高考理科数学数列专题复习

合集下载

高考数学复习热点08 数列与不等式(原卷版)-2021年高考数学专练(新高考)

高考数学复习热点08   数列与不等式(原卷版)-2021年高考数学专练(新高考)

热点08 数列与不等式【命题趋势】在新高考卷的考点中,数列主要以两小和一大为主的考查形式,在小题中主要以等差数列和等比数列为主,大题中新高考比以往的考察有了很大的改变,以前是三角和数列在17题交替考查,现在作为主干知识必考内容,考察位置是17或18题,题型可以是多条件选择的开放式的题型。

由于三角函数与数列均属于解答题第一题或第二题的位置,考查的内容相对比较简单,这一部分属于必得分,对于小题部分,一般分布为一题简单题一道中等难度题目。

对于不等式内容新教材删除了线性规划和不等式选讲,新高考主要考察不等式性质和基本不等式。

基本不等式考察往往都是已基本不等式作为切入点形式出现,题目难度中等。

专题针对高考中数列、不等式等高频知识点,预测并改编一些题型,通过本专题的学习,能够彻底掌握数列,不等式。

请学生务必注意题目答案后面的名师点睛部分,这是对于本类题目的一个总结。

【满分技巧】1、等差、等比数列如果记住基本的通项公式以及求和公式和性质,基本上所有的等差、等比数列问题都可以解决。

2、数列求通项主要方法有:公式法、利用前n项和求通项、累加、累乘、构造等方法;这里要注意各个方法中递推关系的模型结构特点。

3、数列求和问题主要包含裂项求和,分组求和,绝对值求和,错位相减求和,掌握固定的求和方式即可快速得到答案;这里要注意各个方法中数列通项的结构模型;本专题有相应的题目供参考。

4、对于基本不等式类的题目应注意等号成立地条件和基本不等式的模型结构,对“1”的活用。

【考查题型】选择题、填空、解答题【常考知识】数列的概念、等差等比数列的概念和公式和性质、数列求通项的方法、数列求和的方法、不等式的性质、基本不等式【限时检测】(建议用时:90分钟)一、单选题1.(2020·云南省个旧市第一高级中学高三其他模拟(理))设等差数列的前项和为,且{}n a n n S ,则的值为( )1144S =378a a a ++A .11B .12C .13D .142.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))设是等比数列,且,{}n a 1231a a a ++=,则( )234+2a a a +=678a a a ++=A .12B .24C .30D .323.(2018·陆川中学高三其他模拟(理))等差数列的前项和为,且,.设{}n a n n S 10a >500S =,则当数列的前项和取得最大值时, 的值为( )()*12n n n n b a a a n N ++=∈{}nb n nT n A .23B .25C .23或24D .23或254.(2020·广西高三一模(理))已知数列,,则( )21131322n n n a a a --=++12a =()25log 1a +=A .B .C .D .263log 331-231log 315-363log 231-331log 215-5.(2020年浙江省高考数学试卷)已知等差数列{a n }的前n 项和S n ,公差d ≠0,.记b 1=S 2,11a d≤b n+1=S 2n+2–S 2n ,,下列等式不可能成立的是( )n *∈N A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .D .2428a a a =2428b b b =6.(2020·江苏宝应中学高二期中)若a ,b 为正实数,且,则的最小值为( )1123a b +=3a b +A .2B .C .3D .4327.(2020·云南省个旧市第一高级中学高三其他模拟(理))已知数列的前项和为,且{}n a n n S ,,,则的通项公式为( )12n n S a n +=+-*n N ∈12a ={}n a A .B .C .D .121n n a -=-12n n a -=121n n a -=+2nn a =8.(2020·贵州高三其他模拟(理))已知是双曲线的半焦距,则的最c 2222:1(0,0)x y C a b a b -=>>a b c+大值是( )A BC D9.(2020·四川遂宁·高三零模(理))已知正项等比数列满足,,又为数{}n a 112a =2432a a a =+n S 列的前项和,则( ){}n a n 5S =A . 或B .312112312C .D .15610.(2020·河南焦作·高三一模(理))在等比数列中,,,则({}n a 11a =427a =352a a +=)A .45B .54C .99D .8111.(2020年全国统一高考数学试卷(理科)(新课标Ⅱ))数列中,,,若{}n a 12a =m n m n a a a +=,则( )155121022k k k a a a ++++++=- k =A .2B .3C .4D .512.(2020·江西高三二模(理))已知等比数列的首项,公比为,前项和为,则“{}n a 10a >q n n S”是“”的( )1q >3542S S S +>A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件13.(2020·浙江省东阳中学高三其他模拟)已知数列的前n 项和,则{}n a ()212,1n n S n a n a =≥=n a =( )A .B .C .D .()21n n +22(1)n +121n-121n -二、多选题14.(2020年新高考全国卷Ⅰ数学高考试题(山东))已知a >0,b >0,且a +b =1,则( )A .B .2212a b +≥122a b ->C .D 22log log 2a b +≥-+≤15.(2020·广东湛江·高三其他模拟)已知数列{a n }满足:0<a 1<1,.则下列说()14n n n a a ln a +-=-法正确的是( )A .数列{a n }先增后减B .数列{a n }为单调递增数列C .a n <3D .202052a >三、填空题16.(2020年浙江省高考数学试卷)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列就是二阶等差数列,数列的前3项和是________.(1)2n n +⎧⎫⎨⎬⎩⎭(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈17.(2020·广西高三一模(理))已知数列和满足,,,{}n a {}n b 12a =11b =1n n n a b b ++=.则=_______.114n n n a b a +++=20211008b a 18.(2020·山东济宁·高三其他模拟)已知,若不等式对140,0,1m n m n >>+=24m n x x a +≥-++已知的及任意实数恒成立,则实数最大值为_________.,m n x a 19.(2020·福建莆田·高三其他模拟)在△ABC 中,三边a ,b ,c 所对应的角分别是A ,B ,C ,已知a ,b ,c 成等比数列.若,数列满足,前n 项和为,sin sin sin B A C ={}n a 32|cos |2nn a nB =n S 2nS =__________.20.(2020·四川遂宁·高三零模(理))已知均为实数,函数在时取,a b 1()(2)2f x x x x =+>-x a =得最小值,曲线在点处的切线与直线_____2ln(1)y x =+()0,0y bx =a b +=四、解答题21.(2020·福建莆田·高三其他模拟)在①;②为等差数列,其中成131n n n a a a +=+1{}n a 236111,1,a a a +等比数列;③这三个条件中任选一个,补充到下面的问题中,然后解答2123111132n n na a a a -++++= 补充完整的题目.已知数列中,______.{}n a 11a =(1)求数列的通项公式;{}n a (2)设为数列的前项和,求证:.1,n n n n b a a T +={}n b n 13n T <注:如果选择多个条件分别解答,按第一个解答计分.22.(2020·安徽高三其他模拟(理))已知公比大于的等比数列满足,,1{}n a 2312a a +=416a =.2log n n b a =(1)求数列、的通项公式;{}n a {}n b (2)若数列的前项和为,求的前项和.{}n b n n S ()()*12n nnn a c n S -=∈N n n T 23.(2020年天津高考数学卷)已知为等差数列,为等比数列,{}n a {}n b .()()115435431,5,4a b a a a b b b ===-=-(Ⅰ)求和的通项公式;{}n a {}n b (Ⅱ)记的前项和为,求证:;{}n a n n S ()2*21n n n S S S n ++<∈N (Ⅲ)对任意的正整数,设求数列的前项和.n ()21132,,,.n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数{}n c 2n 24.(2020年浙江省高考数学试卷)已知数列{a n },{b n },{c n }中,.1111121,,()nn n n n n n b a b c c a a c c n b +++====-=⋅∈*N (Ⅰ)若数列{b n }为等比数列,且公比,且,求q 与{a n }的通项公式;0q >1236b b b +=(Ⅱ)若数列{b n }为等差数列,且公差,证明:.0d >1211n c c c d +++<+*()n N ∈25.(2018·陆川中学高三其他模拟(理))已知数列为公差不为零的等差数列,且,{}n a 23a =1a 3a ,成等比数列.7a (1)求数列的通项公式;{}n a (2)若数列满足,记数列的前项和为,求证:.{}n b 110101n n n b a a +=+{}n b n n S 12n S <。

