
返回
[例 2]
0≤x≤1 (2011·苏 北 四 市 三 调 )在 约 束 条 件 0≤y≤2 2y-x≥1
返回
[一点通] 解答线性规划应用题的一般步骤: (1)审题——仔细阅读,对关键部分进行“精读”,准 确理解题意,明确有哪些限制条件,起关键作用的变量 有哪些,由于线性规划应用题中的量较多,为了理顺题 目中量与量之间的关系,有时可借助表格来理顺. (2)转化——设元.写出约束条件和目标函数,从而 将实际问题转化为数学上的线性规划问题. (3)求解——解这个纯数学的线性规划问题. (4)作答——就应用题提出的问题作出回答.
苏教版数学必修五:3.3.3简单的线性规划问题-作业纸

§3.3.3 简单的线性规划问题 第 课时班级___________姓名______________1.若1223x y ≤≤⎧⎨≤≤⎩,则能使x +y 取得最大值的整点是____________.2.两直线2x -3y+1=0,3x -2y -1=0的交点坐标是 ______________.3.设P(x ,y)满足x ,y ∈N ,且x + y ≤4,x -y 的最小值为___________.4. 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤11y y x x y ,且能使z=2x +y 的最大值点(x ,y )是______________.5.非负实数x 、y 满足y x y x y x 3,03042+⎩⎨⎧≤-+≤-+则的最大值为 .6.若x ,y 满足条件32x y y x +≤⎧⎨≤⎩,则z = 3x + 4y 的最大值是 .7.已知⎪⎩⎪⎨⎧≥-≤-≤+13492x y x y x , 则z = 3x + y 最大值为______________.8.x ,y 满足不等式组 2438x y x y ≤≤⎧⎪≥⎨⎪+≤⎩,则目标函数y x k 23-=的最大值为_____________.9.已知x ,y 满足约束条件 则的最小值为_____________. 10.已知x 、y 满足不等式,则z =3x+y 的最小值为_____________.50,0,3.x y x y x -+≥⎧⎪+≥⎨⎪≤⎩y x z -=4⎪⎩⎪⎨⎧≥≥≥+≥+0y ,0x 1y x 22y 2x11.已知x 、y 满足不等式组,试求z =300x+900y 取最大值时的整点的坐标,及相应的z 的最大值.12.要将甲、乙两种长短不同的钢管截成A 、B 、C 三种规格,每根钢管可同时截得三种规格的短钢管的根数如下表所示:今需A 、B 、C 三种规格的钢管各13、16、18根,问各截这两种钢管多少根可得所需三种规格钢管,且使所用钢管根数最少。
数学:3.3.3《线性规划的实际应用》课件(新人教A版必修5)

线性规划的实际应用
解线性规划应用问题的一般步骤:
1、理清题意,列出表格; 2、设好变元,列出线性约束条件(不 等式组)与 目标函数; 3、准确作图; 4、根据题设精度计算。
线性规划的实际应用
例1 某纺纱厂生产甲、乙两种棉纱,已知生产甲 种棉纱1吨需耗一级子棉2吨、二级子棉1吨;生 产乙种棉纱需耗一级子棉1吨、二级子棉2吨,每 1吨甲种棉纱的利润是600元,每1吨乙种棉纱的 利润是900元,工厂在生产这两种棉纱的计划中 要求消耗一级子棉不超过300吨、二级子棉不超 过250吨.甲、乙两种棉纱应各生产多少(精确到 吨),能使利润总额最大? 乙种棉纱 资源限额 产品 甲种棉纱
复习二元一次不等式表示的平面区域
y 90 在平面直角坐标系中,以二 80 结论:二元一次不 元一次方程x+y-1=0的解为坐 70 x+y-1>0 标的点的集合{(x,y)|x+y-1=0} 等式ax+by+c>0在平面 1 60 是经过点(0,1)和(1,0)的一 直角坐标系中表示直线 50 东部 条直线 l, 那么以二元一次不等 ax+by+c=0某一侧所有 西部 40 1 O x 式x+y-1>0的解为坐标的点的 北部 点组成的平面区域。不 30 集 合 { ( x , y ) | x + y - 1 > 0 } 是 x+y-1<0 等式 ax+by+c<0表示的 20 什么图形? 是另一侧的平面区域。 10 x+y-1=0
新课标人教版课件系列
《高中数学》
必修5
3.3.3《线性规划的 实际应用》
审校:王伟
教学目标
高中数学 同步教学 简单的线性规划问题
x (1)
2
率的 2 倍,
因为 kQA= 7 ,kQB= 3 ,所以 z 的取值范围是[ 3 , 7 ].
48
42
方法技巧 与二元一次不等式(组)表示的平面区域有关的非线性目标函数 的最值问题的求解,一般要结合给定代数式的几何意义来完成.
