从自然数到有理数
从自然数到有理数详解课件

有理数的性质
有理数具有加法、减法、乘法和除法的封闭性,以及有序 性。
有理数具有加法、减法、乘法和除法的封闭性,即两个有 理数的和、差、积和商仍然是有理数。此外,有理数还具 有有序性,即可以比较大小和确定大小关系。例如, 3/2>1,-2<0等。
有理数的表示方法
有理数可以用分数情势、小数情势和比例情势表示。
有理数减法的性质
减去一个数等于加上这个数的相 反数。
有理数的乘法运算
1 2
有理数的乘法运算规则
正数乘以正数得正数,正数乘以负数得负数,负 数乘以正数得负数,负数乘以负数得正数。
举例
$2 times 3 = 6$,$-5 times 4 = -20$,$(-2) times (-5) = 10$。
3
从自然数到有理数详解课 件
CATALOGUE
目 录
• 自然数 • 有理数的定义 • 有理数的运算 • 有理数与实数的关系 • 特殊的有理数
01
CATALOGUE
自然数
自然数的定义
01
02
03
自然数的定义
自然数就是非负整数,即 用数码0,1,2,3, 4……所表示的数。
自然数的起源
自然数概念最早源自人类 对数量的认识,随着人类 文明的发展,自然数的范 围也不断扩大。
符号,并用较大的绝对值减去较小的绝对值。
举例
02
$(-5) + (-3) = -8$,$3 + (-5) = -2$,$(-7) + 7 = 0$。
有理数加法的交换律和结合律
03
交换两个有理数的位置,和不变;结合任意三个有理数,不影
响它们的和。
有理数的减法算
数系扩充的历史过程

数系扩充的历史过程数系扩充是数学领域中一项重要的发展,它使我们能够更好地理解和描述数的性质。
在数学发展的历史长河中,人们逐步扩充了数系,从最初的自然数到有理数、实数和复数,每一次的扩充都为数学的发展开辟了新的道路。
最早,人们只有自然数,这是最基本的数系。
自然数是我们对物体数量的最直观感受,它们用于计数和排序。
然而,随着人类对数的认识的深入,人们开始意识到自然数并不能完全满足我们的需要。
为了解决自然数无法准确表示分数的问题,人们发展了有理数。
有理数包括正整数、负整数、分数等,使得我们能够进行更加精确的数学运算。
有理数的扩充,极大地丰富了数学的语言和工具,使得人们能够有效地解决更加复杂的问题。
然而,随着几何学和代数学的发展,人们逐渐发现有理数无法解决某些方程中的根的问题,这就促使了实数的扩充。
实数是包括有理数和无理数的一种数系,它具有完备性和连续性的特点。
实数的引入为数学提供了更加强大的工具,使得人们能够深入研究曲线的性质和函数的行为。
尽管实数已经非常强大,但在解决某些方程和问题时,实数仍然存在局限性。
为了克服这些限制,人们进一步扩充了数系,引入了复数。
复数是由实数扩充而来,它包含实部和虚部,具有丰富的性质和表达形式。
通过引入复数,人们能够更加深入地研究方程的解和曲线的行为,为许多数学领域的发展提供了新的契机。
综上所述,数系扩充的历史过程是一个不断发展、完善的过程。
从自然数到有理数、实数和复数,每一次的扩充都推动了数学的进步。
这些扩充不仅丰富了数学的语言和工具,还拓宽了数学研究的领域。
数学的发展离不开数系的扩充,它们共同铸就了数学的辉煌。
【课题】11从自然数到有理数

【课题】1.1从自然数到有理数【课时序】第一课时【课型】新授课【双向细目表】【教学目标】:知识目标:了解自然数和有理数是由于人们生活和生产实践的需要而产生的技能目标:自然数和有理数的应用情感目标:了解中国古代在数的发展方面的贡献【教学重难点】教学重点:本节教学的重点是认识数的发展过程,感受由于生活与生产实践的需要,数还要作进一步的扩展教学难点:建立正负数的概念对学生来说是数学抽象思维的一次重大飞跃,是本节的难点。
【教学方法】三学循环。
【学习方法】小组合作【教学准备】课件。
【教学过程】【思维导图】【教学反思】学后反思有理数的分类(除下面的分类外你还有其它的分类方法吗?)有理数⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧分数零整数【课题】1.2数轴【课时序】第一课时【课型】新授课。
【双向细目表】——本节课学生达到的知识能力水平等级,如:【教学目标】知识与技能目标:1.通过温度计的类比认识数轴,会用数轴上的点表示有理数2.借助数轴理解相反数的概念,知道互为相反数的一对数在数轴上的位置关系3.会求一个有理数的相反数。
过程与方法目标:经历从现实问题中建立数学模型,从数形两个侧面理解与解决问题,使学生认识用形来解决数的问题的优越性,培养学生用数形结合的数学思想方法学习数学的理念。
情感与态度目标:从学生熟悉的现实情境中学习数轴,体会数学知识与现实世界的联系;体会数学充满探索性。
【教学重难点】教学重点:能将已知数在数轴上表示出来,说出数轴上已知点所表示的数。
教学难点:了解数形结合与转化的思想。
【教学方法】三学循环、图解法等【学习方法】小组合作、实验探究、讨论,归纳小结等【教学准备】课件PPt【教学过程】【思维导图】【教学反思】【课题】1.3绝对值【课时序】第一课时【课型】新授课。
【双向细目表】——本节课学生达到的知识能力水平等级,如:【教学目标】知识与技能目标:借助数轴,理解绝对值的概念及绝对值的几何意义,会求一个数的绝对值及求绝对值等于某一正数的有理数,了解绝对值的简单应用。
从自然数到有理数知识点

从自然数到有理数知识点自然数是人们最早接触到的数,它包括0和比0大的整数。
自然数是无限的,可以一直往上数下去。
然而,自然数并不包括负数和分数,这在实际问题中往往是不够用的。
因此,人们发展出了更加广义的数系,其中就包括了有理数。
有理数是可以表示为两个整数的比的数。
有理数包括整数和分数,可以用分数形式表示为两个整数的比值。
有理数的特点是可以无限制地进行四则运算,并且结果仍然是有理数。