专题06数列解答题2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)

专题06数列解答题2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)

2013-2022十年全国高考数学真题分类汇编专题06 数列解答题1.(2022年全国甲卷理科·第17题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.【答案】(1)证明见解析:; (2)78-.解析:(1)解:因为221nn S n a n+=+,即222n n S n na n +=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈,所以{}n a 是以1为公差的等差数列.(2)解:由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=-- ⎪⎝⎭,所以,当12n =或13n =时()min 78n S =-.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2022年全国甲卷理科·第17题2.(2022新高考全国II 卷·第17题)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.【答案】(1)证明见解析; (2)9.解析:(1)设数列{}n a 的公差为d ,所以,()11111111224283a d b a d b a d b b a d +-=+-⎧⎨+-=-+⎩,即可解得,112db a ==,所以原命题得证.(2)由(1)知,112d b a ==,所以()1111121k k m b a a b a m d a -=+⇔⨯=+-+,即122k m -=,亦即[]221,500k m -=∈,解得210k ≤≤,所以满足等式的解2,3,4,,10k = ,故集合{}1|,1500k m k b a a m =+≤≤中的元素个数为10219-+=.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2022新高考全国II 卷·第17题3.(2022新高考全国I 卷·第17题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112na a a +++< .【答案】(1)()12n n n a +=(2)见解析解析:(1)∵11a =,∴111S a ==,∴111S a =,又∵n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列,∴()121133n n S n n a +=+-=,∴()23n n n a S +=,∴当2n ≥时,()1113n n n a S --+=,∴()()112133n n n n n n a n a a S S --++=-=-,整理得:()()111nn n an a --=+,即111n n a n a n -+=-,∴31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯()1341123212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--,显然对于1n =也成立,∴{}n a 的通项公式()12n n n a +=;(2)()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭∴12111n a a a +++ 1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2022新高考全国I 卷·第17题4.(2021年新高考全国Ⅱ卷·第17题)记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==.(1)求数列{}n a 的通项公式n a ;(2)求使n n S a >成立的n 的最小值.【答案】解析:(1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-++-=-,从而:22d d -=-,由于公差不为零,故:2d =,数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214262n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->,解得:1n <或6n >,又n 为正整数,故n 的最小值为7.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2021年新高考全国Ⅱ卷·第17题5.(2021年新高考Ⅰ卷·第17题)已知数列{}n a 满足11a =,11,,2,.n n n a n a a n +⎧+=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.【答案】122,5b b ==;300.解析:(1)由题设可得121243212,1215b a a b a a a ==+===+=++=又22211k k a a ++=+,2122k k a a +=+,故2223k k a a +=+即13n n b b +=+即13n n b b +-=所以{}n b 为等差数列,故()21331n b n n =+-⨯=-.(2)设{}n a 的前20项和为20S ,则2012320S a a a a =++++ ,因为123419201,1,,1a a a a a a =-=-=- ,所以()20241820210S a a a a =++++- ()1291091021021023103002b b b b ⨯⎛⎫=++++-=⨯⨯+⨯-= ⎪⎝⎭.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2021年新高考Ⅰ卷·第17题6.(2020年新高考I 卷(山东卷)·第18题)已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S .【答案】(1)2nn a =;(2)100480S =.解析:(1)由于数列{}n a 是公比大于1的等比数列,设首项为1a ,公比为q ,依题意有31121208a q a q a q ⎧+=⎨=⎩,解得解得12,2a q ==,或1132,2a q ==(舍),所以2nn a =,所以数列{}n a 的通项公式为2nn a =.(2)由于123456722,24,28,216,232,264,2128=======,所以1b 对应的区间为:(]0,1,则10b =;23,b b 对应的区间分别为:(](]0,2,0,3,则231b b ==,即有2个1;4567,,,b b b b 对应的区间分别为:(](](](]0,4,0,5,0,6,0,7,则45672b b b b ====,即有22个2;8915,,,b b b 对应的区间分别为:(](](]0,8,0,9,,0,15 ,则89153b b b ==== ,即有32个3;161731,,,b b b 对应的区间分别为:(](](]0,16,0,17,,0,31 ,则1617314b b b ==== ,即有42个4;323363,,,b b b 对应的区间分别为:(](](]0,32,0,33,,0,63 ,则3233635b b b ==== ,即有52个5;6465100,,,b b b 对应的区间分别为:(](](]0,64,0,65,,0,100 ,则64651006b b b ==== ,即有37个6.所以23451001222324252637480S =⨯+⨯+⨯+⨯+⨯+⨯=.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020年新高考I 卷(山东卷)·第18题7.(2020新高考II 卷(海南卷)·第18题)已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 通项公式;(2)求112231(1)n n n a a a a a a -+-+⋯+-.【答案】(1)2nn a =;(2)2382(1)55n n +--解析:(1)设等比数列{}n a 的公比为q (q >1),则32411231208a a a q a q a a q ⎧+=+=⎨==⎩,整理可得:22520q q -+=,11,2,2q q a >== ,数列的通项公式为:1222n n n a -=⋅=.