八年级上册数学12.2 第1课时 “边边边”
人教版八年级数学上册第12单元第2节 第1课时 “边边边” 同步练习题(含答案)

12.2 第1课时 “边边边”一、选择题1.如图,ABC △中,AB AC =,EB EC =,则由“SSS ”可以判定( ) A .ABD ACD △≌△ B .ABE ACE △≌△ C .BDE CDE △≌△D .以上答案都不对2.如图,在ABC △和DCB △中,AB DC =,AC 与BD 相交于点E ,若不再添加任何字母与辅助线,要使ABC DCB △≌△,则还需增加的一个条件是( )A.AC=BDB.AC=BCC.BE=CED.AE=DE3.如图,已知AB=AC ,BD=DC ,那么下列结论中不正确的是( ) A .△ABD ≌△ACD B .∠ADB=90° C .∠BAD 是∠B 的一半D .AD 平分∠BAC4. 如图,AB=AD ,CB=CD ,∠B=30°,∠BAD=46°,则∠ACD 的度数是( )EDCB AA EB D C第1题图第2题图第3题图A.120°B.125°C.127°D.104°第4题图第5题图5. 如图,线段AD与BC交于点O,且AC=BD,AD=BC,则下面的结论中不正确的是( )A.△ABC≌△BADB.∠CAB=∠DBAC.OB=OCD.∠C=∠D6. 如图,AB=CD,BC=DA,E、F是AC上的两点,且AE=CF,DE=BF,,那么图中全等三角形共有()对A.4对 B.3对 C.2对 D.1对7. 如图,AB=CD,BC=AD,则下列结论不一定正确的是().A.AB∥DCB. ∠B=∠DC. ∠A=∠CD. AB=BC第7题图8. 如果△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x-2,2x -1,若这两个三角形全等,则x 等于( )A .73B .3C .4D .5二、填空题9.(2011湖北十堰)工人师傅常用角尺平分一个任意角。
做法如下:如图,∠AOB 是一个任意角,在边OA ,OB 上分别取OM=ON ,移动角尺,使角尺 两边相同的刻度分别与M ,N 重合,过角尺顶点C 作射线OC 。
人教版数学八年级上册 12.2三角形全等的判定 第一课时 “边边边”(sss)判定(共31张ppt)(智能版推荐)

学完本节课你应该知道
定理:三条边都相等的三角形全等
全等三角形 “边边边”
判定
数学语言表示和证明
尺规画定三角形 尺规作图
尺规画等角
动笔练一练
• 满足下列条件的两个三角形不一定全等的
是( C )
A. 有一边相等的两个等边三角形 B. 有一腰和底边对应相等的两个等腰三角形 C. 周长相等的两个三角形 D. 三条边都相等的三角形
动笔练一练
• 在四边形ABCD中, 已知:AB=CD, AD=CB。试证明: ∠A=∠C。
动笔练一练
证明: 在△ABC和△FDE中:
AB=CD(已知) AD=CB(已知) BD=DB(公共边) ∴△ABD ≌△ ACD(SSS) ∴∠A=∠C(全等三角形的对 应角相等)
课后练一练
请同学们独立完成配套课后练习题。
下课!
谢谢同学们!
