高中物理人教版 磁场 教材分析
人教版高中物理选修(3-1)-3.1《磁现象和磁场》教学设计

《磁现象和磁场》教学设计一、教学分析本节内容重点是电流的磁效应和磁场概念的形成,可以结合演示实验,对知识复习概括并从科学与人文两个角度提升认识,为后续学习打下基础。
教材利用文本材料例如“指南针与郑和下西洋”说明我国古代在磁现象方面的研究成果及其对人类文明的影响;通过“地球磁场与古地质学”,使学生了解“地磁异常”的现象。
电流磁效应的发现是一个划时代的发现。
奥斯特的发现使人们进一步深入了解自然界的相互联系。
同时,这段科学史也是科学思维中传统与创新交锋和突破的生动事例,它同时还展示了创新思维的重要性和时代局限性对创新的羁绊。
二、教学目标1、了解电流的磁效应。
了解电流磁效应的发现过程,体会奥斯特发现的重要意义。
2、知道磁场的基本特性。
了解地球的磁场。
3、了解我国古代在磁现象方面的研究成果及其对人类文明的影响。
关注磁现象在生活和生产中的应用。
4、知道磁极和磁极之间、磁极和电流之间、电流和电流之间都是通过磁场发生相互作用的。
三、教学重点难点重点:电流的磁效应和磁场概念的形成。
难点:磁场的物质性和基本性质。
突破:在复习初中知识的基础上,首先形成磁场的概念,以与电场类比的形式使学生形成磁场的概念并理解磁场的基本性质是对放入其中的磁极和电流有力的作用,以及它们之间的作用靠磁场发生的。
教学方法与手段:利用演示实验,使学生首先在感官上感知磁场的存在,磁场对磁极作用的存在,以及磁场对电流作用的存在。
在复习初中知识的基础上,形成磁场的概念,引导学生理解磁场的物质性。
引导学生阅读教材,掌握知识。
利用类比法、实验法、比较法引导学生进行分类阅读、讨论。
并引导学生观察了解磁现象在日常生活中的应用。
四、课前准备教学媒体:条形磁铁、蹄形磁铁、铁架台、线圈、干电池、直导线、大磁针、小磁针若干、PPT多媒体课件、实物投影仪等。
知识准备:磁极、磁极之间的相互作用等知识。
课时安排:1课时五、教学过程1、导入新课教学任务:创设情景,导入新课师生活动:通过小魔术——干簧管实验,引导学生思考生活中的有关磁现象。
新教材人教版高中物理选择性必修第二册 1-3带电粒子在匀强磁场中的运动 教学课件

第九页,共二十八页。
• 保持磁感应强度不变,改 变出射电子的速度,观察 电子束径迹的变化。
• 保持出射电子的速度不变, 改变磁感应强度,观察电 子束径迹的变化。
第十页,共二十八页。
• 不加磁场时观察电子束的径迹。 直线
s
3.28
10 7 s
第十五页,共二十八页。
新课讲解
三、带电粒子在磁场中运动情况研究
• 1、找圆心:
• 2、定半径: • 3、确定运动时间:
第十六页,共二十八页。
1.圆心的确定
(1)已知入射方向和出射方向时,可通过入射点 和出射点分别作垂直于入射方向和出射方向的直 线,两条直线的交点就是圆弧轨道的圆心(如图a 所示,图中P为入射点,M为出射点)。
新教材人教版高中物理选择性必修第二册 1.3带电粒子在匀强磁场中的运 动 教学课件
科 目:物理
适用版本:新教材人教版
适用范围:【教师教学】
第一章 安培力与洛伦兹力
1.3 带电粒子在匀强磁场中的运动
第一页,共二十八页。
学习目标
1.知道带电粒子在磁场中做什么运动. 2.能推导带电粒子在匀强磁场中做圆周运动的半径公式 和周期公式. (重点)