常 见 代 数 式 的 几 何 意 义 :(1) x2 y2 表 示 点 (x,y) 与 原 点 (0,0) 的 距
4.给定下列命题:在线性规划中,
①最优解指的是使目标函数取得最大值的变量x或y的值;
②最优解指的是目标函数的最大值或最小值;
③最优解指的是使目标函数取得最大值或最小值的可行域;
④最优解指的是使目标函数取得最大值或最小值的可行解.
其中正确命题的序号是
.
解析:因为最优解是使目标函数取得最大值或最小值的可行解,即满足 线性约束条件的解(x,y),它是一个有序实数对,所以①②③均错,④正确. 故填④. 答案:④
变式探究:在本例的约束条件下,求z=x2+y2+2x的最大值与最小值.
解:z=x2+y2+2x=(x+1)2+y2-1 表示可行域内任意一点(x,y)与点 D(-1,0)距离的平方减去 1,
如图所示,过 D 作 AB 的垂线 DP,垂足为 P,所以|DP|= | 1 0 4 | = 5 = 5 2 ,
(2)简单线性规划问题的解法 在确定线性约束条件和线性目标函数的前提下,用图解法求最优解的步骤 可概括为“画、移、求、答”,即: ① 画 : 在 平 面 直 角 坐 标 系 中 , 画 出 可 行 域 和 直 线 ax+by=0( 目 标 函 数 为 z=ax+by); ②移:平行移动直线ax+by=0,确定使z=ax+by取得最大值或最小值的点; ③求:求出使z取得最大值或最小值的点的坐标(解方程组)及z的最大值或 最小值; ④答:给出正确答案.
高二数学人教A必修5课件:3.3.2 简单的线性规划问题 (一)
的可行解 条件下求线性目标函
数的最大值或最小值问题
2.目标函数的最值 线性目标函数z=ax+by (b≠0)对应的斜截式直线方程是y = ,在y轴上的截距是 ,当z变化时,方程表示一 的直线.
a z - x+ 组 b b
最
当b互相平行 >0,截距最大时,z取得最
z b
值,截距最小时,z取得 值,截距最小时,z取得
答 如图,由于这些直线的斜率是确定 的,因此只要给定一个点,就能确定一 条直线,因而确定出唯一截距 ,
z 3
z 与不等式组(1)表示的区域的交点 x + 3 3 坐标满足不等式组(1),而且当截距最大时 z,z取得最大值. 3 z 因此,在区域内找一个点 P,使直线经过点 P 时截距3最大.
2 z 由图可以看出,当直线 y=-3x+3经过直线 x=4 与直线 x z 14 +2y-8=0 的交点 M(4,2)时, 截距 的值最大, 最大值为 , 3 3 这时 2x+3y=14.所以,每天生产甲产品 4 件,乙产品 2 件 时,工厂可获得最大利润 14 万元.
探究点一
线性规划中的基本概念
问题 某工厂用A、B两种配件生产甲,乙两种产品,每生
产一件甲种产品使用4个A配件耗时1 h,每生产一件乙种产
品使用4个B配件耗时2 h,该厂每天最多可从配件厂获得16 个A配件和12个B配件,按每天工作8小时计算,该厂所有 可能的日生产安排是什么?若生产1件甲种产品获利2万元 ,生产1件乙种产品获利3万元,采用哪种生产安排利润最 大?
任务x,y都是有意义的,就代表所有可能的日生产安排.
思考3
采用哪种生产安排利润最大问题应当转化成怎样的
问题来解答?
答 设生产甲产品 x件,乙产品y件时,工厂获得的利润为 z
3.3.2简单的线性规划问题(1).ppt1
y
o
x
1.课题导入
在现实生产、生活中,经常会遇到资源利用、人力调配、 生产安排等问题。 1、下面我们就来看有关与生产安排的一个问题:
某工厂用A、B两种配件生产甲、乙两种产品,每 生产一件甲产品使用4个A配件耗时1h,每生产一件乙 产品使用4个B配件耗时2h,该厂每天最多可从配件厂 获得16个A配件和12个B配件,按每天工作8h计算,该 厂所有可能的日生产安排是什么? 按甲、乙两种产品分别生产x、y件,由 已知条件可得二元一次不等式组
5 x+3 y 1 5 1 y x+ x-5 y 3
1.解:作出平面区域
y
A
o x C
y x x+y 1 y - 1
z=2x+y
B
作出直线y=-2x+z的 图像,可知z要求最大值, 即直线经过C点时。 求得C点坐标为(2,-1), 则Zmax=2x+y=3
把z=2x+3y变形为
由上图可以看出,当实现直线x=4与直线x+2y-8=0的交点M z 14 (4,2)时,截距的值最大 ,最大值为 , 3 3
这时 2x+3y=14. 所以,每天生产甲产品 4 件,乙产品 2 件时, 工厂可获得最大利润14万元。
二、基本概念
Hale Waihona Puke 一组关于变量x、y的一次不等式,称为线性约束 条件。 把求最大值或求最小值的的函数称为目标函数,因 为它是关于变量x、y的一次解析式,又称线性目标函数。 在线性约束条件下求线性目标函数的最大值或最小值 y 问题,统称为线性规划问题。 4 可行域 最优解 满足线性约束的解
3
(x,y)叫做可行解。 由所有可行解组成 可行解 的集合叫做可行域。
第一部分 第三章 3.3 3.3.2 简单的线性规划问题
返回
x-y-2=0, 解方程组 x+2y-5=0,
x=3, 得最优解 y=1.