例如,对于任意两个有理数a和b,它们的和、差、积和商仍然是有理数。
有理数可以表示为分数的形式,其中分子和分母都是整数。
分子表示比分母多的部分,而分母表示整体被分成的份数。
分数可以有多种形式,例如真分数和假分数。
真分数是分子小于分母的分数,而假分数则是分子大于或等于分母的分数。
有理数的运算规律和自然数类似,可以进行加法、减法、乘法和除法。
加法和乘法具有交换律和结合律,减法和除法则不具有交换律。
有理数的加法和乘法满足分配律,即a × (b + c) = a × b + a × c。
此外,有理数的乘法还满足对称律,即a × b = b × a。
有理数的大小比较可以通过分数的大小比较来进行。
对于两个有理数a和b,如果它们的分数形式分别为a/b和c/d,那么a/b < c/d等价于ad < bc。
这是因为两个分数的大小比较可以通过将它们转化为相同分母的分数来进行。
如果两个分数的分母相同,那么它们的大小比较就可以通过比较分子的大小来进行。
有理数的逆元是指对于任意非零有理数a,存在一个有理数b,使得a × b = 1。
这个有理数b被称为a的倒数,记作1/a。
有理数的倒数具有以下性质:一个数的倒数的倒数仍然是它本身,任意有理数的倒数都是有理数,0的倒数不存在。
有理数的表示方法不仅限于分数形式,还可以使用小数形式。
有理数的小数形式可以是有限小数或无限循环小数。
有限小数是指小数部分有限位数的小数,例如0.5、1.25等。
从自然数到有理数

学科: 数学 任课教师:高晶晶 授课时间: 年 月 日 分--- 分
学生签字: 日期: 姓名
年级 性别 就读学校 教学
目标
知 识 与 能 力:理解有理数产生的必然性、合理性及有理数的分类 过 程 与 方 法:能辨别正、负数,感受规定正、负的相对性 情感态度与价值观: 难点
重点
有理数的概念 建立正数、负数的概念对学生来说是数学抽象思维一次重大飞跃。
课前
检查 作业完成情况: 优 〇 良 〇 中 〇 差 〇 建议:
教
学
过
程
课题: 从自然数到有理数
一·知识梳理
自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需
要而产生的.但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示. 二·例题解析 【例1】某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚.它们是具有相反意义的两个量. 现实生活中,像这样的相反意义的量还有很多. 三·课堂检测 例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高
于”和“低于”其意义是相反的. “运进”和“运出”,其意义是相反的. 四·检测题
五·作业与小结
学习
效果
当堂检测效果:优秀○ 良好○ 及格○ 不及格○ 课后
作业
复习巩固(作业) 试卷 ; 预习布置: 。
教学
反馈
让我们一起为了孩子的进步而努力!
纳思书院Nice Education。
专题1.2 从自然数到有理数(拓展提高)(解析版)

专题1.2 从自然数到有理数(拓展提高)一、单选题1.在数0,117-,π3,0.13&&,0.01010101,2.3%中,有理数有()A.5个B.4个C.3个D.2个【答案】A【分析】分别根据实数的分类及有理数的概念进行解答.【详解】解:有理数有0,117-,0.13&&,0.01010101,2.3%,共5个,故选:A.【点睛】此题考查有理数,解答此题要明确有理数概念和分类.有理数包括正整数,负整数,正分数,负分数和0.2.下列各数中,不是分数的是()A.12B.30%-C.63-D.0.1015【答案】C【分析】根据把“1”平均分成若干份,其中的一份或几份,可得答案.【详解】A、12是分数,故A不符合题意;B、−30%=−310,是分数,故B不符合题意;C、63-=−2,是整数,不是分数,故C符合题意;D、0.1015=2032000,是分数,故D不符合题意;故选:C.【点睛】本题考查了有理数,利用分数的定义是解题关键.3.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③非负数就是正数;④整数和分数统称有理数,其中正确的是( )A.①B.②C.③D.④【答案】D【分析】根据有理数的分类依此作出判断,即可得出答案.【详解】解:①、0是最小的整数,说法错误,因为整数有正、负、0之分;②、一个有理数不是正数就是负数,说法错误,0既不是正数也不是负数;③、非负数指的是正数和0,说法错误;④、整数和分数统称有理数,说法正确;故选:D.【点睛】本题考查了有理数的分类以及正数负数的有关概念,正确理解有理数的分类是解题的关键.4.纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京晚的时数):城市悉尼纽约时差/时+2-13当北京10月1日23时,悉尼、纽约的时间分别是()A.9月30日21时;9月30日10时B.10月1日10时;10月2日10时C.10月2日1时;10月1日10时D.9月30日21时;10月2日12时【答案】C【分析】由统计表得出:悉尼时间比北京时间早2小时,也就是10月2日1时.纽约比北京时间要晚13个小时,也就是10月1日10时.【详解】悉尼的时间是:10月1日23时+2小时,即10月2日1时,纽约时间是:10月1日23时-13小时,即10月1日10时.故选:C.【点睛】本题考查了正数和负数.解决本题的关键是根据图表得出正确信息,再结合题意计算.5.在﹣4,227,0,3.14159,﹣5.2,2中正有理数的个数有( )A.1个B.2个C.3个D.4个【答案】C【分析】根据正有理数的定义即可得.