在我的印象里,他一直努力而自知,每天从食堂吃饭后,他总是习惯性地回到办公室看厚厚的专业书不断提升和充实自己,他的身上有九零后少见的沉稳。同事们恭喜他,大多看 到了他的前程似锦,却很少有人懂得他曾经付出过什么。就像说的:“如果这世上真有奇迹,那只是努力的另一个名字,生命中最难的阶段,不是没有人懂你,而是你不懂自已。” 而他的奇迹,是努力给了挑选的机会。伊索寓言中,饥饿的狐狸想找一些可口的食物,但只找到了一个酸柠檬,它说,这只柠檬是甜的,正是我想吃的。这种只能得到柠檬,就说 柠檬是甜的自我安慰现象被称为:“甜柠檬效应”。一如很多人不甘平庸,却又大多安于现状,大多原因是不知该如何改变。看时,每个人都能从角色中看到自已。高冷孤独的安 迪,独立纠结的樊胜美,乐观自强的邱莹莹,文静内敛的关睢尔,古怪精灵的曲筱绡。她们努力地在城市里打拼,拥有幸或不幸。但她依然保持学习的习惯,这样无论什么事她都 有最准确的判断和认知;樊胜美虽然虚荣自私,但她努力做一个好HR,换了新工作后也是拼命争取业绩;小蚯蚓虽没有高学历,却为了多卖几包咖啡绞尽脑汁;关睢尔每一次出镜 几乎都是在房间里戴着耳机听课,处理文件;就连那个嬉皮的曲筱潇也会在新年之际为了一单生意飞到境外……其实她们有很多路可以走:嫁人,啃老,安于现状。但每个人都像 个负重的蜗牛一样缓缓前行,为了心中那丁点儿理想拼命努力。今天的努力或许不能决定明天的未来,但至少可以为明天积累,否则哪来那么多的厚积薄发和大器晚成?身边经常 有人抱怨生活不幸福,上司太刁,同事太蛮,公司格局又不大,但却不想改变。还说:“改变干嘛?这个年龄了谁还能再看书考试,混一天是一天吧。”一个“混”字就解释了他 的生活态度。前几天我联系一位朋友,质问为什么好久不联系我?她说自已每天累的像一条狗,我问她为什么那么拼?她笑:“如果不努力我就活得像一条狗了。”恩,新换的上 司,海归,虽然她有了磨合几任领导的经验,但这个给她带来了压力。她的英语不好,有时批阅文件全是大段大段的英文,她心里很怄火,埋怨好好的中国人,出了几天国门弄得 自己像个洋鬼子似的。上司也不舒服,流露出了嫌弃她的意思,甚至在一次交待完工作后建议她是否要调一个合适的部门?她的脸红到了脖子,想着自己怎么也算是老员工,由她 羞辱?两个人很不愉快。但她有一股子倔劲,不服输,将近40岁的人了,开始拿出发狠的学习态度,报了个英语培训班。回家后捧着英文书死啃,每天要求上中学的女儿和自己英 语对话,连看电影也是英文版的。功夫不负有心人,当听力渐渐能跟得上上司的语速,并流利回复,又拿出漂亮的英文版方案,新上司看她的眼光也从挑剔变柔和,某天悄悄放了 几本英文书在她桌上,心里突然发现上司并没那么讨厌。心态好了,她才发现新上司的优秀,自从她来了后,部门业绩翻了又翻,奖金也拿到手软,自己也感觉痛快。她说:这个 社会很功利,但也很公平。别人的傲慢一定有理由,如果想和平共处,需要同等的段位,而这个段位,自己可能需要更多精力,但唯有不断付出,才有可能和优秀的人比肩而立。 人为什么要努力?一位长者告诉我:“适者生存。”这个社会讲究适者生存,优胜劣汰。虽然也有潜规则,有套路和看不见的沟沟坎坎,但一直努力的人总会守得云开见月明。有 些人明明很成功了,但还是很拼。比如剧中的安迪,她光环笼罩,商场大鳄是她的男闺蜜,不离左右,富二代待她小心呵护,视若明珠,加上她走路带风,职场攻势凌历,优秀得 让身边人仰视。这样优秀的人,不管多忙,每天都要抽出两个小时来学习。她的学习不是目的,而是能量,能让未来的自己比过去更好一些。现实生活中,努力真的重要,它能改 变一个人的成长轨迹,甚至决定人生成败。有一句鸡汤:不着急,你想要的,岁月都会给你。其实,岁月只能给你风尘满面,而希望,唯有努力才能得到!9、懂得如何避开问题的 人,胜过知道怎样解决问题的人。在这个世界上,不知道怎么办的时候,就选择学习,也许是最佳选择。胜出者往往不是能力而是观念!在家里看到的永远是家,走出去看到的才 是世界。把钱放在眼前,看到的永远是钱,把钱放在有用的地方,看到的是金钱的世界。给人金钱是下策,给人能力是中策,给人观念是上策。财富买不来好观念,好观念能换来 亿万财富。世界上最大的市场,是在人的脑海里!要用行动控制情绪,不要让情绪控制行动;要让心灵启迪智慧,不能让耳朵支配心灵。人与人之间的差别,主要差在两耳之间的 那块地方!人无远虑,必有近忧。人好的时候要找一条备胎,人不好的时候要找一条退路;人得意的时候要找一条退路,人失意的时候要找一条出路!孩子贫穷是与父母的有一定 的关系,因为他小的时候,父母没给他足够正确的人生观。家长的观念是孩子人生的起跑线!有什么信念,就选择什么态度;有什么态度,就会有什么行为;有什么行为,就产生 什么结果。要想结果变得好,必须选择好的信念。播下一个行动,收获一种习惯;播下一种习惯,收获一种性格;播下一种性格,收获一种命运。思想会变成语言,语言会变成行
八年级数学上册 第十二章全等三角形12.2三角形全等的判定第1课时“边边边”6-10 (2)

优质课件
3
③如果三角形的两个内角分别是30°,45°时
30◦ 45◦
ห้องสมุดไป่ตู้30◦
45◦
结论:两个角对应相等的两个三角形不一定全等.