(1)粒子所受的重力和洛伦兹力的大小之比;
(2)粒子在磁场中运动的轨道半径;
(3)粒子做匀速圆周运动的周期。
分析
依据所给数据分别计算出带电粒子所受的重力和洛伦兹力,就可求出所受重力与洛伦 兹力之比。带电粒子在匀强磁场中受洛伦兹力并做匀速圆周运动,由此可以求出粒子 运动的轨道半径及周期
第十三页,共二十八页。
第13章 第2节 磁感应强度 磁通量 新教材高中物理必修第三册(人教版)(解析版)

第2节 磁感应强度 磁通量课程内容要求核心素养提炼1.知道磁感应强度的定义、物理意义及单位. 2.知道磁通量,通过计算磁通量的大小进一步了解定量描述磁场的方法.1.物理观念:磁感应强度、匀强磁场、磁通量. 2.科学思维:(1)理解磁感应强度的概念. (2)应用公式计算磁通量.一、磁感应强度1.定义:在磁场中垂直于磁场方向的通电导线受到的磁场力F 跟电流I 和导线长度l 的乘积Il 的比值叫作通电导线所在处的磁感应强度.2.定义式:B =FIl.3.单位:特斯拉,简称特,符号为T ,1_T =1 N A·m. 二、匀强磁场1.定义:磁场中各点的磁感应强度的大小相等、方向相同的磁场. 2.磁感线:间隔相等的平行直线.3.实例:距离很近的两个平行的异名磁极间的磁场,相隔适当距离的两平行放置的通电线圈中间区域的磁场都是匀强磁场.[判断](1)通电导线在磁场中受到的磁场力为0,则说明该处的磁感应强度为0.(×) (2)磁感应强度的大小与电流成反比,与其受到的磁场力成正比.(×)(3)磁感应强度的大小等于通电导线受到的磁场力大小F 与电流I 和导线长度l 的乘积的比值.(×)三、磁通量1.定义:匀强磁场磁感应强度B 与和磁场方向垂直的平面面积S 的乘积,即Φ=BS . 2.单位:韦伯,简称韦,符号是Wb . 1 Wb =1 T·m 2.3.引申:B =ΦS ,因此磁感应强度的大小等于穿过垂直磁场方向的单位面积的磁通量.[思考]若通过某面积的磁通量等于0,则该处一定无磁场,你认为对吗?提示 不对.磁通量除与磁感应强度、面积有关外,还与环面和磁场夹角有关,当环面与磁场平行时,磁通量为0,但磁场仍存在.探究点一 磁感应强度的理解和叠加观察如图所示的“探究影响通电导线受力的因素”的实验,思考以下几个问题:(1)实验装置中,通电导线应如何放入磁场中?为什么?(2)通过实验总结通电直导线受力大小与导线长度、电流大小的关系.提示 (1)通电导线应垂直放入磁场中.只有通电导线与磁场方向垂直时,它所受磁场力才最大,此时磁场力F 与电流和导线长度的乘积Il 的关系最简单.(2)当通电直导线与磁场方向垂直时,它受力的大小既与导线的长度l 成正比,又与导线中的电流I 成正比,即与I 和l 的乘积Il 成正比.即FIl是一个恒量.1.对磁感应强度的认识(1)磁感应强度的大小:磁感应强度的大小反映该处磁场的强弱,它的大小取决于场源以及在磁场中的位置.(2)磁感应强度是用比值法定义的即B =FIl ,但B 的大小由磁场本身决定,与F 、Il 的大小没有关系.(3)磁感应强度的方向:磁感应强度的方向就是该处磁场的方向,规定为小磁针静止时N 极的指向,也可以表示为磁感线在该点的切线方向.2.磁场的叠加:由于磁感应强度是矢量,若某区域有多个磁场叠加,该区域中某点的磁感应强度就等于各个磁场在该点的磁感应强度的矢量和,可根据平行四边形法则求解.