【详解】223.1428577=K小数点后的142857是无限循环的,则在这些数中,正有理数为22,3.14159,27,共3个,故选:C.【点睛】本题考查了正有理数,熟记定义是解题关键.6.将7张扑克牌,全部背面朝上,每次翻三张且必须翻三张,最少翻多少次可翻成全部背面朝下( )A.3B.4C.5D.6【答案】A【分析】根据每次翻三张进行实验,得出结论即可.【详解】解:第一次翻:下,下,下,上,上,上,上;第二次翻:下,下,上,下,下,上,上;第三次翻:下,下,下,下,下,下,下;即这7张扑克牌,全部背面朝下.故选A.【点睛】本题考查了扑克牌的翻转问题,明确每次翻三张进行实验是解题关键.二、填空题7.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是今有两数若其意义相反,则分别叫做正数与负数.若气温零上5℃记做5+℃,若气温零下3℃,则记作_________℃.【答案】-3【分析】根据零上为正,则零下为负,若气温零上5℃记做5+℃,若气温零下3℃,记作-3℃.【详解】解:∵气温零上5℃记做5+℃,∴气温是零下3℃记作-3℃.故答案为3-.【点睛】本题考查正了数和负数,解题的关键是明确正数和负数在题中表示的含义.8.把下列各数分别填在相应的集合内:-11,4.8,73,-2.7,16,3.1415926,-34,73,0.正数集合:{ …};负分数集合:{ …};整数集合:{ …};非负整数集合:{ …}.【答案】4.8,73,16,3.1415926,73;-2.7,3-4;-11,73,0;73,0.【分析】整正数包括正整数和正分数;整数包括正整数、负整数和零;非负整数包括正整数和零,由此解答即可.【详解】解:正数集合:{ 4.8,73,16,3.1415926,73…};负分数集合:{ -2.7,3-4…};整数集合:{-11,73,0 …};非负整数集合:{73,0 …}.故答案为:4.8,73,16,3.1415926,73;-2.7,3-4; -11,73,0;73,0.【点睛】本题考查了有理数,弄清有理数的分类是解题的关键正数集合.9.在4-,112-,0, 3.2-,0.5-,5,1-,2.4中,若负数共有M 个,正数共有N 个,则M N -=______.【答案】3【分析】根据大于0的数是正数,小于零的数是负数,可得答案.【详解】解:在4-,112-,0, 3.2-,0.5-,5,1-,2.4中,正数有5,2.4共2个,负数有4-,112-, 3.2-,0.5-,1-共5个,M 5\=,N 2=,M N 523\-=-=.故答案为:3.【点睛】本题考查了正数和负数,小于0的数是负数,注意带负号的数不一定是负数,注意,0不是正数,也不是负数.10.6-, 3.14-,p -,13,0.307,4,0.2这些数中,有理数有________个.【答案】6【分析】先根据有理数概念判断出有理数,再计算个数即可.【详解】∵整数和分数统称有理数,∴有理数有:6-, 3.14-,13,0.307,4,0.2,共6个.故答案为:6.【点睛】要掌握:整数和分数统称有理数,其中p 不是有理数.能准确的判断出什么是有理数,知道p 是无限不循环小数,是无理数.11.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③非负数就是正数;④2p-不仅是有理数,而且是分数;⑤237是无限不循环小数,所以不是有理数;⑥无限小数不都是有理数;⑦正数中没有最小的数,负数中没有最大的数.其中错误的说法的个数为_________个.【答案】5【分析】根据有理数的分类作出判断,即可得出答案.【详解】解:①没有最小的整数,故该项说法错误;②有理数包括正数、0和负数,故该项说法错误;③非负数就是正数和0,故该项说法错误;④2p-是无理数,故该项说法错误;⑤237是无限循环小数,所以是有理数,故该项说法错误;⑥无限小数不都是有理数,故该项说法正确;⑦正数中没有最小的数,负数中没有最大的数,,故该项说法正确;所以其中错误的说法的个数为5个,故答案为:5.【点睛】本题考查了有理数的分类,掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.注意整数和正数的区别,注意0是整数,但不是正数.12.已知下列8个数:—3.14, 24, +17, 17,2- 5,16—0.01, 0,—12,其中整数有 ______________,负分数有_________________, 非负数有_______________ .【答案】24,17,0,12+-13.14,7,0.012---24,17,5,016+ 【分析】根据整数、负分数、非负数的定义即可得.【详解】整数有:24,17,0,12+-,负分数有:13.14,7,0.012---,非负数有:24,17,5,016+,故答案为:24,17,0,12+-;13.14,7,0.012---;24,17,5,016+.【点睛】本题考查了整数、负分数、非负数,熟记各定义是解题关键.13.在227,5p,0,3.14%,-4.733…,100,1823-,7151551…中,正数是_____,分数是_____.【答案】22,,3.14%,71100,7551551p¼ 4.2273,3.318214%,,37-¼- 【分析】根据正数、分数的定义即可得.【详解】正数是22,,3.14%,71100,7551551p¼,因为分数都是有理数,所以分数是4.2273,3.318214%,,37-¼-,故答案为:22,,3.14%,71100,7551551p ¼; 4.2273,3.318214%,,37-¼-.【点睛】本题考查了正数、分数,掌握理解定义是解题关键.14.把下列各数分别填在相应的横线上:1,-0.20,135,325,-789,0,-23.13,0.618,-2014,π,0.1010010001….