根据三角形的内角和为180度,则第三角一定确定, 所以当三内角对应相等时,两个三角形不一定全等
优质课件
4
两个条件 一个条件 ①两角; ①一角; ②两边;
②一边; ③一边一角。
2.如果满足两个条件,你能说出 有哪几种可能的情况?
①两边; ②一边一角;
③两角。
优质课件
1
①如果三角形的两边分别为3cm,4cm 时
3cm
3cm
4cm
4cm
结论:两条边对应相等的两个三角形不一定全等.
优质课件
2
②三角形的一条边为4cm,一个内角为30°时:
30◦ 4cm
30◦ 4cm
结论:一条边一个角对应相等的两个三
6
7
结论:只给出一个或两个 条件时,都不能保证所画 的三角形一定全等。
优质课件
5
尽管影院观影有75%上座率的限制且全国影院复工率为97.3%,但2020年国庆和中秋节重叠造就的八天加长“黄金周”观影人次达到9942万,较2019年同期水 平下降近16%,但已超2018年同期观影数据近5000万。据悉,双方力求将故事讲好,共同组织多次策划剧本会,同时邀请业内专家参与研讨,为作品内容创作保 驾护航。
一生所爱影迷情怀认真创作致敬经典 为了重塑经典,《大话西游之缘起》历时一年打磨剧本,精心策划故事架构,希望作品以创意和内容赢得场认可。 事实上娱乐越来越受到广大客户的欢迎,市场表现力也逐渐提升。 娱乐 / 而在闲暇时光里,脱去一身制服,他们也展露出与出警时截然不同的可爱反差:出任务时机警高效的业务尖兵陈文轩,误把汽车警报当警铃,在大家熟睡时独自 一人冲上消防车;训练成绩一骑绝尘的韩理,却是个十足的游戏黑洞;百战无前的一班班长邢朋,私下的业余爱好竟然是刺绣褪去城守护者的外衣,他们也是普 通人。根据美国电影协会数据,2017年,在中国电影市场回暖等因素的影响下,全球电影票房收入为405亿美元,较2016年增长了4.4%,增速较2015年有明显提 升;但2018年,尽管全球电影票房收入再创新高,但增速再次下滑至1.5%。,因为需要拍摄大量战争场景,拍摄现场条件十分艰苦,但南笙不叫苦、不嫌累,只 为好的展现角色
“边边边”判定三角形全等教学设计

“边边边”判定三⾓形全等教学设计12.2 三⾓形全等的判定(1)教学设计⼀、内容和内容解析本节教学内容源于新⼈教版⼋年级上册“12.2三⾓形全等的判定”第⼀课时.三⾓形全等的判定是在在学习了全等三⾓形的概念、全等三⾓形的性质后展开的。
全等三⾓形是两个三⾓形最简单、最常见的关系,它不仅是证明线段相等、⾓相等的重要⽅法,还是以后学习四边形、圆等知识的基础。
根据全等三⾓形的定义,三条边分别相等、三个⾓分别相等的两个三⾓形全等。
本节主要探索能否在上述六个条件中选择部分条件,简捷的判定两个三⾓形全等。
为此构建了三⾓形全等条件的探索思路,即从“⼀个条件”开始,逐渐增加条件的数量,从“⼀个条件”“两个条件”“三个条件”分别进⾏研究,最后通过作图实验,概括出⼀种判定⽅法——“边边边”,同时也为其他判定⽅法的探索提供了策略和思路。
教学重点:构建三⾓形全等条件的探索思路,⽤“边边边”证明两个三⾓形全等。
⼆、⽬标和⽬标解析教学⽬标知识技能:掌握“边边边”条件的内容,并能初步应⽤“边边边”判定两个三⾓形全等。