∴z最大=2×3+3×1+1=10. 答案:(1)C (2)B
返回
[一点通]
解决线性规划问题的方法是图解法,即借
助直线(把线性目标函数看作斜率确定的一族平行线)与平 面区域(可行域)有交点时,直线在y轴上的截距的最大值或 最小值求解.其基本思路是 (1)根据线性约束条件,在直角坐标系中,把可行域表 示的平面图形准确地画出来;
返回
线性规划的有关概念 名称 约束条件 线性约束条件 意义 变量x,y满足的一组条件
由x,y的 二元一次不等式(或方程) 组成
的不等式组 欲求 最大值 或 最小值 所涉及的变量x,
目标函数
y的解析式 线性目标函数 目标函数是关于x,y的二元一次解析式
返回
名称 可行解
意义 满足 线性约束条件 的解(x,y) 所有 可行解 组成的集合 使目标函数取得 最大值 或 最小值 的 可行解 在线性约束条件下,求线性目标函数 的最大值或最小值问题
B
70%
0.5
6
某冶炼厂至少要生产1.9(万吨)铁,若要求CO2的排放量 不超过2(万吨),则购买铁矿石的最少费用为________
(百万元).
返回
解析:可设需购买 A 矿石 x 万吨,B 矿石 y 万吨, x≥0, y≥0, 则根据题意得到约束条件为: 0.5x+0.7y≥1.9, x+0.5y≤2,
则目标函数 z=2x+3y+1 的最大值为(
)
B.10 D.8.5
返回
[思路点拨]
先作出可行域的直线2x+3y=0,然
后平移直线2x+3y=0,根据直线的截距的几何意义确
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四:
课本P80页 第 2, 1, 3题
练习册
五:
方法一:图解法
简单的线性规划问题的求解方法与步骤: (P79-80) ①设出未知数,确定目标函数与约束条件 ②作出约束条件所 表示的平面区域 ③将线性目标函数变形为 y=kx+b ④作出直线y=kx 及其平行直线(在可行域内) ⑤观察求得最优解,并将该点坐标代人目标函数,从而 求出目标函数的最大值或最小值. 返回
因为直线经过点A,所以把A点坐标代入目标函数, 从而得P=2x+y=21.25+5=7.5 即为目标函数的最大值Pmax=7.5 归纳1:以上线性规划问题的求解方法叫做图解法. 图解法是解决线性规划问题的有效方法,其关键是 利用P的几何意义(是直线的纵截距)求解. 平移直线y=kx时,看它经过哪些(个)点时最先接触可行 域和最后离开可行域,则这样的点即为最优解,最优解一 般是在可行域的边界取得. 归纳2:线性规划问题的求解方法与步骤: (P77-78), 或参见练习册 小结
六:
(1)课本P84:4 (2)练习册P73
方法二:检验优值法
简单的线性规划问题的求解方法与步骤:
(1)求出表示可行域的多边形的顶点的坐标 (2)将各点坐标逐一代入目标函数求值,经过 比较得出目标函数的最值.
x y ≥ 1, 1.设变量 x,y 满足约束条件 则目标 x y ≤ 4, y≥ 2 函数z=2x+4y 的最大值为( C )
(2)满足线性约束条件的解(x,y)叫可行解. (3)使目标函数取得最大或最小值的可行解叫 线性规划问题的最优解.
4.什么叫线性规划问题? 求线性目标函数在线性约束条件下的最大值或 最小值的问题,称为线性规划问题. 线性规划是一种重要的优化模型,生产实际中有 许多问题都可以归结为线性规划问题.
5. 线性规划的问题如何求解?方法与步骤是
要将两种大小不同的钢板截成A、B、C三种规格,每张钢板 可同时截得三种规格的小钢板的块数如下表所示:
规格类型
A规格
钢板类型 第一种钢板
第二种钢板
B规格
1
2
C规格
1
3
2
1
15
18
27
今需要A、B、C三种规格的成品分别为15、18、27块, 问各截这两种钢板多少张可得所需三种规格成品,且使 所用钢板张数最少?