磁场中放一根与磁场方向垂直的通电直导线,它的电流是2.5 A ,导线长1 cm ,它受到的磁场力为5.0×10-2 N .(1)求这个位置的磁感应强度大小;(2)若把通电导线中的电流增大到5 A ,则求这个位置的磁感应强度大小.解析 解题关键是只有当通电直导线垂直于磁场方向放置时,才能用B =FIl 计算B 的大小.(1)由磁感应强度的定义式得 B =FIl = 5.0×10-22.5×1×10-2T =2 T .(2)磁感应强度B 是由磁场和空间位置(点)决定的,与导线的长度l 、电流I 的大小无关,所以该位置的磁感应强度大小还是2 T .答案 (1)2 T (2)2 T(多选)如图所示,三根平行的足够长的通电直导线A 、B 、C (电流方向如图)分别放置在一个等腰直角三角形的三个顶点上,其中AB 边水平,AC 边竖直.O 点是斜边BC 的中点,每根导线在O 点所产生的磁感应强度大小均为B 0,则下列说法正确的有( )A .导线B 、C 在O 点产生的合磁感应强度大小为2B 0 B .导线A 、B 、C 在O 点产生的合磁感应强度大小为B 0 C .导线B 、C 在A 点产生的合磁感应强度方向由A 指向OD .导线A 、B 在O 点产生的合磁感应强度方向水平向右ACD [导线B 、C 在O 点产生的磁场方向相同,磁感应强度叠加后大小为2B 0,选项A 正确;三根平行的通电直导线在O 点产生的磁感应强度大小相等,B 合=(B 0)2+(2B 0)2=5B 0,选项B 错误;导线B 、C 在A 点产生的总的磁感应强度的方向是两个磁场叠加后的方向,方向由A 指向O ,选项C 正确;根据安培定则和矢量的叠加原理,导线A 、B 在O 点产生的总的磁感应强度的方向水平向右,选项D 正确.][训练1] 关于磁感应强度,下列说法正确的是( ) A .由B =FIl可知,B 与电流强度I 成反比B .由B =FIl可知,B 与电流受到的安培力F 成正比C .垂直磁场放置的通电导线的受力方向就是磁感应强度方向D .磁感应强度的大小、方向与放入磁场的通电导线的电流大小、长度、导线放置方向等均无关D [磁感应强度B =FIl 是采用比值法定义的,B 与F 、I 无关,由磁场本身属性决定,故选项A 、B 错误,选项D 正确;垂直于磁场方向放置的通电导线的受力方向与磁感应强度的方向垂直,故选项C 错误.][训练2] (2020·浙江卷)特高压直流输电是国家重点能源工程.如图所示,两根等高、相互平行的水平长直导线分别通有方向相同的电流I 1和I 2,I 1>I 2.a 、b 、c 三点连线与两根导线等高并垂直,b 点位于两根导线间的中点,a 、c 两点与b 点距离相等,d 点位于b 点正下方.不考虑地磁场的影响,则( )A .b 点处的磁感应强度大小为0B .d 点处的磁感应强度大小为0C .a 点处的磁感应强度方向竖直向下D .c 点处的磁感应强度方向竖直向下C [电流周围的磁场截面图如图所示,因I 1>I 2,则离导线相同距离处B 1>B 2.由磁感应强度的叠加可以看出,a 处的磁感应强度方向竖直向下,大小为两电流在a 处磁感应强度的同向叠加;b 处的磁感应强度大小为B b 1-B b 2,方向竖直向上;c 处磁感应强度方向为竖直向上,大小为两电流在该处磁感应强度同向叠加;d 处磁感应强度不为0.故答案为C .]