正数有:______________________________________________________;分数有:______________________________________________________;负数有:______________________________________________________;正整数有:____________________________________________________;非正数有:_____________________________________________________;负整数有:_____________________________________________________;非负数有:_____________________________________________________;负分数有:_____________________________________________________;非负整数有:___________________________________________________.【答案】1,135,325,0.618,π,0.1010010001…; -0.20,135,-23.13,0.618; -0.20,-789,-23.13,-2014; 1,325; -0.20,-789,0,-23.13,-2014; -789,-2014; 1,135,325,0,0.618,π,0.1010010001…;-0.20,-23.13;1,325,0.【详解】按照本题中给出的分类,结合各类型数的定义依次分析各个数的特征,得(1) 1是正数;1是正整数;1是非负数;1是非负整数.(2) -0.20是分数;-0.20是负数;-0.20是非正数;-0.20是负分数.(3) 135是正数;135是分数;135是非负数.(4) 325是正数;325是正整数;325是非负数;325是非负整数.(5) -789是负数;-789是非正数;-789是负整数.(6) 0是非正数;0是非负数;0是非负整数.(7) -23.13是分数;-23.13是负数;-23.13是非正数;-23.13是负分数.(8) 0.618是正数;0.618是分数;0.618是非负数.(9) -2014是负数;-2014是非正数;-2014是负整数.(10) π是正数;π是非负数.(11) 0.1010010001…是正数;0.1010010001…是非负数.故本题应进行如下填写:(正数) 1,135,325,0.618,π,0.1010010001…;(分数) -0.20,135,-23.13,0.618;(负数) -0.20,-789,-23.13,-2014;(正整数) 1,325;(非正数) -0.20,-789,0,-23.13,-2014;(负整数) -789,-2014;(非负数) 1,135,325,0,0.618,π,0.1010010001…;(负分数) -0.20,-23.13;(非负整数) 1,325,0.三、解答题15.在下列空格里打“√”,表示该数属于哪种类型的数:类型数有理数正整数负整数正分数负分数非负数+3 ﹣1130 0.5 ﹣6 【答案】见解析【分析】依据有理数的分类,按整数、分数的关系分类可得:有理数包含正整数、0、负整数,正分数、负分数;按正数、负数与0的关系分类可得:有理数包含正整数、正分数、0、负整数、负分数.【详解】解:+3属于有理数,正整数,非负数;﹣113属于有理数,负分数;0属于有理数,非负数;0.5属于有理数,正分数,非负数;﹣6属于有理数,负整数.类型数有理数正整数负整数正分数负分数非负数+3 √ √ . . . √ ﹣113 √ . . . √ . 0 √ . . . . √ 0.5 √ . . √ . √ ﹣6 √ . √ . . . 16.有一批袋装食品,标准质量为每袋505克,现抽取样品10袋,测得它们的实际质量(单位:克)如下:505,504,505,498,505,502,507,505,503,506;若把超过标准质量的克数用正数表示,不足的用负数表示,列出这10袋食品与标准质量的差值表为:袋号12345678910与标准质量的差值(克)﹣100﹣30﹣2+1(1)将以上表格补充完整;(2)这10袋食品的总质量是多少?【答案】(1)0 ,-7,+2;(2)5040克【分析】(1)每袋的实际质量减505克就是表格中填的数;(2)法一;首先求出表格中10个数据的平均数,再加上505克,即可求得平均每袋食品的质量,再乘总袋数10即可求解或10袋食品质量相加;法二:将10个数据的实际质量直接相加即可.【详解】解:(1)505-505=0,498-505=-7,507-505=2,故答案为:0,-7,2.(2)法一:这10袋食品与标准量差值的和为0+(-1)+0+(-7)+0+(-3)+(+2)+0+(-2)+(+1)=-10(克)因此,这10袋食品的总质量为505´10+(-10)=5040(克)答:这10袋食品的总质量是5040克.法二:这10袋食品的总质量为505+504+505+498+505+502+507+505+503+506=5040(克)答:这10袋食品的总质量是5040克.【点睛】本题主要考查正负数在实际生活中的应用,有理数的加法运算,解题的关键是理解“正”和“负”的相对性.17.某检修小组从A地出发,在东西走向的马路上检修线路.如果规定向东行驶为正,向西行驶为负,一天中7次行驶的情况记录如下(单位:千米):第一次第二次第三次第四次第五次第六次第七次-4+7-9+8+6-5-2(1)这一天检修小组行驶的路程是多少.(2)求收工时距A地多远?在A地的正东方向还是正西方向?说明理由.