煤气化技术及煤气化废水处理技术

合集下载

国内最全的煤气化技术简介

国内最全的煤气化技术简介

国内最全的煤气化技术简介(最新整理)本文收集、整理、并汇总了国内当前大多数煤气化工艺(包括水煤浆、干煤粉、碎煤等加压气化工艺;固定床、流化床、气流床气化工艺;激冷流程、废锅流程;水冷壁、耐火砖等冷壁炉和热壁炉型),可作为煤化工、煤气化专业技术人员参考资料,是目前网络上公开交流的较为全面的一篇资料。

1、“神宁炉”粉煤加压气化技术(宁夏神耀科技有限责任公司)以高旋流单喷嘴大通量粉煤加压气化炉为目标载体,以多煤种理化特性数据为基础,构建了气化炉流场、传热分析等模型;基于燃烧器强动量传导机制,揭示了顶置式旋流气化场湍流燃烧的动力学机理;揭示了氧气和煤粉的强化反应规律,独创了高效无相变水冷壁反应室与“沉降-破泡式”激冷室相耦合的气化炉。

“神宁炉”干粉煤气化技术能源转化效率高,有效气成分≥91%,碳转化率≥98.5%。

固体灰渣好处理,灰渣中不含苯、酚、焦油等大分子有机物废物。

气化系统吨煤污水排放量控制在0.4—0.5t,废水处理后可完全回用。

高效、中空、高能点火系统,实现高压、惰性环境下点火成功率98%以上。

采用组合式燃烧器通道结构,控制火焰形成,确保气化炉内壁挂渣均匀。

2、“科林炉”CCG粉煤加压气化技术(德国科林工业技术有限责任公司)技术特点:(1)煤种适应性广:适用于各种烟煤、无烟煤、褐煤及石油焦等,对强度、热稳定性、结渣性、粘结性等没有具体要求。

对高灰分、高灰熔点、高硫含量的“三高”煤等低品质的煤种拥有很好的工业化业绩。

(2)技术指标高:因燃烧器采用多烧嘴顶置下喷的配置方式,原料在气化炉内碰撞混合更加充分,气化炉炉膛及顶部挂渣均匀,可实现较高的气化温度(1400~1700℃),碳转化率高达到99%以上,合成气中不含重烃、焦油等物质,有效合成气成分90~93%,冷煤气效率80~83%。

(3)投资低:根据项目规模不同,可提供日投煤量750吨/天至3000吨/天的不同气化炉炉型设计,主要设备制造已完全实现国产化,整个装置的投资建设成本低,建设周期短。

煤气化工艺节能减排技术及应用

煤气化工艺节能减排技术及应用

煤气化工艺节能减排技术及应用摘要近几年在可持续发展理念逐渐深入下,节能减排技术逐渐得到各界广泛关注,煤化工领域作为我国一个重要生产领域,若想要保证煤化工企业稳定发展,则需要加强节能减排技术应用,以实现煤炭最大限度利用,为企业发展提供良好前景。

基于此,下文主要分析煤化工领域节能减排技术,并探讨技术应用加强对策。

关键词煤气化工艺;节能减排技术;应用引言煤气化工艺是煤清洁高效处理的关键方式,是煤化工产品生产过程中必要的步骤。

目前,主流应用的煤气化工艺技术为高温高压的气流床气化技术,在气化技术的应用过程中,物料类型会对气化能耗产生一定的影响。

为了降低煤气化工艺的能耗,需要对不同原料煤质下煤气化工艺的能耗情况进行分析。

一、煤化工工艺节能减排技术1、二甲醛合成技术二甲醛能够替代作燃气和柴油进行运用,目前在技术上取得良好效果,应用潜力较大,而且随着二甲醛持续开发,现阶段市场需求也越来越大。

当前二甲醛合成技术主要采用一步法或者二步法方式合成,尽管还没有完全投入到煤化工生产之中,但是经过试验已经证明可行性,能够确保催化反应正常进行,可对操作成本进行科学控制,因此二甲醛合成技术逐渐当作现阶段节能减排技术主流趋势。