数学思考:经历探索三⾓形全等条件的过程,体会如何探索研究问题,让学⽣初步体会分类思想,提⾼分析问题,解决问题的能⼒。
解决问题:会⽤“边边边”判定⽅法证明三⾓形全等。
情感态度:通过作图、剪图、⽐较图,培养学⽣注重观察,善于思考,不断总结的良好思维习惯。
⽬标解析(1)通过本节教与学的活动,使学⽣知道三⾓形全等的含义。
为了寻求⽐六个条件更简捷的判定⽅法,从“⼀个条件”开始,逐渐增加条件的数量,依次探究“⼀个条件”“两个条件”“三个条件”能否保证两个三⾓形全等,在探索判定⽅法的过程中,体会作图、观察、分析、猜想、验证等是研究⼏何问题的⽅法。
(2)在作两个三边分别相等的三⾓形时,通过观察,⽐较,分析,概括出全等三⾓形的“边边边”判定⽅法,并能理解“边边边”判定⽅法的含义,会⽤“边边边”判定⽅法进⾏⼀些简单的证明。
三、教学问题诊断分析探索三⾓形全等的条件是⼀个开放性的问题,如何从六个条件中选择部分条件简捷地判定两个三⾓形全等,怎样通过逐渐增加条件的数量构建出三⾓形全等条件的探索思路,这些对于思维⽔平正在逐渐提⾼的⼋年级学⽣来说会有⼀定的难度。
人教版八年级数学上册《边边边》精品教案

12.2 三角形全等的判定第1课时“边边边”已知:∠BAC.求作:∠B'A'C' ,使∠B'A'C'=∠BAC.巩固练习学练优练习让学生巩固对三角形全等的判定条件的认识,同时也让学生尝试书写推理过程.小结与作业反思小结回顾反思本节课对知识的研究探索过程、小结方法及结论,提炼数学思想,掌握数学规律.再次渗透分类的数学思想,体会分析问题的方法,积累数学活动的经验.布置作业1.必做题:2.选做题:培养学生良好的学习习惯,巩固所学的知识---------------------学习小技巧--------------- 小学生制定学习计划的好处小学生想要成绩特别的突出学习计划还是不能少的。
有的人会有疑问,小学生的学习任务不大为什么还要制定学习计划?下面就让我们一起来看看小学生制定学习计划的好处。
1、学习的目标明确,实现目标也有保证学习计划就是规定在什么时候采取什么方法步骤达到什么学习目标。
短时间内达到一个小目标。
长时间达到一个大目标。
在长短计划指导下,使学习一步步地由小目标走向大目标。
2、恰当安排各项学习任务,使学习有秩序地进行,有了计划可以把自己的学习管理好,到一定时候对照计划检查总结一下自己的学习,看看有什么优点和缺点,优点发扬,缺点克服,使学习不断进步。
3、对培养良好的学习习惯大有帮助。
良好习惯养成以后,就能自然而然地按照一定的秩序去学习。
有了计划,也有利于锻炼克服困难、不怕失败的精神,无论碰到什么困难挫折也要坚持完成计划,达到规定的学习目标。
由于学习计划有必要又大有好处,所以有计划地学习成为优秀生的共同特点。
学习好和学习不好的差别当中有一条就是有没有学习计划。
这一点越是高年级越明显。
人教版八年级数学上册课件 第十二章全等三角形 三角形全等的判定 第1课时 用“边边边”判定三角形全等

6.(8分)(铜仁中考)已知:如图,点A,D,C,B在同一条直线上, AD=BC,AE=BF,CE=DF,求证:∠A=∠B.