(2)由于:()()()1121111122112n n n n n n n n a a --++-+=-⨯⨯=--,故:112231(1)n n n a a a a a a -+-+⋯+-35791212222(1)2n n -+=-+-+⋯+-⋅()()3223221282(1)5512nn n +⎡⎤--⎢⎥⎣⎦==----.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020新高考II 卷(海南卷)·第18题的8.(2021年高考全国乙卷理科·第19题)记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.【答案】(1)证明见解析;(2)()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.解析:(1)由已知212n n S b +=得221n nn b S b =-,且0n b ≠,12n b ≠,取1n =,由11S b =得132b =,由于n b 为数列{}n S 的前n 项积,所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,所以12112222121n b b b b b +⋅=--,所以111221n n n nb b b b +++=-,由于10n b +≠所以12121n n b b +=-,即112n n b b +-=,其中*n N ∈所以数列{}n b 是以132b =为首项,以12d =为公差等差数列;(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列,()3111222n nb n ∴=+-⨯=+,22211n n n b nS b n+==-+,当n =1时,1132a S ==,当n ≥2时,()121111n n n n n a S S nn n n -++=-=-=-++,显然对于n =1不成立,∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【点睛】本题考查等差数列的证明,考查数列的前n 项和与项的关系,数列的前n 项积与项的关系,其中由1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,得到1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---,进而得到111221n n n nb b b b +++=-是关键一步;要熟练掌握前n 项和,积与数列的项的关系,消和(积)得到项(或项的递推关系),或者消项得到和(积)的递推关系是常用的重要的思想方法.【题目栏目】数列\等差、等比数列的综合应用【题目来源】2021年高考全国乙卷理科·第19题9.(2021年高考全国甲卷理科·第18题)已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a是等差数列:②数列是等差数列;③213aa =.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】答案见解析解析:选①②作条件证明③:(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n aa n =-,所以213a a =.选①③作条件证明②:因为213a a =,{}n a 是等差数列,所以公差2112d a a a =-=,所以()21112n n n S na d n a -=+==,)1n =+=,所以是等差数列.选②③作条件证明①:(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43a b =-;当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列;当43a b =-4=3an b an a =+-03a=-<不合题意,舍去.综上可知{}n a 为等差数列.【点睛】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,等差数列的证明通常采用定义法或者等差中项法.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2021年高考全国甲卷理科·第18题10.(2020年高考数学课标Ⅰ卷理科·第17题)设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.【答案】(1)2-;(2)1(13)(2)9nn n S -+-=.【解析】(1)设{}n a 的公比为q ,1a 为23,a a 的等差中项,212312,0,20a a a a q q =+≠∴+-= ,1,2q q ≠∴=- ;(2)设{}n na 前n 项和为n S ,111,(2)n n a a -==-,21112(2)3(2)(2)n n S n -=⨯+⨯-+⨯-++- ,①23121(2)2(2)3(2)(1)(2)(2)n n n S n n --=⨯-+⨯-+⨯-+--+- ,②①-②得,2131(2)(2)(2)(2)n nn S n -=+-+-++--- 1(2)1(13)(2)(2)1(2)3n n n n n ---+-=--=--,1(13)(2)9nn n S -+-∴=.【点睛】本题考查等比数列通项公式基本量的计算、等差中项的性质,以及错位相减法求和,考查计算求解能力,属于基础题.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020年高考数学课标Ⅰ卷理科·第17题11.(2020年高考数学课标Ⅲ卷理科·第17题)设数列{a n }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明;(2)求数列{2n a n }的前n 项和S n .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.解析:(1)由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+,证明如下:当1n =时,13a =成立;假设n k =时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立.则对任意的*n N ∈,都有21n a n =+成立;的(2)由(1)可知,2(21)2n nn a n ⋅=+⋅231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅ ,①23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅ ,②由①-②得:()23162222(21)2nn n S n +-=+⨯+++-+⋅ ()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020年高考数学课标Ⅲ卷理科·第17题12.(2019年高考数学课标全国Ⅱ卷理科·第19题)已知数列{}n a 和{}n b 满足11a =,10b =,1434n n n a a b +=-+,1434n n n b b a +=--.()1证明:{}n n a b +是等比数列,{}n n a b -是等差数列;()2求{}n a 和{}n b 的通项公式.【答案】()1见解析;()21122n n a n =+-,1122n n b n =-+.【官方解析】()1由题设得114()2()n n n n a b b +++=+,即111()2n n n n a b a b +++=+.又因为111a b +=,所以{}n n a b +是首项为1,公比为12的等比数列.由题设得114()4()8n n n n a b a b ++-=-+,即112n n n n a b a b ++-=-+.又因为111a b -=,所以{}n n a b -是首项为1,公差为2的等差数列.()2由()1知,112n n n a b -+=,21n n a b n -=-.所以111[()()]222n n n n n n a a b a b n =++-=+-,111[()()]222n n n n n n b a b a b n =+--=-+.