2、煤化工联产技术煤化工联产技术是指在煤炭工业生产过程中,将各种关键技术结合起来,实现综合发展。

煤化工联合发电是指在煤炭气化、液化技术的基础上,通过对各种工艺技术的综合优化,达到各种产品的综合利用,从而使工艺能源得到最大程度的发挥。

该技术主要表现出安全稳定以及清洁等特点,由于煤炭成分极为复杂,生产过程比较繁琐,所以联产技术在我国有着广阔的应用前景。

3、甲醛合成技术甲醛主要是无色且带有刺激性气味的一种气体,众所周知甲醛是一种有毒物质,当人体吸入的甲醛气体过量,则会给身体带来较大危害,属于致癌物质。

但是现在,在化学化工行业,甲醛是一种非常普遍的物质,我们可以用它来制造很多常用的产品,比如:多聚甲醛,聚甲醛,氨基树脂等。

鲁奇煤气化废水酚氨回收技术探讨

鲁奇煤气化废水酚氨回收技术探讨

鲁奇煤气化废水酚氨回收技术探讨煤气化是一种能够将固体煤转化为气态燃料的技术,其主要产品为合成气。

但是,煤气化过程中会产生大量废水,其中含有大量有毒有害物质,如酚、氨等。

这些物质如果被随意排放,会对环境造成极大的危害。

因此,鲁奇煤气化废水酚氨回收技术的研究与应用可以有效遏制环境污染,推进“绿色能源”发展。

酚和氨是煤气化废水中两种危害性较大的物质。

酚是一种具有强烈刺激性和腐蚀性的化学物质,其作用机理主要是干扰多种生物化学过程。

而氨则可能引起人体和动物的危害,也可对环境造成严重的氨化反应,引发其他污染物的产生。

因此,在煤气化废水处理过程中,必须先进行酚氨分离,并对其进行回收处理。

鲁奇煤气化废水酚氨回收技术分为两部分:先利用酸性吸附剂将酚和部分氨捕获,然后再利用还原剂将其彻底还原为有机物和氮化物,并进行分离和回收。

具体来说,该技术的处理流程为:首先,将煤气化废水引入反应釜中,接着,加入NH4HCO3等物质,使其达到酸性。

然后,注入酸性吸附剂,使其与废水中的酚和部分氨反应,形成氨酸酯和酚氨盐。

接着,通过过滤和蒸馏将产物进一步分离,得到酚和氨的混合物和富集的氨酸酯。

最后,利用还原剂将氨酸酯中的氨还原为氮气,并将酚和还原产物分离回收。

这种技术有几个优点:首先,可以高效地回收煤气化废水中的酚和氨,避免了污染物的排放。

此外,该技术在处理过程中采用物理和化学的分离方式,无需加热或添加其他化学物质,因此有很好的环境友好性。

最后,该技术还可以将回收产物进行再利用,提高了资源利用率。

总之,鲁奇煤气化废水酚氨回收技术的开发具有重要的环境保护和资源可持续利用意义,其应用前景广阔。

未来,我们还可以进一步改进技术,提高处理效率和回收产物的质量,为推进“绿色能源”发展贡献力量。

煤气化技术的基本原理

煤气化技术的基本原理

煤气化技术的基本原理煤气化是一种将煤转化为合成气(Syngas)的技术,合成气是由氢气(H2)、一氧化碳(CO)和少量的甲烷(CH4)、二氧化碳(CO2)组成的气体混合物。