证明:∵AD=BC,∴AD+DC=BC+DC,即AC=BD.
AC=BD, 在△ACE和△BDF中,AE=BF,
解:(1)证明:∵AC=AD+DC,DF=DC+CF,
且 AD=CF,∴AC=DF.在△ABC 和△DEF 中,ABBC==DEFE,, AC=DF,
∴△ABC≌△DEF(SSS) (2)由(1)可知,∠F=∠ACB.∵∠A=55°,∠B=88°, ∴∠ACB=180°-(∠A+∠B)=180°-(55°+88°)=37°, ∴∠F=∠ACB=37°
证明:∵BE=CD,∴BE+ED=DC+ED,即 BD=CE. 在△ABD 和△ACE 中,
AABD==AACE,, BD=CE,
∴△ABD≌△E(SSS)
4.(3分)如图,AB=A1B1,BC=B1C1,AC=A1C1,且∠A=60°, ∠B=40°,则∠C1=( )C A.60° B.40° C.80° D.20°
人教版
第十二章 全等三角形
12.2 三角形全等的判定
第1课时 用“边边边”判定三角形全等
1.(4 分)在下列推理中填写需要补充的条件. (1)如图,在△ABC 和△ADC 中,
ABBC==ADD,C , AC=AC,
∴△ABC≌△ADC(SSS);
(2)如图,在△ABC 和△DEC 中,
AABC==DDEC,, BC = EC ,
8.(6分)如图,已知∠AOB,点C是边OB上的一点, 用尺规作图画出经过点C与OA平行的直线.
2022年人教版八年级数学上册第十二章全等三角形教案 三角形全等的判定(第1课时)

第十二章全等三角形12.2 全等三角形的判定第1课时利用“边边边”判定三角形全等一、教学目标【知识与技能】1.掌握“边边边”的内容;2.能初步应用“边边边”条件判定两个三角形全等.3. 能用尺规作一个角等于已知角.【过程与方法】经历探索三角形全等条件的过程,体会用操作、归纳得出数量结论的过程.【情感态度与价值观】通过探索三角形全等的条件的活动,培养学生合作交流的意识和大胆猜想,乐于探究的良好品质以及发现问题的能力.二、课型新授课三、课时第1课时,共4课时。
四、教学重难点【教学重点】探索三角形全等的条件,会应用“边边边”判定两个三角形全等.【教学难点】探索三角形全等的条件,用尺规作一个角等于已知角.五、课前准备教师:课件、三角尺、圆规、直尺等。
学生:三角尺、圆规、直尺。
六、教学过程(一)导入新课为了庆祝国庆节,老师要求同学们回家制作三角形彩旗(如图),那么,老师应提供多少个数据,能保证同学们制作出来的三角形彩旗全等呢?一定要知道所有的边长和所有的角度吗?(二)探索新知1.师生互动,探究两个三角形全等的条件教师问1:什么叫全等三角形?学生回答:能够完全重合的两个三角形叫全等三角形.教师问2:全等三角形有什么性质?学生回答:全等三角形的对应边相等,对应角相等.(出示课件4)教师讲解:我们如何识别两个三角形是否全等呢?我们从“条件尽可能的少”出发,逐步增加条件分类进行操作验证,希望得到我们想要的结论.教师问3:满足一个条件对应相等时,识别两个三角形全等,共有几种情况呢?分别是哪些情况?学生讨论并回答:一共有两种情况,①只给一条边时;②只给一个角时.教师问4:请同学们每人画出一个边长为3cm的三角形,然后每个小组内的同学看一下画出的三角形全等吗?学生作图并且比较后回答:不全等.教师问5:请同学们每人画出一个45°的三角形,然后每个小组内的同学看一下画出的三角形全等吗?学生作图并且比较后回答:不全等.结论:只有一条边或一个角对应相等的两个三角形不一定全等.(出示课件6)教师问6:如果满足两个条件判断两个三角形全等,你能说出有哪几种可能的情况?学生分组讨论、探索、归纳,给出的两个条件可能是:一边一内角、两内角、两边.教师请同学们分别按下列条件做一做.①三角形两条边分别为3cm,4cm.三角形②三角形的一条边为4cm,一内角为30°,.③三角形两内角分别为30°和45°教师问7:同学根据①画出的两个三角形全等吗?学生作出图形并且组内识别后回答:两条边对应相等的两个三角形不一定全等.(出示课件8)教师问8:同学根据②画出的两个三角形全等吗?