【分析】()1可通过题意中的1434n n n a b a +=-+以及1434n n n b a b +=--对两式进行相加和相减即可推导出数列{}n n a b +是等比数列以及数列{}n n a b -是等差数列;()2可通过()1中的结果推导出数列{}n n a b +以及数列{}n n a b -的通项公式,然后利用数列{}n n a b +以及数列{}n n a b -的通项公式即可得出结果.【解析】()1由题意可知,,,,所以,即111()2n n n n a b a b +++=+,所以数列是首项为、公比为的等比数列,,因为,所以,数列是首项、公差为等差数列,.()2由()1可知,112n n n a b -+=,,所以111[()()]222n n n n n n a a b a b n =++-=+-,111[()()]222n n n n n n b a b a b n =+--=-+.【点评】本题考查了数列的相关性质,主要考查了等差数列以及等比数列的相关证明,证明数列是等差数列或者等比数列一定要结合等差数列或者等比数列的定义,考查推理能力,考查化归与转化思想,是中档题.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2019年高考数学课标全国Ⅱ卷理科·第19题13.(2018年高考数学课标Ⅲ卷(理)·第17题)(12分)等比数列{}n a 中,11a =,534a a =(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和,若63m S =,求m .(1)12n n a -=或()12n n a -=-;(2)6m =【答案】【官方解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=由已知得424q q =,解得0q =(舍去),2q =-或2q =故()12n n a -=-或12n n a -=(2)若()12n n a -=-,则()123mm S --=,由63m S =,得()2188m-=-,此方和没有正整数解若12n n a -=,则21m m S =-,由63m S =,得264m =,解得6m =综上,6m =.1434n n n a a b +-=+1434n n n b b a +-=-111a b +=111a b -=1144323442n n n n n n n n a b a b b a a b ++=+=--+++-{}n n a b +112(112n n n a b -+=()11443434448n n n n n n n n a b a b b a a b ++---=+-=-+-112n n n n a b a b ++=-+-{}n n a b -12的21n n a b n -=-21n n a b n -=-【民间解析】(1)设等比数列{}n a 的公比为q ,由11a =,534a a =可得42141q q ⨯=⨯⨯,所以24q =所以2q =±当2q =时,1112n n n a a q --==;当2q =-时,()1112n n n a a q --==-(2)由(1)可知2q =±当2q =时,由()1163631m m a q S q-=⇒=-即126312m-=-,即62642m ==,所以6m =;当2q =-时,由()1163631m m a q S q-=⇒=-即()126312m--=+,即()2188m-=-,无解综上可知6m =.【题目栏目】数列\等比数列\等比数列的综合应用【题目来源】2018年高考数学课标Ⅲ卷(理)·第17题14.(2018年高考数学课标Ⅱ卷(理)·第17题)(12分)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.【答案】解析:(1)设{}n a 的公差为d ,由题意得13315a d +=-.由17a =得2d =,所以{}n a 的通项公式为29n a n =-.(2)由(1)得228(4)16n S n n n =-=--.所以当4n =时,n S 取得最小值,最小值为16-.【题目栏目】数列\等差数列\等差数列的前n 项和【题目来源】2018年高考数学课标Ⅱ卷(理)·第17题15.(2016高考数学课标Ⅲ卷理科·第17题)已知数列{}n a 的前n 项和1n n S a λ=+,其中0λ≠.(Ⅰ)证明{}n a 是等比数列,并求其通项公式;(Ⅱ)若53132S =,求λ.【答案】(Ⅰ)11(11n n a λλλ-=--;(Ⅱ)1λ=-.【解析】(Ⅰ)由题意得1111a S a λ==+,故1λ≠,111a λ=-,10a ≠.由1n n S a λ=+,111n n S a λ++=+得11n n n a a a λλ++=-,即1(1)n n a a λλ+-=.由10a ≠,0λ≠得0n a ≠,所以11n n a a λλ+=-.因此{}n a 是首项为11λ-,公比为1λλ-的等比数列,于是11()11n n a λλλ-=--.(Ⅱ)由(Ⅰ)得1()1n n S λλ=--,由53132S =得5311(132λλ-=-,即51()132λλ=-,解得1λ=-.【题目栏目】数列\等比数列\等比数列的前n 项和【题目来源】2016高考数学课标Ⅲ卷理科·第17题16.(2016高考数学课标Ⅱ卷理科·第17题)(本题满分12分)n S 为等差数列{}n a 的前n 项和,且17=128.a S ,=记[]=lg n nb a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg 99=1,.(I)求111101b b b ,,;(II)求数列{}n b 的前1 000项和.【答案】(1)[]1lg10b ==,[]11lg111b ==,[]101lg1012b ==;(2)1893.【解析】(1)设{}n a 的公差为d ,据已知有72128d +=,解得1d =.所以数列{}n a 的通项公式为n a n =.[]1lg10b ==,[]11lg111b ==,[]101lg1012b ==.(2)因为0,110,1,10100,2,1001000,3,1000,n n n b n n ≤<⎧⎪≤<⎪=⎨≤<⎪⎪=⎩所以数列{}n b 的前1000项和为1902900311893⨯+⨯+⨯=.【题目栏目】数列\等差数列\等差数列的前n 项和【题目来源】2016高考数学课标Ⅱ卷理科·第17题17.(2015高考数学新课标1理科·第17题)(本小题满分12分)n S 为数列{}n a 的前n 项和.已知20,24 3.n n n n a a a S >+=+(Ⅰ)求{}n a 的通项公式:(Ⅱ)设112n n n b a a +=,求数列{}n b 的前n 项和【答案】(Ⅰ)21n +(Ⅱ)11646n -+分析:(Ⅰ)先用数列第n 项与前n 项和的关系求出数列{n a }的递推公式,可以判断数列{n a }是等差数列,利用等差数列的通项公式即可写出数列{n a }的通项公式;(Ⅱ)根据(Ⅰ)数列{n b }的通项公式,再用拆项消去法求其前n 项和.解析:(Ⅰ)当1n =时,211112434+3a a S a +=+=,因为0n a >,所以1a =3,当2n ≥时,2211n n n n a a a a --+--=14343n n S S -+--=4n a ,即111()()2()n n n n n n a a a a a a ---+-=+,因为0n a >,所以1n n a a --=2,所以数列{n a }是首项为3,公差为2的等差数列,所以n a =21n +;(Ⅱ)由(Ⅰ)知,n b =1111((21)(23)22123n n n n =-++++,所以数列{n b }前n 项和为12n b b b +++ =1111111[((()]235572123n n -+-++-++ =11646n -+.考点:数列前n 项和与第n 项的关系;等差数列定义与通项公式;拆项消去法【题目栏目】数列\数列的求和\裂项相消法求和问题【题目来源】2015高考数学新课标1理科·第17题18.(2014高考数学课标2理科·第17题)(本小题满分12分)已知数列{}n a 满足1a =1,131n n a a +=+.(Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:12111na a a ++<…+【答案】解析:(Ⅰ)由131n n a a +=+,得1113(22n n a a ++=+,且11322a +=所以{}12n a +是首相为32,公比为3的等比数列。