煤气化技术的基本原理是通过高温和压力将煤与氧气(或水蒸气)反应转化为可燃气体。

1.干煤气化:干煤气化是指在缺乏水蒸气的条件下,将煤转化为合成气。

在干煤气化过程中,煤被分解成固体炭和气体产物。

首先,煤被加热至高温,煤中的有机物质开始分解。

然后,产生的气体与煤中残留的炭反应,生成合成气。

2.水煤气化:水煤气化是指在存在水蒸气的条件下,将煤转化为合成气。

在水煤气化过程中,水蒸气与煤反应,生成氢气和一氧化碳。

水煤气化通常在高温和高压下进行,以提高反应效率和产气质量。

3.煤热解:煤热解是将煤在缺乏氧气的条件下加热,使其发生裂解反应,产生可燃气体。

煤热解可以通过煤干馏或焦化过程实现。

在煤热解过程中,煤中的有机物质被分解为固体炭、液体烃和气体产物。

液体烃和气体产物可以进一步加工提炼为石油产品或作为燃料使用。

1.碳气化反应:C+H2O->CO+H2煤中的碳与水蒸气反应,生成一氧化碳和氢气。

这个反应是煤气化过程中生成合成气的主要途径之一2.碳气化反应:C+2H2->CH4煤中的碳与氢气反应,生成甲烷。

这个反应也可以在煤气化过程中生成合成气。

3.热解反应:C->C+C煤中的高分子有机物质在高温下发生裂解反应,生成固体炭。

煤气化技术的应用广泛,可用于生产合成气、液体燃料、化学品和氢气等。

合成气可用于发电、制造合成燃料、合成化学品和进行化学反应。

煤气化技术在能源转型和减少对化石燃料的依赖方面具有重要地位。

然而,煤气化技术也面临一些挑战,如高能耗、环境污染和废弃物处理等问题。

因此,在推广和应用煤气化技术时,需要综合考虑技术、经济和环境等方面的因素。

煤气化废水酚氨回收工艺流程的分析和改进

煤气化废水酚氨回收工艺流程的分析和改进

煤气化废水酚氨回收工艺流程的分析和改进酚氨回收是一种通过对含有酚和氨的废水进行处理,使其按比例分离出酚和氨,从而达到回收利用的目的。

其处理流程一般分为以下几个步骤:1. 酸化处理废水进入酸化罐,在酸性条件下,使氨变成氨气,从而将其挥发。

这一步骤的目的是将氨从水中蒸发出来,减少对后续处理工艺的干扰。

2. 透析处理酸化处理后的废水进入透析罐,在透析膜上形成浓差梯度,使酚和氨沿着浓差梯度分离出来。

其中,透析膜是一种具有特殊孔径大小、能够使一些分子透过而其它分子不能透过的膜。

通过这一步骤,废水中的酚与氨得以分开,从而实现回收利用。

3. 中和处理在透析处理后,分离出的酚和氨需要进行中和处理,调整其pH值,使其接近中性。

这一步骤的目的是达到环保要求,使处理后的子液池能够直接排放到河流或土壤中,避免对环境造成影响。

4. 蒸发浓缩处理酸化处理后的废水中氨气的挥发量较大,而酚的含量较少。

因此,在透析和中和处理后,需要对分离出的酚和氨进行蒸发浓缩处理,使其浓缩后便于回收利用。

5. 回收利用蒸发浓缩处理后,分离出的酚需要进行再生处理,将其用于工业原料或作为生活用品。

而分离出的氨则需要进行再次利用,用于制造氮肥、医药等。

问题分析和改进思路在现有的煤气化废水酚氨回收技术中,仍然存在一些问题和不足。

具体来说,主要有以下几个方面:1. 废水的回收率较低目前的酚氨回收技术中,由于后续处理工艺的局限性,致使废水的回收率较低。

因此,需要在后续处理工艺上进行改进,提高废水的回收率。

2. 后续处理工艺环保性较差部分废水处于浓缩状态,需要进行后续处理,而传统的处理手段存在环保性问题,如会造成氮氧化物等有害物质的排放。

因此,需要在后续处理工艺上寻找一种更加环保的处理方式。

3. 能源消耗较大酚氨回收技术采用的蒸发浓缩处理过程对能源消耗较大,成本较高。

因此,需要改进处理工艺,减少能源消耗,从而提高经济效益。

针对以上问题,可以从以下几方面进行改进:1. 加强后续处理工艺研发,提高废水的回收率。

煤化工废水设计方案

煤化工废水设计方案