学生做出图形并且组内识别后回答:一条边一个角对应相等的两个三角形不一定全等.(出示课件9)教师问9:同学根据③画出的两个三角形全等吗?学生做出图形并且组内识别后回答:两个角对应相等的两个三角形不一定全等.(出示课件10)教师分析并归纳结论:只满足两个条件画出的三角形不一定全等.总结点拨:(出示课件11)一个条件①一角;②一边;两个条件①两角;②两边;③一边一角.结论:只给出一个或两个条件时,都不能保证所画的三角形一定全等.教师问10:给出三个条件画三角形,会有几种可能的情况?学生思考后师生归纳:有四种可能,即三角、三边、两边一角、两角一边分别相等.教师问11:已知两个三角形的三个内角分别为30°,60° ,90° 它们一定全等吗?学生作出图形并且组内识别后回答:有三个角对应相等的两个三角形不一定全等.(出示课件13)教师问12:已知两个三角形的三条边都分别为3cm、4cm、6cm .它们一定全等吗?(出示课件14)教师演示作法,学生按要求尺规作图,动手操作,通过比较得出结论.这两个三角形相等.教师问13:任意两个三角形的三条边都分别相等.它们一定全等吗?我们进行下边的操作:做一做:先任意画一个△ABC,再画一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA,把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?教师演示作法:(1)画B′C′=BC;(2)分别以B',C'为圆心,线段AB,AC长为半径画圆,两弧相交于点A';(3)连接线段A'B',A 'C'.(出示课件15)学生按要求尺规作图,动手操作,通过比较得出结论.三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”).总结:(出示课件16)“边边边”判定方法文字语言:三边对应相等的两个三角形全等.(简写为“边边边”或“SSS”)几何语言:在△ABC和△ DEF中,{AB=DE,BC=EF,CA=FD,∴△ABC ≌△ DEF(SSS).例1:如图,有一个三角形钢架,AB =AC ,AD 是连接点A 与BC 中点D 的支架.求证:(1)△ABD ≌△ACD.(2)∠BAD = ∠CAD.(出示课件17)解题思路:①先找隐含条件:公共边AD ;②再找现有条件:AB=AC③最后找准备条件:D 是BC 的中点→BD=CD师生共同解答如下:(出示课件18)证明:(1)∵ D 是BC 中点,∴ BD =DC.在△ABD 与△ACD 中,{AB =AC (已知)BD =CD (已证)AD =AD (公共边) ∴ △ABD ≌ △ACD ( SSS ).(2)由(1)得△ABD≌△ACD ,∴ ∠BAD= ∠CAD.(全等三角形对应角相等)总结点拨:(出示课件19)证明的书写步骤:①准备条件:证全等时要用的条件要先证好;②指明范围:写出在哪两个三角形中;③摆齐根据:摆出三个条件用大括号括起来;:④写出结论:写出全等结论.例2:已知:如图,AB=AC,AD=AE,BD=CE.求证:∠BAC=∠DAE. (出示课件21)分析:要证∠BAC=∠DAE,而这两个角所在三角形显然不全等,我们可以利用等式的性质将它转化为证∠BAD=∠CAE;由已知的三组相等线段可证明△ABD≌△ACE,根据全等三角形的性质可得∠BAD=∠CAE.师生共同解答如下:(出示课件22)证明:在△ABD和△ ACE中,AB=AC,AD=AE,BD=CE,∴ △ ABD≌ △ ACE(SSS),∴∠BAD=∠CAE.∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE.例3:用尺规作一个角等于已知角.已知:∠AOB.求作: ∠A′O′B′=∠AOB.(出示课件24)师生共同解答如下:(出示课件25)作法:(1)以点O 为圆心,任意长为半径画弧,分别交OA,OB 于点C,D;(2)画一条射线O′A′,以点O′为圆心,OC 长为半径画弧,交O′A′于点C′;(3)以点C′为圆心,CD 长为半径画弧,与第(2)步中所画的弧交于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.