高考数学理科二轮复习课件:专题3第二讲 数列求和及综合应用

高考数学理科二轮复习课件:专题3第二讲 数列求和及综合应用
=1-12+41+…+2n1-1-2-2n n =1-1-2n1-1-2-2nn=2nn. 所以 Sn=2nn-1.
综上,数列2an-n 1的前 n 项和 Sn=2nn-1.
本题考查等差数列的通项公式的求法以及用错位相减法 求数列的前n项和,难度适中.
数列{bn}的前 n 项和.
解析:(1)设等差数列{an}的公差为 d,由题意得: d=a4-3 a1=12- 3 3=3, 所以 an=a1+(n-1)d=3n(n=1,2,…), 设等比数列{bn-an}的公比为 q,由题意得:q3=bb41--aa41
=240--312=8,解得 q=2.
所以 bn-an=(b1-a1)qn-1=2n-1,从而 bn=3n+2n-1(n =1,2,…).
随堂讲义
专题三 数 列 第二讲 数列求和及综合应用
高考数列一定有大题,按近几年高考特点,可估计 2016年不会有大的变化,考查递推关系、数学归纳法的 可能较大,但根据高考题命题原则,一般会有多种方法 可以求解.因此,全面掌握数列求和相关的方法更容易 让你走向成功.
例 1 已知数列{an}中,a1=1,an·an+1=12n(n∈N*),
(1)求数列{an}的通项公式;
(2)求数列2an-n 1的前 n 项和. 思路点拨:(1)由题设求出 a1,d,可确定通项公式; (2)可用错位相减法求和.
解析:(1)设等差数列{an}的公差为 d,由已知条件可得 a21a+1+d1=2d0, =-10,解得ad1==-1,1.
(1)已知数列{bn}的前 n 项和 Sn,求 bn 时分如下三个步 骤进行:①当 n=1 时,b1=S1;②当 n≥2 时,bn=Sn-Sn -1;③验证 b1 是否适合 n≥2 的解析式,据验证情况写出 bn 的表达式.

高考理科数学一轮复习专题训练:数列(含详细答案解析)

高考理科数学一轮复习专题训练:数列(含详细答案解析)