A(3,7)
3x+2y=23
Zmax=2×7-3=11
x 0 3. 在约束条件 y 0 下,当 3 s 5 时, x y s y 2x 4
目标函数 z 3 x 2 y的最大值的变化范围是 ( D ) A. [6,15] B.
[7,15]
C.
[6,8]
?
(1)课本P78-79:例1, 2.
(一):线性规划问题: 例1:求函数P=2x+y的最大值,其中x, y
Y
满足约束条件:
域 解:①作出约束条件所 表示的平面 区域, 如图阴影部分.
② 将线性目标函数变形为 y=-2x+P
4 x y 10 4 x 3 y 20 x 0 y 0 可行
y=-2x
1 O
A 4x+3y=20
1 X
L
③作出直线y=-2x及其平行直线L(在可行域内)
4x+y=10
④观察并求得最优解. 当直线L经过A点时,直线在y轴上的截距P最大.
x 5 y 10 由 4 x 3 y 20 解得 ( 5) 4x 4 即A 1.25, y 5
返回
(1)课本P85:6 (2)练习册
二:问:在约束条件源自P72的应用问题4 x y 10 4 x 3 y 20 x 0 y 0
下,如何探求目标函数P=2x+y的最大值
?
三:
1. 线性约束条件------变量x,y满足的一组条件都是关于 x,y的一次不等式(方程),称为线性约束条件. 2.线性目标函数------关于两个变量x,y的一次式形式 的函数,称为线性目标函数. 3.可行域、可行解和最优解: (1)作出约束条件所表示的平面区域,称为可行域.
2. 设 z
2 y x ,式中 x、 y变量满足下列条件
3x 2 y 23
y 1
2 x y 1
Y
2x-y=-1 y=1/2x
A 1 O 1
11 则z的最大值为_____________。
(2006年全国高考题)
y=1
X
3 x 2 y 23 x 3 2 x y 1 y 7
一:
1. 画出下列不等式(组)表示的平面区域: (1)2x+5y-10≥0 (2) x+y≤0
Y Y 2 O X X Y O -1 1
5
4 x y 10 4 x 3 y 20 (3) x 0 y 0
4x+3y=20
1 O X 1
4x+y=10
则:二元一次不等式组表示的平面区域是: 各不等式所表示的平面点集的交集,因而是 各个不等式所表示的平面区域的公共部分。
资源
A种矿石(t) B种矿石(t) 煤(t)
利润(元)
10 5 4
600
4 4 9
1000
300 200 360
解:设生产甲、乙两种产品分别为x t、y t,利润总额为z元, 那么
10x+4y≤300 5x+4y≤200 x+9y≤360 x≥0 y≥0
z=600x+1000y
M
10x+4y≤300 5x+4y≤200 x+9y≤360 x≥0 y≥0 z=600x+1000y
D.
[7,8]
(2006年广东高考题)
例2:某工厂生产甲、乙两种产品。已知生产甲种产品1t需耗A 种矿石10t、B种矿石5t、煤4t;生产乙种产品1t需耗A种矿石4t、 B种矿石4t、煤9t。每1t甲种产品的利润是600元,每1t乙种产 品的利润是1000元。工厂在生产这两种产品的计划中要求消耗 A种矿石不超过300t、B种矿石不超过200t、煤不超过360t。甲、 乙两种产品应各生产多少(精确到0.1t),能使利润总额达到 最大?
作出可行域, 作直线l:600x+1000y=0, 即直线l:3x+5y=0 把直线l向右上方平移至l1的位置时, 直线经过可行域上的点M,且在y轴上 的截距最大。此时 z=600x+1000y 取最大值。 360 解方程组 5x+4y=200 x 29 12.4 4x+9y=360 y 1000 34.4 得M的坐标为(12.4,34.4) 29 答:应生产甲产品约12.4t,乙产品34.4t,能使利润总额达到最大。
A.10 B.12 C.13 D.14
(2007年天津高考题)
y
y2
1 y x 2
O
x y 1
A
x x y 4 y x y 1
3 2 5 2
x
3 5 A( , ) x y 4 2 2 3 5 Z 2 4 13 2 2
(二):实际的线性规划问题:
分析:将已知数据列成下表:
甲产品 (1t) 乙产品 (1t)
资源 A种矿石(t)
资源限额 (t)
B种矿石(t) 煤(t)
利润(元)
10 5 4 600
4 4 9 1000
300 200 360
分析:将已知数据列成下表:
甲产品 (1t) 乙产品 (1t) 资源限额 (t)