(三)课堂练习(出示课件28-34)1. 如图,D,F是线段BC上的两点,AB=EC,AF=ED,要使△ABF≌△ECD ,还需要条件___________________(填一个条件即可).2.如图,AB=CD,AD=BC,则下列结论:①△ABC≌△CDB;②△ABC≌△CDA;③△ABD ≌△CDB;④ BA∥DC.正确的个数是( )A . 1个 B. 2个 C. 3个 D. 4个3. 已知:如图,AB=AE,AC=AD,BD=CE,求证:△ABC ≌△AED.4. 已知:∠AOB.求作:∠A'O'B',使∠A'O′B'=∠AOB,(1)如图1,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)如图2,画一条射线O′A′,以点O′为圆心,OC长为半径作弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧交于点D′;(4)过点D′画射线O′B',则∠A'O'B'=∠AOB.根据以上作图步骤,请你证明∠A'O'B′=∠AOB.5. 如图,AD=BC,AC=BD.求证:∠C=∠D .(提示: 连结AB)6. 如图,AB =AC ,BD =CD ,BH =CH ,图中有几组全 等的三角形?它们全等的条件是什么?参考答案:1. BF=CD2.C3. 证明:∵BD=CE ,∴BD -CD=CE -CD .∴BC=ED .在△ABC 和△ADE 中,AC=AD (已知),AB=AE (已知),BC=ED (已证),∴△ABC≌△AED(SSS ).4. 证明:由作法得OD=OC=O′D′=O′C′,CD=C′D′, 在△OCD 和△O′C′D′中 D COAB∴△OCD≌△O′C′D′(SSS),∴∠COD=∠C′O′D′,即∠A'O'B′=∠AOB.5. 证明:连接AB两点,在△ABD和△BAC中,AD=BC,BD=AC,AB=BA,∴△ABD≌△BAC(SSS)∴∠D=∠C.6.解:(四)课堂小结今天我们学了哪些内容:1.本节课学了判定两个三角形全等的条件数目和全等三角形的判定方法(边边边)2.利用尺规作图作一个角等于已知角(五)课前预习预习下节课(12.2)教材37页到39页的相关内容。
12.2 三角形全等的判定(利用“边边边”判定三角形全等)课件 2024-2025学年人教版八上

A B
D 1 2C
小颖作业本上画的三角形被墨迹污染了,她 想画一个与原来完全一样的三角形,她该怎么办? 请你帮助小颖想一个办法,并说明你的理由?
注意:与原来完全一样的三角形,即是与原 来三角形全等的三角形。
想一想:
要画一个与小颖画的三角形全等的三角形需 要什么条件?一定要知道所有的边长和所有的 角度吗?条件能否尽可能的少?一个条件行吗? 两个条件呢?三个条件呢?还是需要更多的条 件?
7cm
5cm
4cm
活动3:
条件:已知一个三角形的三条边分别为4cm,5cm和7cm,它 们一定全等吗?(三边)
7cm
7cm
由此得出定理:三边对应相等的两个 三角形全等,简写为“边边边”或 “SSS”
活动3:
用数学语言表述:
A
D
B
CE
F
在△ABC与△DEF中 ∵ AB= DE
AC= DF
BC=EF
两角一边 下节再 一角两边 研究
我要展示!!!
1
2
3
4
5
6
1.如图所示,小龙的爸爸买了一张桌子,桌面下有 两个三角形,即图中的△ABC 和△A'B'C',设计 两个三角形的主要原因是( B )
A.使△ABC≌△A'B'C' B.利用三角形的稳定性使桌子稳固 C.使两个三角形是全等的直角三角形 D.对称美
∴△ABC≌ △DEF( 边边边 或 SSS)
活动4:
三角形具有 稳定性
,
四边形具有 不稳定性 。
起重机
钢架桥
高压线铁塔
学以致用:
例1:如图在四边形ACBD中,AC=AD,BD=BC,求证∠C=∠D,