探究点二 磁通量的理解和计算如图所示,当磁场方向与平面成θ角时,磁通量的表达式是怎样的?当磁场方向与平面平行时,磁通量是多少?提示Φ=BS sin θ01.磁通量的计算(1)公式:Φ=BS.适用条件:①匀强磁场;②磁感线与平面垂直.(2)在匀强磁场中,若磁感线与平面不垂直,公式Φ=BS中的S应为平面在垂直于磁感线方向上的投影面积.2.磁通量的正负(1)磁通量是标量,但有正负,当磁感线从某一面上穿入时,磁通量为正值,磁感线从此面穿出时即为负值.(2)若同时有磁感线沿相反方向穿过同一平面,且正向磁通量为Φ1,反向磁通量为Φ2,则穿过该平面的磁通量Φ总=Φ1-Φ2.3.磁通量的变化量(1)当B不变,有效面积S变化时,ΔΦ=B·ΔS.(2)当B变化,有效面积S不变时,ΔΦ=ΔB·S.(3)B和S同时变化,则ΔΦ=Φ2-Φ1.但此时ΔΦ≠ΔB·ΔS.(4)匀强磁场中与磁场垂直的线圈磁通量为BS.当线圈转过180°时,磁通量的变化量ΔΦ=2BS.如图所示,有一个垂直于纸面向里的匀强磁场,磁感应强度B=0.8 T,磁场有明显的圆形边界,圆心为O,半径为10 cm,现在在纸面内先后放上圆线圈A、B和C(图中未画出),圆心均在O点处,A线圈的半径为1 cm,共10匝;B线圈的半径为2 cm,只有1匝;C线圈的半径为0.5 cm,只有1匝.(1)在磁感应强度B减为0.4 T的过程中,A和B线圈中的磁通量改变了多少?(2)在磁场方向转过30°角的过程中,C线圈中的磁通量改变了多少?解析(1)对A线圈,有Φ1=B1πr2A,Φ2=B2πr2A故A线圈的磁通量的改变量为ΦA=|Φ2-Φ1|=(0.8-0.4)×3.14×(1×10-2)2 Wb=1.256×10-4 WbB线圈的磁通量的改变量为ΦB=(0.8-0.4)×3.14×(2×10-2)2 Wb=5.024×10-4 Wb.(2)对C线圈,Φ1=Bπr2C磁场方向转过30°角,线圈在垂直于磁场方向的投影面积为πr2C cos 30°,则Φ2=Bπr2C cos 30°故磁通量的改变量为ΔΦC=Bπr2C(1-cos 30°)=0.8×3.14×(5×10-3)2×(1-0.866) Wb=8.4×10-6 Wb.答案(1)1.256×10-4 Wb 5.024×10-4 Wb(2)8.4×10-6 Wb[变式]在[例3]中,若将线圈A转过180°角的过程中,A线圈中的磁通量改变了多少?解析若转过180°角时,磁通量的变化为ΔΦ=2BS=2×0.8×3.14×(1×10-2)2 Wb=5.024×10-4 Wb.答案 5.024×10-4 Wb[题后总结]多角度判断磁通量大小1.定量计算通过公式Φ=BS来定量计算,计算磁通量时应注意的问题:(1)明确磁场是否为匀强磁场,知道磁感应强度的大小.(2)平面的面积S应为磁感线通过的有效面积.当平面S与磁场方向不垂直时,应明确所研究的平面与磁感应强度方向的夹角,准确找出垂直面积.(3)线圈的磁通量及其变化与线圈匝数无关,即磁通量的大小不受线圈匝数的影响.2.定性判断磁通量是指穿过线圈面积的磁感线的“净条数”,当有不同方向的磁场同时穿过同一面积时,此时的磁通量为各磁场穿过该面磁通量的代数和.[训练3]如图所示,一个闭合线圈放在匀强磁场中,线圈的轴线与磁场方向成30°角,磁感应强度为B,用下述哪个方法可使穿过线圈的磁通量增加一倍()A.