【答案】(1)41km;(2)收工时距A地1km,方向在正东方向.【分析】(1)求出七次检修记录的绝对值的和即可;(2)计算每一次行检修记录的和,即可确定距A地的距离和方向.【详解】解:(1)|-4|+|+7|+|-9|+|+8|+|+6|+|-5|+|-2|=4+7+9+8+6+5+2=41km;答:这一天检修小组行驶的路程是41km;(2)-4+7-9+8+6-5-2=1则收工时距A地1km,方向在正东方向.答:收工时距A地1km,方向在正东方向.【点睛】本题考查了有理数的加减法在生活中的应用,掌握绝对值的意义和正负数的意义是解答本题的关键.18.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负.一天中七次行驶记录如下.(单位:km)-4,+7,-9,+8,+6,-5,-2(1)求收工时距A地多远?在A地的什么方向?(2)在第几次记录时离A地最远,并求出最远距离.(3)若每千米耗油0.3升.问共耗油多少升?【答案】(1)收工时距A地1km,在A地东边;(2)第五次记录时离A地最远,距离A地8km;(3)耗油12.3升【分析】(1)收工时距A地的距离等于所有记录数字的和的绝对值;(2)分别计算每次距A地的距离,进行比较即可;(3)所有记录数的绝对值的和×0.3升,就是共耗油数.【详解】解:(1)-4+7-9+8+6-5-2=1(k m)答:收工时距A地1km,在A地东边.(2)第一次:|-4|=4(k m)第二次:|-4+7|=3(k m)第三次:|-4+7-9|=6(k m)第四次:|-4+7-9+8|=2(k m)第五次:|-4+7-9+8+6|=8(k m)第六次:|-4+7-9+8+6-5|=3(k m)第七次:|-4+7-9+8+6-5-2|=1(k m)答:第五次记录时离A地最远,距离A地8km.-++-+++-+-´=(升)(3)(|4|7|9|86|5||2|)0.312.3答:耗油12.3升.【点睛】此题考查正数和负数,解题关键在于掌握有理数的混合运算.19.某检修小组甲队乘一辆汽车沿公路检修线路,约定向东为正,某天从A地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6;另一小组乙队也从A地出发,在南北方向检修,约定向北为正,行走记录为:﹣17,+9,﹣2,+8,+6,+9,﹣5,﹣1,+4,﹣7,﹣8.(1)分别计算收工时,两组在A地的哪一边,距A地多远?(2)若每千米汽车耗油量为0.06升,求出发到收工甲队耗油多少升?【答案】(1)甲队在A地的正东方向39米,乙队在A地的正南方向4米;(2)6.9升.【分析】(1)分别将两组记录的数据相加,分别求出两组距离A地的距离即可;(2)将甲队行走记录的绝对值相加即为总路程,然后根据每千米的耗油量列式计算即可.【详解】解:(1)甲队离A地为:+15-2+5-1+10-3-2+12+4-5+6=39,即甲队在A地的正东方向,距离A地39千米;乙队离A地为:-17+9-2+8+6+9-5-1+4-7-8=-4,即乙队在A地的正南方向,距离A地4千米;(2)队走总路程为:15+2+5+1+10+3+2+12+4+5+6=65千米所以甲队出发到收工共耗油:65×0.06=3.9升.答:从出发到收工甲队耗油6.9升.【点睛】本题主要考查了正负数的应用和意义,理解绝对值的意义并根据题意列出算式是解答本题的关键.20.某中学为提高学生的身体素质,经常在课间开展学生跳绳比赛,下表为该校七年级(1)班50名学生参加某次跳绳比赛的情况,规定标准数量为每人每分钟100个.(1)求七年级(1)班50人中跳绳最多的同学一分钟跳的次数是多少个,跳绳最少的同学一分钟跳的次数是多少个?(2)跳绳比赛的计分方式如下:①若每分钟跳绳个数是规定标准数量,不计分;②若每分钟跳绳个数超过规定标准数量,每多跳1个绳加2分③若每分钟跳绳个数没有达到规定标准数量,每少跳1个绳扣1分如果班级跳绳总积分超过200分,便可得到学校的奖励,请你通过计算说明七年级(1)班能否得到学校奖励?【答案】(1)七年级(1)班50人中跳绳最多的同学一分钟跳的次数是106个,跳绳最少的同学一分钟跳的次数是98个;(2)七年级(1)班能得到学校奖励【分析】(1)根据正负数意义计算即可;(2)根据评分标准计算总计分,然后与200比较大小,即可确定是否得到奖励.【详解】解:(1)七(1)班50人中跳绳最多的同学一分钟跳的次数是:100+6=106(个);跳绳最少的同学一分钟跳的次数是:100-2=98(个)答:6(1)班50人中跳绳最多的同学一分钟跳的次数是106个,跳绳最少的同学一分钟跳的次数是98个;(2)依题意得:(4×6+5×11+6×8)×2-(-2×6-1×12)×(-1)=230>200。
从自然数到有理数 复习
…};
…} .
|-2|的相反数是多少? -2 求绝对值小于3的所有整数.
-2,-1,0,1,2
绝对值大于2且小于6.1的整数有哪些? 3,-3,4,-4,5,-5,6,-6
如图,图中数轴的单位长度为1.
Q P R S T
①如果点P,T表示的数是互为相 反数,那么点S表示的数是多少? ②如果点R,T表示的数是互为相反 数,那么点S表示的数是正数,还是负 数?图中表示的5个点中,哪一点表示 的数的绝对值最大?为什么?
根据数轴,回答下列问题.
(1)相反数等于本身的数? 0 (2)绝对值等于本身的数? 0和正数(非负数) (3)倒数等于本身的数? 1和-1 -1 (4)最大的负整数? 0 (5)绝对值最小的数? (6)绝对值最小的正整数? 1 (7)绝对值等于5的数? 5和-5 (8)实数a满足|a|=-a,a是哪些数? 负数和0
第一章复习课
①小明身高154cm;
②2008年8月8日的奥运会开幕式气势磅礴;
③某城市有16条公共汽车线路;
④小刚乘12路公共汽车.