B . 3 2.在正项等比数列{a }中,已知 a 4 = 2 , a = ,则 a 5 的值为( 8= 2 , a = ,可得 8 q 4 = 8 = ,又因为 q > 0 ,所以 q = 1 2 2127B .35063C .28051D . 3502第 7 单元 数列(基础篇)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列{a n }的前 n 项和为 S n ,若 a 1=12,S 5=90,则等差数列{a n }公差 d =()A .2【答案】C2 C .3D .4【解析】∵a =12,S =90,∴ 5 ⨯12 + 1 5 5 ⨯ 4 2d = 90 ,解得 d=3,故选 C .n 8 1 )1 1 A . B . - C . -1 D .14 4【答案】D【解析】由题意,正项等比数列{a }中,且 a n 48 1 a 1 a 16 41,则 a = a ⋅ q = 2 ⨯ = 1 ,故选 D .5 43.在等差数列{a n}中, a 5+ a = 40 ,则 a + a + a = ( ) 13 8 9 10A .72B .60C .48D .36【答案】B【解析】根据等差数列的性质可知: a 5 + a 13 = 40 ⇒ 2a 9 = 40 ⇒ a 9 = 20 ,a + a + a = 2a + a = 3a = 60 ,故本题选 B .8 9109994.中国古代数学名著《张丘建算经》中记载:“今有马行转迟,次日减半,疾七日,行七百里”.其大意:现有一匹马行走的速度逐渐变慢,每天走的里程数是前一天的一半,连续走了7 天,共走了 700 里,则这匹马第 7 天所走的路程等于()A .700里里 里【答案】A127里【解析】设马每天所走的路程是 a 1, a 2 ,.....a 7 ,是公比为1的等比数列,a 1 - ( )7 ⎪a = a q 6= 7005.已知等差数列{a n } 的前 n 项和 S n 有最大值,且 a=10(a +a )2= 5(a + a ) = 5(a + a ) > 0 , S =2 = 11a < 0 , (a + 2d - 1)2 = (a + d - 1)(a + 4d - 1) ⎩ d = 2这些项的和为 700, S = 7 ⎛ 1 ⎫ 1 ⎝ 2 ⎭1 - 12 = 700 ⇒ a =1 64 ⨯ 700 127 ,7 1 127 ,故答案为 A .a 5< -1 ,则满足 S 6n> 0 的最大正整数 n 的值为()A .6B .7C .10D .12【答案】C【解析】设等差数列{a n } 的公差为 d ,因为等差数列{a n } 的前 n 项和 S n 有最大值,所以 d < 0 ,a又 a 5 < -1 ,所以 a 5 > 0 , a 6 < 0 ,且 a 5 + a 6 > 0 ,6 所以 S1 101 10 5 6 11 所以满足 S n > 0 的最大正整数 n 的值为 10.11(a + a )1 1166.已知等差数列{a n}的公差不为零, Sn为其前 n 项和, S 3 = 9 ,且 a 2 - 1 , a 3 - 1, a 5 - 1构成等比数列,则 S 5 = ( )A .15B . -15C .30D .25【答案】D【解析】设等差数列{a n}的公差为 d (d ≠ 0),⎧⎪3a + 3d = 9⎧a = 1 由题意 ⎨ 1 ,解得 ⎨ 1 ⎪⎩ 1 1 1.∴ S = 5 ⨯1 +5 5 ⨯ 4 ⨯ 22 = 25 .故选 D .7.在等差数列{a n } 中, a 3 , a 9 是方程 x 2 + 24 x + 12 = 0 的两根,则数列{a n } 的前 11 项和等于(A .66B .132C . -66D . -132【答案】D)S = 11⨯ (a + a ) 2 2 2 = 15 ,解得 n = 5 ,( )nC . a = 3n -1D . a =3n【解析】因为 a 3 , a 9 是方程 x 2 + 24 x + 12 = 0 的两根,所以 a 3 + a 9 = -24 ,又 a 3 + a 9 = -24 = 2a 6 ,所以 a 6 = -12 ,11⨯ 2a1 11 = 6 = -132 ,故选 D . 118.我国南宋数学家杨辉 1261 年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第n 行的所有数字之和为 2n -1 ,若去除所有为 1 的项,依次构成数列 2,3,3,4,6,4,5,10,10,5,…,则此数列的前 15 项和为()A .110B .114C .124D .125【答案】B【解析】由题意, n 次二项式系数对应的杨辉三角形的第 n +1行, 令 x = 1 ,可得二项展开式的二项式系数的和 2n ,其中第 1 行为 2 0 ,第 2 行为 21 ,第 3 行为 22 ,L L 以此类推,即每一行的数字之和构成首项为 1,公比为 2 的对边数列,则杨辉三角形中前 n 行的数字之和为 S = n 1- 2n1- 2 = 2n - 1,若除去所有为 1 的项,则剩下的每一行的数字的个数为1,2,3, 4,L ,可以看成构成一个首项为 1,公差为 2 的等差数列,则T =n n (n + 1)2 ,令 n (n + 1)所以前 15 项的和表示前 7 行的数列之和,减去所有的 1,即 27 - 1 - 13 = 114 ,即前 15 项的数字之和为 114,故选 B .9.已知数列{a }的前 n 项和为 S nn,满足 2S n =3a n -1 ,则通项公式 a n 等于()A . a = 2n- 1n【答案】CB . a= 2nn n: , + , + + , + + + , ,那么数列 {b }= ⎧⎨ 1 ⎩ a an n +1 ⎭n + 1 ⎭C . 4 ⨯ ⎝ 2 n + 1 ⎭D .