把线圈的匝数增加一倍B.把线圈的面积增加一倍C.把线圈的半径增加一倍D.转动线圈使得轴线与磁场方向平行B[把线圈的匝数增加一倍,穿过线圈的磁感线的条数不变,磁通量不变,故选项A 错误;根据Φ=BS sin θ,把线圈的面积增加一倍,可使穿过线圈的磁通量增加一倍,故选项B正确;把线圈的半径增加一倍,线圈的面积S=πR2变为原来的4倍,磁通量变为原来的4倍,故选项C错误;转动线圈使得轴线与磁场方向平行,相当于线圈转过30°,与磁场垂直,线圈面积在垂直B方向上的投影由S sin 60°变为S,磁通量没有增加一倍,故选项D错误.]。
人教版高中物理必修第三册精品课件 第13章 电磁感应与电磁波初步 1 磁场 磁感线

(3)若研究磁体与环形电流、通电螺线管的相互作用力,可 根据安培定则将环形电流或通电螺线管等效成小磁针或条形 磁体,然后根据磁极之间的相互作用规律进行分析。
2.三种常见的电流的磁场。
安培定则
立体图
横截面图
纵截面图
直线 电流
以导线上任意点为圆心垂直于导线的多组同心圆,越向外越 稀疏,磁场越弱
安培定则
提示:由于小磁针N极转向纸里,可知该点磁场方向向里,又根据安 培定则,A、B间存在由A向B的电流,由此可知A带正电,B带负电。
典例剖析 【例2】电路没接通时三个小磁针方向如图所示,试确定电 路接通后三个磁针的转向。
答案:小磁针1逆时针转动,小磁针3顺时针转动,小磁针2基 本不动
解析:接通电路后,由安培定则判断螺线管的磁场为内部从 左指向右,外部从右指向左,如图所示,故小磁针1逆时针转动, 小磁针3顺时针转动,小磁针2基本不动。
二 安培定则的应用 重难归纳 1.使用方法。 (1)分清“因”和“果”。在判定直线电流的磁场方向时,拇指 指“原因”——电流方向;四指指“结果”——磁场绕向。在判 定环形电流的磁场方向时,四指指“原因”——电流绕向;拇指 指“结果”——环内沿中心轴线的磁感线方向,即指N极。 (2)优先采用整体法:一个任意形状的电流(如三角形、矩形 等)的磁场,从整体效果上可等效为环形电流的磁场,再根据安 培定则确定磁场的方向,即磁感线的方向。
知识概览
课前•基础认知
一、电和磁的联系 1.电和磁的相似性。 (1)自然界中的磁体总存在着两个磁极, N极 和 S极 ;自然界 中也只存在两种电荷,正电荷和负电荷。 (2)同名磁极或同种电荷相互 排斥 ,异名磁极或异种电荷相互 吸引 。 2.电流的磁效应。 (1)1820年, 奥斯特 偶然发现:把一根导线平行地放在磁针的上方, 给导线通电时,磁针发生了偏转,说明电流能产生 磁场 ,这个现象 称为电流的磁效应。 (2)电流磁效应的发现,用实验展示了 电 与 磁 的联系。
新课标高中物理人教版选择性必修123册教材解读〖安培力与洛伦兹力〗

第一章安培力与洛伦兹力一、课标要求1通过实验,认识安培力。
能判断安培力的方向,会计算安培力的大小。
了解安培力在生产生活中的应用。
2通过实验,认识洛伦兹力。
能判断洛伦兹力的方向,会计算洛伦兹力的大小。
2能用洛伦兹力分析带电粒子在匀强磁场中的圆周运动。
了解带电粒子在匀强磁场中的偏转及其应用。
二、教材概述本章在必修第三册介绍磁场知识的基础上,进一步介绍磁场与通电导线、带电粒子之间的相互作用。
本章共4节,第1节和第2节按照先讲宏观、后讲微观的顺序分别介绍了安培力和洛伦兹力,第3节介绍了带电粒子在匀强磁场中的运动规律,第4节以质谱仪与加速器为例介绍了概念规律的应用。