煤化工废水设计方案1概况 (1)1.1煤气化废水的水质特性 (1)1.2氨氮的处理工艺 (1)1.3多种生物脱氮工艺的比较 (3)2、设计规范、范围及原则 (4)2.1设计规范 (4)2.2设计范围 (6)2.3设计原则 (7)3、处理工艺流程 (8)3.1设计水量与水质 (8)3.2污水处理工艺流程 (10)3.3污泥的处理与处置 (17)4、处理工艺设计 (18)4.1主要处理构(建)筑物 (18)4.2主要处理设备一览表 (25)4.3设备及管道选用原则 (25)4.4处理效果预测表 (25)5、电气设计 (26)5.1设计描述 (26)5.2装置供配电系统 (26)5.3不间断电源(UPS 装置 (26)5.4供配电系统电压 (26)5.5主要设备选择 (26)5.6装置的环境特征及配电材料选择 (27)5.7动力用电设备的操作保护 (27)5.8配电线路 (27)5.9照明 (28)5.10防静电、防雷及接地 (29)6、分析化验 (31)6.1分析室任务 (31)6.2分析设备的选型原则 (31)6.3分析室的组成及建筑面积 (31)6.4采暖通风及空调要求 (31)6.5分析室对水、电的要求和消耗量 (31)6.6定员 (32)7、总平面布置方案 (33)7.1总平面布置 (33)7.2竖向布置 (33)7.3装置运输方案 (33)8、控制、仪表方案 (34)8.1PLC控制方案 (34)8.2控制室设置 (34)8.3安全技术措施 (35)8.4仪表选型 (35)8.5控制室监控系统 (35)8.6现场仪表 (37)8.7仪表电源 (38)8.8仪表气源 (38)9、土建方案 (39)9.1建筑设计 (39)9.2结构设计 (40)9.3结构抗震设计 (41)9.4主要结构材料的选用 (41)10、 ..................................................... 防腐方案4211、 ............................................. 给排水与消防方案4311.1防火措施 (43)11.2灭火措施 (43)12、 ................................................. 采暖通风方案4513、 ..................................................... 电信方案4714、 ............................................... 能耗及物耗指标4815、 ............................... 环保、水土保持、工业卫生、安全4916、 ......................................................... 定员5117、 ................................................. 设备系统投资521、概甲醇二甲醚项目废水处理装置的主要任务是处理各生产工艺装置、辅助设施产生的生产和生活污水。

煤气化灰水处理工艺

煤气化灰水处理工艺

煤气化灰水处理工艺
煤气化灰水处理是指将煤气化工厂产生的灰水处理洗涤后再回收使用或排放,以提高工厂利用率,降低工厂污染水排放浓度。

灰水处理技术主要可分为四部分:水源净化、水回收、废水处理和废水排放。

1、水源净化:灰水的水源净化主要是进行多项处理工艺,包括过滤、加药、活性炭吸附处理及除磷除氮等,以达到污染物含量降低的作用。

2、水回收:主要是使用沉淀池、水箱和滤池等混凝设备,利用沉淀工艺,将悬浮物沉淀到沉淀池,清除悬浮物,水质改善;利用滤池中内部滤料,结合活性炭、膜压池等,有效去除水中有害物质;其最终的水质符合回用水的要求,用作煤气装置的冷却水、脱水水、洗涤水等,以达到节省水源的要求。

3、废水处理:废水处理包括沉淀池、水箱和滤池等混凝设备,通过结合加药、活性炭吸附处理和除磷除氮等,有效去除废水中的有害物质,从而达到较好的污染防治效果,减少对环境造成的污染。

4、废水排放:最终处理好的废水达到环保要求后,应按照《污水排放标准》的有关规定,将可回用的水资源进行综合利用或进行改性排放,以减少对环境的污染。

煤气化

煤气化

2. 1煤气化技术概述2.1.1煤气化的含义煤的气化过程是热化学过程,煤或煤焦与气化剂(如空气、氧气、水蒸汽、氢气等)在高温下发生化学反应,将煤或煤焦中的有机物转变为煤气地过程(煤气是煤与气化剂在一定条件下反应得倒的混合气体,即气化剂奖每种的碳转化成可燃性气体。

煤气的有效组成成分为一氧化碳、氢气和甲烷。

)。

煤气化过程是进行的一个复杂的多相物理及物理化学过程,反应产生碳的氧化物、氢气、甲烷。

主要是固体燃料中的碳与气相中的氧气、水蒸汽、二氧化碳、氢气之间相互作用。

通过煤气化方法,几乎可以利用煤中所含的全部有机物质,因此,煤气化生产时或得基本有机化学工业原料的重要途径,也可以说,煤气化是将煤中无用固体脱除,转化为洁净煤气的过程,用于工业燃料、城市煤气和化工原料。