其中,用到的自然数表示标号或排序的有( B ) A、1个 B 、2 个 C 、3 个 D 、 4个
2.仔细思考以下各对量: ①胜二局与负三局; ②盈利3万元与支出3万元; ③气温升高与气温降低; ④两场篮球比赛,甲、乙两队 的比分分别为65∶60与60∶65 ① 其中具有相反意义的量是:____
有 理 数 的 两 种 分 类 方 法
有 理 数
整数
分数
正整数 零 负整数 正分数 负分数 正整数 正分数
自然数
有 理 数
正有理数 零 负有理数
负整数
负分数
把下列各数填在相应的括号内:
第01讲 从自然数到有理数(原卷版)
第01讲 从自然数到有理数1.掌握正数和负数的定义和实际应用;2.掌握有理数的概念,认识带“非”字的有理数;3、认识0的实际含义;知识点一、自然数的概念自然数是指用以计量事物的件数或表示事物次序的数。
即用数码0,1,2,3,4……所表示的数。
自然数由0开始,一个接一个,组成一个无穷的集体。
自然数有有序性,无限性。
分为偶数和奇数,合数和质数等知识点二、正数与负数1)正数:像3,1.8%,3.5这样大于0的数叫做正数.正数都大于0.2)负数:像3−, 2.7−这样在正数前加上符号“−”(负)号的数叫做负数.负数都小于0. 3)符号:一个数前面的“+”,“−”号叫做它的符号.正数前面的“+”号可以省略,注意3与3+表示是同一个正数.负数前面的“−” 号不可以省略. 注:不能简单的根据符号来判断正负,而需要根据正负数的定义判别.,0,00,0a a a a < −=> =正数负数知识点三、用正数和负数表示具有相反意义的量:如果正数表示某种意义,那么负数表示它的相反意义,反之亦然.比如:用正数表示向南,那么向北3km −可以用负数表示为3km −.“相反意义的量”包括两个方面的含意:一是相反意义;二是要有量.知识点四、.“0”的特殊性1)0既不是正数,也不是负数;2)0是正数与负数的分界;3)0是自然数;4)0的意义:0有时表示没有,比如文具盒中有0支铅笔,表示没有铅笔;0有时是一个数,比如0℃是一个确定的温度;0有时也作为基准,比如海拔高度为0m 表示的是海平面的平均高度.知识点五、有理数的概念1)整数:正整数、0、负整数统称为整数.所有的正整数组成正整数集合,所有的负整数组成负整数集合.2)分数:正分数、负分数统称为分数.有限小数和无限循环小数可以化为分数,所以我们也把它们看成分数.3)有理数:整数和分数统称为有理数.4)有理数的分类:(1)()正整数自然数整数零有理数按定义分类负整数正分数分数负分数 (2)()(,)正整数正有理数正分数有理数按符号分类零零既不是正数也不是负数负整数负有理数负分数 注意:1)会对整数和分数进行简单分类;2)整数与分数都是有理数的范畴,有限小数、无限循环小数是有理数;5)常用数学概念的含义1)正整数:既是正数,又是整数;2)负整数:既是负数,又是整数3)正分数:既是整数,又是分数;4)负分数:既是负数,又是分数5)非正数:负数和0;6)非负数:正数和07)非正整数:负整数和0;8)非负整数:正整数和0考点一:正负数的意义例【变式训练】考点二:正负数的实际应用例的国家.当前,手机移动支付已经成为新型的消费方式,节日当天妈妈收到微信红包80元记作80+元,则妈妈微信转账支付67元可以表示为( )A .80+元B .80−元C .67+元D .67−元【变式训练】1.(2022秋·福建漳州·七年级统考期末)“英寸”是电视机常用尺寸,如图,“1时”即“1英寸”约为中学生大拇指第一节的长,则7英寸长相当于( )A .一支粉笔的长度B .课桌的长度C .教室门的宽度D .数学课本的宽度2.(2022秋·七年级单元测试)一袋食品的包装袋上标有300g 5g ±的字样,它的含义是______. 3.(2022秋·安徽蚌埠·七年级校考阶段练习)下表是某班5名同学某次数学测试成绩,根据信息回答问题:姓名王芳 刘兵 张沂 李聪 江文 成绩89 84 与全班平均分之差+2 0 6− 2−(1)把表格补充完整;(2)若不低于平均分的成绩是合格,求5名同学的合格率?考点三:认识0的实际意义例【变式训练】1.(2022秋·河北保定·七年级统考期中)下面关于0的说法,正确的是( )A .0既不是正数也不是负数B .0既不是整数也不是分数C .0不是有理数D .0的倒数是02.(2022秋·全国·七年级专题练习)下列关于零的说法中,正确的是________①零是正数 ②零是负数 ③零既不是正数,也不是负数 ④零仅表示没有3.(2022秋·全国·七年级专题练习)“不是正数的数一定是负数,不是负教的数一定是正数”的说法对吗?为什么?考点四:有理数的概念与分类例4.(2022秋·云南昆明·七年级校考期中)下列说法中正确的是()A.0既不是整数也不是分数B.绝对值等于本身的数是0和1 C.一个数的绝对值一定是正数D.整数和分数统称有理数【变式训练】考点五:带“非”字的有理数例错误的说法为()A.①②③④⑤B.①②③④C.②③④⑤D.①②④⑤【变式训练】1.(2023·吉林·统考一模)中国是最早采用正负数表示相反意义的量并进行负数运算的国家. 若气温上升A .()()22231−++=B .()(22−+C .()()223210++−=−D .()(22++这一年上述四国中服务出口增长的国家是( )A .美国B .德国C .英国D .中国6.(2023秋·河北邯郸·七年级统考期末)北京与柏林的时差为7小时,例如,北京时间14:00,同一时刻的柏林时间是7:00.小丽和小红分别在北京和柏林,她们相约在各自当地时间8:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间( )A .9:30B .11:30C .13:30D .15:30 7.(2023秋·山东日照·七年级日照市新营中学校考阶段练习)如图所示的是图纸上一个零件的标注,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( )12.(2023春·广东梅州3−,2.4,34−,正数:{___________…} 非负整数:{_________…} 整数:{__________…}…非负数:{}16.(2023·全国·九年级专题练习)甲水库的水位每天升高3cm,乙水库的水位每天下降5cm,4天后,甲、乙水库水位总的变化量各是多少?17.(2023春·上海·六年级专题练习)某班级抽查了10名同学的期末成绩,以80分为基准,超出的分数记为正数,不足的分数记为负数,记录的结果如下(单位:分):+8、﹣3、+12、﹣7、﹣10、﹣3、﹣8、+1、5、+10.这10名同学中,(1)最高分是多少?(2)最低分是多少?(3)10名同学的平均成绩是多少?18.(2023秋·山东滨州·七年级统考期末)某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:g) 5 2 0 1 3 6袋数 1 4 3 4 5 3这批样品的平均质量比标准质量多还是少?多或少几克?若每袋标准质量为500克,则抽样检测的总质量是多少?。
1.1.2 从自然数到有理数(教案)