也就是说,本章的内容安排除了关注发展学生的运动与相互作用观念,还紧密联系生产生活实际,帮助学生发展科学思维和科学探究等素养。
教材总体上特别关注以下几点:一是在研究安培力和洛伦兹力时,均按照先定性地进行实验观察力的方向,后通过定量分析研究力的大小的顺序进行,以便帮助学生体会研究新问题的一般思路;二是注意加强知识的前后联系,使得新的概念、规律在原有知识的基础上逐渐深化和拓展,更便于理解;三是注重突出结论的形成过程,培养学生观察、分析和概括的能力。
具体来说,本章在编写时有以下考虑。
1使学生通过安培力和洛伦兹力的学习,进一步提升物理观念在课程标准中,物理观念主要包括物质、运动与相互作用、能量三个方面。
教材中安排的安培力和洛伦兹力的内容,是学生继续从场的观点认识相互作用的好素材。
教材在编写时一方面注意帮助学生准确地把握概念、规律的内涵,另一方面注重加强对概念、规律的灵活应用,以便将相关核心概念与规律建立联系,进一步提炼和升华,形成科学的物理观念。
如在研究安培力时指出“磁场、安培力的问题,在很多方面都与电场、库仑力的问题相似”。
同时,又指出安培力与库仑力的区别:“研究库仑力时,受力的物体是点电荷,点电荷受力的方向与电场的方向相同或相反;但在研究安培力时,受力的物体是通电导线,通电导线受力的方向与磁场的方向、电流的方向不但不在一条直线上,而且不在一个平面里。
人教版高中物理选择性必修第二册精品课件 第一章 安培力与洛伦兹力 1 磁场对通电导线的作用力

磁电式电流表的结构
A.为了使电流表表盘的刻度均匀,极靴与圆柱间的磁场为 匀强磁场 B.线圈无论转到什么位置,它的平面都跟磁感线垂直 C.线圈无论转到什么角度,它的平面都跟磁感线平行,所 以线圈不受安培力
√D.线圈中电流越大,安培力就越大,螺旋弹簧的形变也越
大,线圈偏转的角度也越大
[解析] 极靴与圆柱间的磁场是均匀辐向分布的,并不是匀 强磁场,这样可保证线圈转动过程中各个位置的磁感应强 度大小不变,从而使电流表表盘刻度均匀,A错误;磁场 是均匀辐向分布的,不管线圈转到什么位置,它的平面都 跟磁感线平行,B错误;线圈平面跟磁感线平行,但导线 中电流的方向与磁场方向垂直,所以线圈受到安培力作用, C错误;线圈中电流越大,安培力就越大,螺旋弹簧的形 变也越大,线圈偏转的角度也越大,D正确。
对点演练1 [2023江苏高二期中]赤道上一带有尖顶的建筑物如图所示,
高耸的尖顶实质是避雷针,当带有负电荷的乌云经过避雷针上方时,
避雷针开始放电形成瞬时电流,乌云所带负电荷通过避雷针流入大地。
则地磁场对避雷针的作用力的方向为( B )
A.正东
B.正西
C.正南
D.正北
[解析] 乌云所带负电荷通过避雷针流入大地,则避雷针中的电流方向自下而上,赤道
A
对点演练4 [2022江苏苏州期中]中学实验室使用的电流表 是磁电式电流表,内部结构示意图如图所示,其最基本的 组成部分是磁体和放在磁体两极之间的线圈,两磁极间装 有极靴,极靴中间又有一个铁质圆柱(软铁),极靴与圆 柱间有磁场区。当电流通过线圈时,线圈左、右两边导线 所受安培力的方向相反,于是安装在轴上的线圈就要转动, 从线圈偏转的角度就能判断通过电流的大小。下列说法正 确的是( )
不积跬步,无以至千里; 不积小流,无以成江海!