2.1.2煤气化技术的含义煤气化技术即煤气化过程所采用的设备、方法。

煤气化是煤化工最重要的方法之一。

煤气化己经有150多年的历史,气化方法有7080种。

开发、选定新型煤气化技术,不仅是经济、合理、有效地利用煤炭资源的重要途径,也是发展煤化工的基础。

中国目前采用的煤气化技术除常压固定床煤气发生炉和水煤气发生炉外,开发和引进了水煤气两段炉、鲁奇加压气化炉和Texaco水煤浆气化技术、Shell气化技术。

目前,新建厂多采用效率较高、制取煤气成分较好的加压Texaco水煤浆气化工艺、加压干粉煤Shell气化工艺和具有自主知识产权的多喷嘴技术。

(2)煤气化过程的主要工艺指标煤气化技术的工艺指标是评价煤气化技术好坏的一个重要方面,只有指标优良的煤气化技术才能给企业带来良好的经济效益,并且节能环保。

通常选择合适的煤气化技术依据的工艺指标有煤气质量、有效气体含量及组成、碳转化率、冷煤气效率等。

1)煤气质量:煤气质量由煤气热值和煤气组成构成。

a.煤气热值:指一标准立方米的煤气在完全燃烧是所放出的热量。

相同所作条件下,煤气热值与气化炉炉型、气化剂类型、操作压力以及煤的挥发分有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘 要 煤气化是减少燃煤污染的有效途径,但气化过程中产生的废水会对环境造成污染。本文针对废水中主要污染物的不同,对其处理方法、治理技术、工艺分别进行了论述,并提出了建议。分别介绍了煤气化废水中有用物质的回收,生化处理方法以及深度处理方法。具体介绍了废水中酚和氨的回收,采用活性污泥法、生物铁法,炭—生物铁法、缺氧—好氧(A—O)法对废水进行处理,采用活性炭吸附法和混凝沉淀法对废水进行深度处理。

关键词:煤气化,废水处理,活性污泥法 前 言 煤化工是以煤为原料,经过化学加工使煤转化为气体,液体,固体燃料以及化学产品的过程,主要分为煤炭焦化、煤气化、煤气化合成氨、煤气化合成其他产品及直接液化等。 煤气化是煤化工产业发展最重要的单元技术,采用空气、氧气、CO2和水蒸气为气化剂,在气化炉内进行煤的气化反应,可以产生不同组分不同热值的煤气。主要用于生产各种燃料气,是干净的能源,有利于提高人民生活水平和环境保护;还可以合成液体燃料和很多化工产品。 煤气化废水是煤制焦炭、煤气净化及焦化产品回收过程中产生的高浓度有机废水,属于焦化废水的一种。水质成分复杂,污染物浓度高。废水中含有大量的酚类、联苯、吡啶、吲哚和喹啉等有机污染物,还含有氰、无机氟离子和氨氮等有毒有害物质,污染物色度高,属较难生化降解的高浓度有机工业废水。对煤气化废水的处理,单纯靠物理、物理化学、化学的方法进行处理,难以达到排放标准,往往需要通过由几种方法组成的处理系统,才能达到处理要求的程度。因此煤气化废水的处理,一直是国内外废水处理领域的一大难题。 4