1.1.2从自然数到有理数(教案)课题 1.1从自然数到有理数(2)单元第1章从自然数到有理数学科数学年级七年级学习目标情感态度和价值观目标在与他人合作交流过程中,理解他人的思考方法和结论,针对他人所提的问题进行反思,初步形成评价与反思的意识.能力目标初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力.知识目标 1.利用并掌握有理数的概念,理解有理数的分类;2.掌握正负数表示相反意义的量.教学过程教学环节教师活动学生活动设计意图导入新课导入新课:一、创设情景,引出课题1.自然数可以用来计数、测量、标号或排序;分数和小数在实际生活中的应用.2.小学学过的数不够用了,数的范围需要扩展.思考:418+160-586=578-586=?问题1:你能用小学学过的数表示计算结果吗?为什么?20℃和-15℃这两个量分别表示什么?你能表示某一天的最高气温是零上5摄氏度,回顾上节课自然数的作用.观察温度计回答问题.通过正负数的学习,树立对立统一的辩证思想;让学生在自主探究体验数的扩展的必要性.最低气温是零下5摄氏度吗?请你说说生活中还有哪些具有相反意义的词语?讲授新课1、具有相反意义的量:(1)相反意义的量包含两个要素:一是它们的意义要相反;二是它们都具有数量:如前进8 m与后退5 m;例如:上升与下降就不是相反意义的量,缺少数量.(2)意义相反的量中的两个量必须是同类量,如节约汽油3吨与浪费1吨水就不是具有相反意义的量.针对练习:判断下列说法是否正确.(1)前进和后退是两个具有相反意义的量.(2)身高增加2 cm和体重减少2 kg.(3)收入50万元和亏损20万元是两个具有相反意义的量.(4)超过标准质量5 g和低于标准质量2 g.(5)上升了10分和下降了2名是两个具有相反意义的量.2、正数和负数:为了表示具有相反意义的量,我们把其中的一种意义的量规定为正,小学学过的数(零除外),了解具有相反意义的量.了解正、负数的概念.为建立负数的概念做好铺垫.了解正、负数的概念,能用正、负如123,25,2.5等数叫做正数(positive number ).正数前面可以放上“+”号(常省略不写).注意:零既不是正数,也不是负数.“-”不可以省略!针对练习:1、读出下列各数,说出它们各是哪类数?+3.2,-3.5,+75,16, 50,-25%,2.5,-155, 9.18,213,12%,0.2、(1)向东走+58 m ,-60 m ,0 m 表示的实际意义分别是什么呢?3、有理数的分类:我们把1,2,3,4,…称为正整数; -1,-2,-3,-4,…称为负整数;根据不同分类标准对正、负数进行分类.数表示具有相反意义的量.培养学生的分类、归纳能力.1 2,23,314,4.5,…称为正分数;12-,23-,314-,-4.5,…称为负分数.正整数、零和负整数统称整数;正分数和负分数统称分数.整数和分数统称有理数.有理数还可以这样分类:合作探究:(1)零是______________________________;(2)零不是_________________________;非负数是_______________________,非正数是_______________________,非负整数是_______________________,非正整数是_______________________.针对练习:判断表中各数分别属于哪一类数,在相应的空格内打“√”.4、典例分析:例下列给出的各数,哪些是正数?哪些是通过合作探究完成填空.完成例题.深入理解有理数的概念.熟练掌握有理数的概念.负数?哪些是整数?哪些是分数?哪些是有理数?-8.4,22,176+,0.33,0,35-,-9. 针对练习:把下列各数填入相应的括号内:5122.7150.1106134219.87690.997---+++, ,, , , ,, , , , 巩固提升1、填空:(2)如果向银行存入50元记为50元,那么-30.50元表示______________________;(3)规定增加的百分比为正,增加25%记做_______,-12%表示___________;(4)规定温度零上为正,月球白天气温高达零上123℃ ,记为__________,夜晚气温低至零下233 ℃,记为________.阿波罗11号宇航员登上月球后不得不穿着御寒又防热的太空服.2.小聪、小明、小慧三位同学分别记录了一周中各天收支情况如下表(记收入为正,单位:元):独立完成巩固提升练习.掌握所学基础知识..3.把下列各数分别填在相应的集合里:-1,13,0.3,0,-1.7,21,-2,1.01001,+6.(1)正数集合{ …}(2)负数集合{ …}(3)正整数集合{ …}(4)分数集合{ …}.拓展提升:针对练习:如图,每个椭圆表示一个数集,请在每个椭圆内填上6个数,其中三个写在重叠部分.小组合作完成拓展提升.通过完成拓展提升,提高应用数学知识解决问题的能力.课堂小结1、正数与负数都来自于实际生活;用正、负数可以表示实际问题中具有相反意义的量,例如…2、小学里学过的大于零的数都是正数;正数前面添放上“-”号的数是负数;0既不是正数,也不是负数,它表示正、负数的界限.3、有理数的分类方法不是唯一的,可以按整数和分数分成两大类,也可以按正有理数、零、负有理数分成三大类.回顾本节课所学知识.理解正、负数的概念及有理数的分类.板书正数:负数:正整数、零和负整数统称整数;正分数和负分数统称分数.整数和分数统称有理数.。
数的由来和发展——从自然数到有理数_作文1000字_初中议论文_
数的由来和发展——从自然数到有理数原始社会时,古人用小石子检查放牧归来的羊的只数;用结绳的方法统计猎物的个数;用在木头上刻道的方法记录捕鱼的数量等等。
这些原始的计数方法表明:人类很早就产生了一一对应的思想,于是产生了像1、2、3、4、5……这样的自然数。
在自然数的符号表示方面,古罗马的数字相当“特别”,现在许多老式挂钟上还常常使用它们。
罗马数字的符号一共只有7个,分别是:i(代表1)、v(代表5)、x(代表10)、l(代表50)、c代表100)、d(代表500)、m(代表1,000)。
这7个符号位置上不论怎样变化,它所代表的数字都是不变的。
如:1.重复次数:一个罗马数字符号重复几次,就表示这个数的几倍。
如:“iii”表示“3”;“”表示“30”。
2.右加左减:一个代表大数字的符号右边附一个代表小数字的符号,就表示大数字加小数字,如“vi”表示“6”,“dc”表示“600”。
一个代表大数字的符号左边附一个代表小数字的符号,就表示大数字减去小数字的数目,如“iv”表示“4”,“xl”表示“40”,“vd”表示“495”。
3.上加横线:在罗马数字上加一横线,表示这个数字的一倍。
与古罗马不同,其他国家和地区的人民普遍认同十位进制的记数符号,即1、2、3、4、5、6、7、8、9,遇到“零”就用黑点“?”表示,比如“6708”,就可以表示为“67?8”。
后来这个表示“零”的“?”,逐渐变成了“0”。
后来人们发现,仅仅能表示自然数是远远不行的,比方说:如果分配猎获物时,5个人分4件东西,每个人该得多少呢?于是分数就产生了。
自然数、分数和零,通称为算术数。
自然数也称为正整数。
随着社会的发展,人们又发现很多数量具有相反的意义,比如增加和减少、前进和后退、上升和下降、向东和向西。
为了表示这样的量,又产生了负数。
正整数、负整数和零,统称为整数。
如果再加上正分数和负分数,就统称为有理数。
有了这些数字表示法,人们计算起来感到方便多了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲:从自然数到有理数
正数和负数
一.正数与负数
像,,等大于0的数(“”通常省略不写)叫做正数;像,,这样在正数前面加上“”
(读作“负号”,“”不能省略)的数叫做负数,负数小于0.