⎝ 1 + 2 + ⋅⋅⋅ + n n2 a an (n + 1) ⎝ n n + 1 ⎭ = = = 4 ⨯ - ⎪ , ∴ S = 4 ⨯ 1 - + - + - + ⋅⋅⋅ + - = 4 ⨯ 1 - ⎪ 2 2 3 3 4 n n + 1 ⎭ ⎝ ⎝⎪ , 1 1 ⎫【解析】当 n = 1 时, 2S 1 = 3a 1 -1 ,∴ a 1 = 1 ,当 n ≥ 2 且 n ∈ N * 时, 2S n -1 = 3a n -1 - 1 ,则 2S n - 2Sn -1 = 2a n = 3a n - 1 - 3a n -1 + 1 = 3a n - 3a n -1 ,即 a n = 3an -1,∴ 数列 {a }是以1 为首项, 3 为公比的等比数列∴ a nn= 3n -1 ,本题正确选项 C . 10.已知数列 满足,且 ,则( )A .B .C .D .【答案】B【解析】利用排除法,因为,当当当当时,时,时,时, ,排除 A ;,B 符合题意;,排除 C ;,排除 D ,故选 B .11.已知数列为()1 12 1 23 1 2 34 2 3 3 4 4 45 5 5 5⋯ n ⎫ ⎬ 前 项和A .1 - 1 ⎛ n + 1B . 4 ⨯ 1 - 1 ⎫ ⎛ 1 ⎪ - 1 ⎫⎪1 1-2 n + 1【答案】B【解析】由题意可知: a =nn (n + 1)= = , n + 1 n + 1 2∴ b = 1n n n +11 4 ⎛ 1 1 ⎫ n n + 1 ⋅2 2⎛ 1 1 1 1 1 ⎛ n本题正确选项 B .1 ⎫n + 1 ⎭12.已知数列{a }满足递推关系: a , a = ,则 a 2017= (12016B . 12018D . 1=a 2 -= 1 . ⎩ a∴ 1=1}满足 a 2 q ,可设三数为 , a , aq ,可得 ⎪⎨ a⎪ q 求出 ⎨ ,公比 q 的值为 1.=3an n +1 = a 1 n a + 12 n)A .12017C .12019【答案】C【解析】∵ ana + 1 n1, a = ,∴ 1 1 1 a a n +1 n⎧ 1 ⎫∴数列 ⎨ ⎬ 是等差数列,首项为 2,公差为 1.n ⎭a2017= 2 + 2016 = 2018 ,则 a2018 .故选 C .第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分.13.已知等比数列{a n 1 = 12 ,且 a 2a 4 = 4(a3 - 1) ,则 a 5 = _______.【答案】8【解析】∵ a 2a 4 = 4(a 3 - 1) ,∴ a 3 = 4(a 3 -1) ,则 a 3 = 2 ,∴ a = 5 a 2 3 = a122 1 2= 8 ,故答案为 8.14.若三数成等比数列,其积为 8,首末两数之和为 4,则公比 q 的值为_______.【答案】1【解析】三数成等比数列,设公比为⎧a = 2⎩ q = 1⎧ a3 = 8 a q + aq =4 ⎩,15.在数列 {an}中,a 1= 1 , an 3 + a n(n ∈ N *)猜想数列的通项公式为________.=3a4 3 + a 53 + a 6 3a 3a 32 数列的通项公式为 a = 3n + 2 n + 2+ = (m + n) + ⎪ = 10 + + ⎪ ≥ 10 + 2 ⋅ ⎪⎪ = 2 , n m ⎭ 8 ⎝ n m ⎭【答案】3n + 2【解析】由 an 3 + a n, a = 1 ,可得 a = 1 2 3a 1 3 + a 13 3 3= , a = = , a == ,……,∴ 猜想 3 4 2 33,本题正确结果 .n16.已知正项等比数列{a n } 满足 2a 5 + a 4 = a 3 ,若存在两项 a m , a n ,使得 8 a m a n = a 1 ,则9 1+ 的最小值 mn为__________.【答案】2【解析】Q 正项等比数列{a n } 满足 2a 5 + a 4 = a 3 ,∴ 2a 1q 4 +a 1q 3 =a 1q 2 ,整理得 2q 2 +q - 1 = 0 ,又 q > 0 ,解得 q = 12,Q 存在两项 a , a 使得 8 a ⋅ a = a ,∴ 64a 2 q m +n -2 = a 2 ,整理得 m + n = 8 ,m nmn111∴则 9 1 1 ⎛ 9 1 ⎫ 1 ⎛ m 9n ⎫ 1 ⎛ m 9n ⎫ m n 8 ⎝ m n ⎭ 8 ⎝9 1 m 9n+ 的最小值为 2,当且仅当 = 取等号,但此时 m , n ∉ N * .m n n m又 m + n = 8 ,所以只有当 m = 6 , n = 2 时,取得最小值是 2.故答案为 2.三、解答题:本大题共6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.17.(10 分)已知等差数列{a n(1)求 {a}的通项公式;n}的公差不为 0, a 1= 3 ,且 a , a , a 成等比数列.2 4 7(2)求 a 2 + a 4 + a 6 + L + a 2n .【答案】(1) a n = n + 2 ;(2) n 2 + 3n .【解析】(1)Q a 2 , a 4 , a 7成等比数列,∴a42= a a ,2 7即 (a 1 + 3d )2 = (a 1 + d )(a 1 + 6d ) ,化简得 (a 1 - 3d )d = 0 ,∵公差 d ≠ 0 ,∴ a 1 = 3d ,6=n (a +a ) (2)若b= 4 { ⎪ 12 由题意得 ⎨,则 ⎨ , ⎩ 7 ⎪(a + 6d )2 = (a + d )(a + 21d )⎩ 1化简得 ⎨⎧a + 2d = 7(2)证明: b = 42n (2n + 4) n (n + 2) 2 ⎝ n n + 2 ⎭ - + - + - + L +⎪1 + - - = - ⎪ < . ⎪Q a = 3 ,∴ d = 1,∴ a = a + (n - 1)d = n + 2 .1 n1(2)由(1)知 a 2n = 2n + 2 ,故{a 2n } 是首项为 4、公差为 2 的等差数列,所以 a + a + a + L + a2 4 6 n (4 + 2n + 2)2 2n = = n 2 + 3n . 