一、煤气化技术[1] (一)起源 1857年,德国的Siemens兄弟最早开发出用块煤生产煤气的炉子。这项工艺经过以后许多开发商的开发,到1883年应用于生产氨气。 (二)现状与原理 煤干馏过程主要经历如下变化:当煤料的温度高于100℃时,煤中的水分蒸发出;温度升高到200℃以上时,煤中结合水释出;高达350℃以上时,粘结性煤开始软化,并进一步形成粘稠的胶质体(泥煤、褐煤等不发生此现象);至400~500℃大部分煤气和焦油析出,称一次热分解产物;在450~550℃,热分解继续进行,残留物逐渐变稠并固化形成半焦;高于550℃,半焦继续分解,析出余下的挥发物(主要成分是氢气),半焦失重同时进行收缩,形成裂纹;温度高于800℃,半焦体积缩小变硬形成多孔焦炭。当干馏在室式干馏炉内进行时,一次热分解产物与赤热焦炭及高温炉壁相接触,发生二次热分解,形成二次热分解产物(焦炉煤气和其他炼焦化学产品)。 煤干馏的产物是煤炭、煤焦油和煤气。 煤干馏产物的产率和组成取决于原料煤质、炉结构和加工条件(主要是温度和时间)。随着干馏终温的不同,煤干馏产品也不同。低温干馏固体产物为结构疏松的黑色半焦,煤气产率低,焦油产率高;高温干馏固体产物则为结构致密的银灰色焦炭,煤气产率高而焦油产率低。中温干馏产物的收率,则介于低温干馏和高温干馏之间。煤干馏过程中生成的煤气主要成分为氢气和甲烷,可作为燃料或化工原料。高温干馏主要用于生产冶金焦炭,所得的焦油为芳烃、杂环化合物的混合物,是工业上获得芳烃的重要来源;低温干馏煤焦油比高温焦油含有较多烷烃,是人造石油重要来源之一。 (三)煤气化技术分类 煤气化被誉为煤化工产业的龙头技术,目前可作为大型工业化运行的煤气化技术,可分为固定床气化技术、流化床气化技术、气流床气化技术。 1.固定床气化技术 5

(1)常压固定床煤气化技术 常压固定床煤气化是以空气、蒸汽、氧气为气化剂,在常压下将煤转化成煤气的过程。由于该技术成熟可靠、操作简单、投资少、建设期短,在国内冶金、建材、机械等行业广泛用于制取燃气;在中小型合成氨厂、甲醇厂用于制取合成气;在用气量较少的小型化工装置中用于制取CO和H2。这种煤气化技术的缺点是原料煤要求较高,且单炉生产能力小、渣中残碳较高、气化为常压煤气的压缩功耗高。随着煤气化技术的不断发展,及国家对煤化工准入生产规模要求的提高,在新建的大型煤化工装置中一般不采用此技术。 (2)加压固定床煤气化技术

图1 鲁奇加压气化炉 鲁奇加压[2]气化技术(图1)是加压固定床气化技术的代表,在20世纪30年代已实现工业化,义马气化厂[3]单台炉运行可达172天,是比较成熟的气化模式。20世纪80年代以来,我国已引进4套现代化的Lurgi气化装置,其中3套用于生产城市煤气,1套用于生产合成氨,在设计、安装和运行方面均已取得丰富经验。该气化技术原料适应范围广,除黏结性较强的烟煤外,从褐煤到无烟煤均可气化,且可气化灰分高的劣质煤。Lurgi气化炉中煤与气化剂逆向运动,炉温较低,采用固态排渣。Lurgi固定床气化工艺成熟可靠,包括所副产焦油在内的气化效率、碳转化率、气化热 6

效率都较高,氧耗是在各类气化工艺中最低的,且原料制备、排渣处理简单。由于煤气中含有CH4,热值是各类气化工艺中最高的,适合于生产城市煤气。传统观念认为,若选择Lurgi固定床气化工艺制合成气存在以下问题:①煤气成分复杂。合成气中含不直接参与合成的CH4约10%~18%,如果将这些CH4转化成H2、CO,势必投资大、成本高。②大量冷凝污水需处理。污水中含大量焦油、酚、氨等,因此需建焦油回收装置,且酚、氨回收和生化处理装置增加了投资和原材料消耗。③Lurgi气化技术原料为5mm~50mm块煤,若购原煤则有占总量50%~55%的粉煤需处理。 我国对能源节约日益重视,煤化工装置要求大型化、多联产。Lurgi加压固定床煤气化技术同样适于大型化(多台气化炉并运)、多联产的煤化工装置。如南非萨索尔已使用了97台Lurgi气化炉;新疆广汇新能源有限公司准备建设16台Lurgi气化炉;中国大唐电力公司也将在内蒙古自治区上煤制天然气项目,采用46台Lurgi气化炉。 2.流化床气化技术[3]