13.1磁场 磁感线(知识解读)(教师版) 2024-2025学年高中物理同步(人教版必修第三册)

13.1磁场 磁感线(知识解读)(解析版)•知识点1 磁现象和电流的磁效应•知识点2 磁场与磁感线•知识点3 安培定则•作业 巩固训练1、磁场(1)磁性:物质吸引铁、钴、镍等物质的性质。
(2)磁体:具有磁性的物体,如磁铁。
(3)磁极:磁体上磁性最强的区域。
任何磁体都有两个磁极,一个叫北极(N 极),另一个叫南极(S 极)。
并且,任何一个磁体都有两个磁极,无论怎样分割磁体,磁极总是成对出现,不存在磁单极。
(4)磁极之间的相互作用:同名磁极相互排斥,异名磁极相互吸引。
2、电流的磁效应(1)磁体总存在着两个磁极,自然界中存在两种电荷。
(2)同种电荷相互排斥,同名磁极相互排斥;异种电荷相互吸引,异名磁极相互吸引。
(3)奥斯特实验:将导线沿南北方向放置在磁针的上方,通电时磁针发生了转动。
(5)对奥斯特实验的理解实验方法把水平导线沿南北方向放在小磁针的上方,让电流分别由南向北和由北向南通过。
将水平导线移到小磁针的正下方,让电流再次由南向北和由北向南通过。
实验现象以上四种情况下小磁针均发生了偏转,但两次偏转的情况有所不同,小磁针稳定后的N 极指向正好相反。
实验结论导线通入电流后,小磁针发生了转动,说明小磁针受到了磁场力的作用,可见电可以生磁;但是通入不同方向的电流时小磁针的转动方向不同,说明通入电流的方向不同,产生的磁现象也不一样。
实验奥斯特实验发现了电流的磁效应,即电流可以产生磁场,首次揭示了电与磁的联系,意义揭开了人类对电磁现象研究的新纪元。
实验注意事项为了排除地磁场的影响,使实验现象明显,导线应沿南北方向水平放置在小磁针的正上方。
【典例1-1】受奥斯特发现电流磁效应实验的启发,某兴趣小组用铁钉与漆包线绕制成电磁铁,电磁铁正上方的小磁针稳定后如图所示,下列说法正确的是( )A .导线B 端接电源正极B .铁钉内磁场方向向右C .电磁铁右端为电磁铁的N 极D .小磁针所在位置的磁场方向水平向左【答案】A【详解】ABC .根据小磁针稳定时N 极所指的方向可知电磁铁右端为S 极,左端为N极,根据右手螺旋定则可知电流从B 到A ,所以B 为电源正极,内部磁感线从S 极指向N 极,即向左,故A 正确,BC 错误;D .小磁针静止时N 极所指的方向为该点的磁场方向,所以小磁针所在位置的磁场方向水平向右,故D 错误。
高中物理磁场教案及反思

一、高中物理磁场教案及反思二、教学目标:1. 让学生理解磁场的概念,知道磁场的方向和大小。
2. 让学生掌握磁感线的绘制方法,了解磁感线在磁场中的分布特点。
3. 让学生学会运用磁场的基本定律分析磁场问题。
4. 培养学生动手实验的能力,提高观察和分析问题的能力。
三、教学内容:1. 磁场的基本概念2. 磁感线的绘制3. 磁场的基本定律4. 磁场实验5. 磁场在实际应用中的例子四、教学方法:1. 采用问题驱动的教学方法,引导学生主动探究磁场的性质。
2. 利用多媒体课件,直观展示磁场的分布和特点。
3. 结合实际例子,让学生了解磁场在生活中的应用。
4. 开展小组讨论,培养学生的合作意识。
五、教学步骤:1. 引入磁场概念,让学生回顾磁体的性质。
2. 讲解磁场的方向和大小,引导学生理解磁场的本质。
3. 教授磁感线的绘制方法,让学生动手实践,观察磁感线的分布特点。
4. 讲解磁场的基本定律,如安培定律和法拉第电磁感应定律,引导学生运用定律分析磁场问题。
5. 开展磁场实验,让学生观察实验现象,分析实验结果。
6. 结合实际例子,如磁悬浮列车、电磁铁等,让学生了解磁场在生活中的应用。
7. 进行课堂小结,让学生梳理本节课所学知识点。
8. 布置课后作业,巩固所学内容。
六、教学反思:1. 反思教学目标是否达成,学生对磁场知识的理解和运用程度。
2. 反思教学方法是否合适,能否激发学生的学习兴趣和积极性。
3. 反思教学内容是否全面,是否有遗漏或讲解不清楚的地方。
4. 反思教学过程是否顺畅,学生是否存在困惑或质疑。
5. 反思教学效果,学生对磁场知识的掌握程度及应用能力。
6. 根据反思结果,调整教学策略,为下一节课的教学做好准备。
六、教学评估:1. 通过课堂提问,检查学生对磁场概念的理解程度。
2. 通过作业和练习,评估学生对磁感线绘制和磁场定律应用的能力。
3. 通过实验报告,评估学生对磁场实验操作和观察分析能力。
4. 通过小组讨论,评估学生的合作和交流能力。