二.相反意义的量
在实际问题中,如果用正数表示某种意义的量,那么负数表示其相反意义的量.如:若米表示上升6米,
则米表示下降米;若米表示向东走米,则米表示向西走3米;若表示产量增长了,则
表示产量降低了.
相反意义的量必须包含两个要素:
1. 它们的意义相反;
2. 它们都表示同一类量.
三点剖析
一.考点:正数和负数的概念
二.重难点:相反意义的量.
三.易错点:
1.0既不是正数,也不是负数;
2.“”可以省略,“”不能省略.
题模精讲
题模一 正数和负数
例1.1、已知下列各数,,,,,,,中,其中负数的个数是( )
A、 2个 B、 3个
C、 4个 D、 5个
例1.2、下列各数中,不是负数的是( )
A、 ﹣2 B、 3
C、 ﹣ D、 ﹣0.10
例1.3、如果零上2℃记作+2℃,那么零下3℃记作( )
A、 -3℃ B、 -2℃
C、 +3℃ D、 +2℃
例1.4、有下列各量:
①身高1.84米和身高1.74米;②收入200元,支出50元;③向北走3千米,向东走2千米;④胜3局,负2
局;⑤节约水4吨,浪费粮食2千克;⑥盈利5万元与支出5万元.其中具有相反意义的量的是________________
随堂练习
随练1.1、如果向右走5步记为+5,那么向左走3步记为( )
A、 +3 B、 ﹣3
C、 + D、 ﹣
随练1.2、有四包真空小包装火腿,每包以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负
数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( )
A、 +2 B、 ﹣3
C、 +3 D、 +4
随练1.3、在1、-2、-5.5、0、、-、3.14中,负数的个数为( )
A、 3个 B、 4个
C、 5个 D、 6个
有理数
知识精讲
一.有理数的概念
定义:整数与分数统称有理数,无限不循环小数叫无理数,例如.
二.有理数的分类
三点剖析
一.考点:有理数概念,有理数的分类.
二.重难点:有理数的分类.
三.易错点:
1.正数和零统称为非负数;
2.负数和零统称为非正数;
3.正整数和零统称为非负整数;
4.负整数和零统称为非正整数.
题模精讲
题模一 有理数的概念
例1.1、-2是( )
A、 负有理数 B、 正有理数
C、 自然数 D、 无理数
例1.2、0这个数是( )
A、 正数 B、 负数
C、 整数 D、 无理数
例1.3、下列说法正确的是( )
A、 在一个数前面加“”号就得到负数 B、 0既不是正数,也不是负数,但0是有理数
C、 非负数就是正数 D、 不带“”号的数是正数
例1.4、下列说法正确的个数是( )
①一个数前面加“”号就得到负数; ②0既不是正数也不是负数,但是是有理数;
③非负数就是正数; ④不带“”号的数就是正数.
A、 1 B、 2
C、 3 D、 4
题模二 有理数的分类
例2.1、下列各数:中,负分数有_________个;负整数有_________个;自然数有_________个
例2.2、按要求选择下列各数:3,,0,,,,,,,,1,,.
(1)属于整数的有________________________________________________
(2)属于分数的有________________________________________________
(3)属于非正数的有______________________________________________
(4)属于非负数的有______________________________________________
(5)属于非负整数的有____________________________________________
(6)属于有理数的有______________________________________________
随堂练习
随练2.1、下列四个数中,在-1和2之间的整数是( )
A、 0 B、 -2
C、 -3 D、 3
随练2.2、在,,0,2.7这四个有理数中,整数有_______________.
能力拓展
拓展1、如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作( )
A、 -500元 B、 -237元
C、 237元 D、 500元
拓展2、下列四个数中,小于0的是( )
A、 -2 B、 0
C、 1 D、 3
拓展3、检查4个篮球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如下
表:
则质量较好的篮球的编号是( )
A、 1号 B、 2号
C、 3号 D、 4号
拓展4、下列说法正确的个数是( )
② 一个有理数不是整数就是分数;
②一个有理数不是正数就是负数;
③一个整数不是正的,就是负的;
④一个分数不是正的,就是负的.
A、 1 B、 2
C、 3 D、 4
拓展5、下列说法中正确的是( )
A、 0既是正数,又是负数 B、 0是最小的正数
C、 0是最大的负数 D、 0既不是正数,也不是负数
拓展6、(2013初一上期中第二十中学)把下列各数填入相应的集合中;
,,0,,,17,
负数:{_____________________……};整数{________________________……}.