图2 沸腾床气化流程图 流化床气化又称为沸腾床气化(图2),以小颗粒煤为气化原料。这些细粒煤自下而上的气化剂吹力作用下,保持着连续不断、无秩序沸腾和悬浮状态的运动,迅 7

速地进行混和及热交换,使整个床层温度和物料组成均一。为适应装置大型化的要求,流化床煤气化有向高压发展的趋势,但压力增加,会造成进煤和排灰工段的困难。由于其气化温度较气流床低,且气化煤的颗粒比气流床大,使其气化不彻底,飞灰和渣中的残碳均较高;如果气化原料中小于1mm的粉煤太多,也会造成气化炉带出物多、操作困难及增加消耗等问题,所以流化床煤气化技术发展较慢。 (1)美国U-gas煤气化技术 U-gas煤气化工艺由美国煤气化工艺研究所开发。1993年,上海焦化厂引进U-gas煤气化技术及设备,共有8台气化炉,全套装置于1995年建成投产,由于种种原因,目前这套装置已被拆除。现U-gas煤气化技术归美国综合能源系统有限公司拥有,该公司在山东枣庄建了2台U-gas煤气化炉,气化压力为0.25MPa,现已产出合格煤气。目前该公司正在开发0.5MPa和1.0MPa的气化炉。 (2)灰熔聚流化床煤气化技术 中科院山西煤炭化学研究所进行灰熔聚流化床粉煤气化技术研发已20多年,于1990年完成大规模低压中间试验工作。2001年,常压下单炉处理能力100t/d,配套20kt/a合成氨规模的工业示范装置在陕西省汉中固城化肥厂成功运行,该技术的工业化应用,引起了国内外产业界的重视和关注。但该技术的规模、压力等级等技术指标与化工合成或未来发电的要求还有一定差距,因此研究组近10年来着力进行了加压气化工艺的研发。2005年~2006年设计并建立了可获得工业放大数据和经验的大型加压灰熔聚流化床粉煤气化半工业装置。2007年初完成建设,经半年的设备调试和完善,2007年12月完成了1.0MPa的长周期试验,取得了较好的数据并积累了一定的运行经验。现能够达到的操作压力为0.03MPa~0.6MPa,单台气化炉处理煤的能力为100t/d~300t/d,可配套20kt/a~60kt/a合成氨或甲醇。目前正在实施的工业项目有:(1)山西晋城无烟煤矿业集团有限公司6台0.6MPa灰熔聚流化床粉煤气化装置生产100kt/a汽油所需的化工合成气;(2)内蒙古霍煤双兴煤气化有限责任公司0.6MPa气化装置生产60km3/h煤气;(3)河北石家庄金石化肥厂0.6MPa灰熔聚流化床粉煤气化装置生产50kt/a合成氨等。 8

3.气流床气化技术[3] (1)水煤浆气化技术 ①德士古气化技术 德士古气化技术(图3)是由美国德士古开发公司开发的。它是将煤磨成水煤浆,加入添加剂、助熔剂等形成黏度为0.8Pa·s~1.0Pa·s、煤浆质量分数为60%以上的浆状物,加压后喷入炉内,与纯氧进行燃烧和部分氧化反应,在1300℃~1400℃下气化,生产合成原料气。该技术在世界上已有几十套工业化装置正在运行,其中有二十几套在我国,包括陕西渭河化肥厂、上海焦化厂三联供装置、山东鲁南化肥厂和安徽淮南化肥厂等。鲁南化肥厂用于生产合成氨原料气,采用激冷流程,操作压力为3.0MPa;淮南化肥厂年产合成氨30万t,尿素52万t,气化压力6.5MPa,采用激冷流程,气化炉3台,目前运行良好;上海焦化厂三联供装置气化压力4.0MPa,气化炉4台,激冷流程,用于生产甲醇。由于其专利费较高,而国内有自主知识产权的水煤浆气化技术也成功开发,预计未来新建水煤浆气化装置会更多采用国内技术。

图3 德士古气化炉

相关文档
最新文档