2 218.(12 分)已知公差不为零的等差数列{a n } 满足 S 5 = 35 ,且 a 2 , a 7 , a 22 成等比数列.(1)求数列{a n } 的通项公式;n nn(a - 1)(a + 3) ,且数列 b n }的前 n 项和为 T n ,求证: T < 3n 4.【答案】(1) a n = 2n + 1;(2)见详解.【解析】(1)设等差数列{a n } 的公差为 d ( d ≠ 0 ),⎧ 5 ⨯ 4⎧S = 355a + d = 35 5a 2 = a a2 221 11 ⎩2a 1 = 3d ⎧a = 3 ,解得 ⎨ 1⎩d = 2,所以 a = 3 + 2 (n -1) = 2n +1. nn nn(a -1)(a + 3) =4 11⎛1 1 ⎫ = = - ⎪ ,所以 T = n 1 ⎛ 1 1 1 1 1 1 1 1 1 1 ⎫- + - 2 ⎝ 1 3 2 4 3 5 n - 1 n + 1 n n + 2 ⎭= 1 ⎛ 1 1 1 ⎫ 3 1 ⎛ 1 1 ⎫ 3 + 2 ⎝ 2 n + 1 n + 2 ⎭ 4 2 ⎝ n + 1 n + 2 ⎭ 419.(12 分)已知数列{a n}的前 n 项和为 Sn且 S = 2a - 1 (n ∈ N * ) .n n(1)求数列{a n}的通项公式;(2)求数列{na n}的前 n 项和 T n.【答案】(1) a = 2n- 1 ;(2) T = n ⋅ 2n - 2n + 1 .nn【解析】(1)因为 S = 2a - 1 ,当 n ≥ 2 时, S = 2a - 1 ,7= 2a + 1 , n ∈ N * .+1),数列 ⎨ 15 ≤ T n < ; 即 a ∴ 数列 {a }的通项公式为 a = 2n - 1 n ∈ N * .(2n + 1)(2n + 3) 2⎝ 2n + 1 2n + 3⎪⎭ , - ⎪ + - ⎪ +⋅⋅⋅+⎪⎥ 2 ⎢⎣⎝ 3 5 ⎭ ⎝ 5 7 ⎭ ⎝ 2n + 2n + 3 ⎭⎦ 6 4n + 6整理可得 a n = 2a n -1 ,Q a = S = 2a - 1 ,解得 a = 1 ,1 111所以数列 {a n}为首项为1 ,公比为 2 的等比数列,∴a = 2n -1 .n(2)由题意可得:T = 1⨯ 20 + 2 ⨯ 21 + ⋅⋅⋅ + n ⋅ 2n ,n所以 2T = 1⨯ 21 + 2 ⨯ 22 + ⋅⋅⋅ + (n - 1)2n -1 + n ⋅ 2n ,n两式相减可得 -T = 1 + 21 + 22 + ⋅⋅⋅+ 2n -1 - n ⋅ 2n = n∴ T = n ⋅ 2n - 2n + 1 .n1 - 2n 1 - 2- n ⋅ 2n = 2n - 1 - n ⋅ 2n ,20.(12 分)已知数列{a n}满足 a 1= 1 , an +1n(1)求证数列{a n +1}是等比数列,并求数列{a n } 的通项公式;(2)设 b = log (a n 2 2n +1 ⎧ 1 ⎫ 1 1b b ⎬ 的前 n 项和 T n ,求证:6 ⎩ n n +1 ⎭.【答案】(1)证明见解析, a = 2n - 1(n ∈ N * )(2)见解析. n【解析】(1)由 an +1 = 2a n + 1 ,得 a n +1 + 1 = 2 (a + 1),n+ 1n +1 a + 1n= 2 ,且 a + 1 = 2 ,1∴ 数列 {a +1}是以 2 为首项, 2 为公比的等比数列,n∴ a + 1 = 2 ⨯ 2n -1 = 2n ,n( )nn(2)由(1)得: b = logn2(a2n +1+ 1) = log (22n +1- 1 + 1)= 2n + 1 ,2∴1b bn n +11 1 ⎛ 1 1 ⎫ = = -∴T = n1 ⎡⎛ 1 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫⎤ 1 1 - = - (n ∈ N * ),8又 0 < 1即 1n (2)设数列满足 b = a sin a π2的前 项和 .⎪⎩n,2 3 L 2 3 L 2 (a + 4) = S + S 2a = d + 4 d = 2 ⎪ ⎩= asin n π + ⎪ = a cos (n π ) , 2 ⎭ ⎝n +1,2n -1,⎪⎩n, 2 3 L 2 3 L a ⋅ a1 1 1 1 1 1 1≤ ,∴- ≤- < 0 ,∴ ≤ - < ,4n + 6 10 10 4n + 6 15 6 4n + 6 61≤ T < .15 621.(12 分)已知等差数列的前 项和为 ,且 是 与 的等差中项.(1)求的通项公式;n ,求n n【答案】(1)⎧⎪- (n + 2), ;(2) T = ⎨n n = 2k - 1(k = 1,,, ) n = 2k (k = 1,,, ) .⎧a = 7⎧a + 2d = 7 ⎧a = 3 【解析】(1)由条件,得 ⎨ 3 ,即 ⎨ 1 , ⎨ 1⎪715⎩1⎩,所以{a n }的通项公式是(2)由(1)知, b = a sinnn.(2n + 1)π 2n n⎛ π ⎫(1)当 n = 2k -1 (k =1,2,3,…)即 n 为奇数时, b = -a , b nnn +1= aT = -a + a - a + L + a n 1 2 3 n -1 - a = -a + (-2) n - 1= -n - 2 ;n 1(2)当 n = 2k (k =1,2,3,…):即 n 为偶数时, b = a , bnnn -1= -aT = -a + a - a +⋯- a n 1 2 3 n -1+ a = 2 ⋅ n n 2= n ,⎧⎪- (n + 2), 综上所述, T = ⎨n22.(12 分)设正项数列n = 2k - 1(k = 1,,, ) n = 2k (k = 1,,, ) .的前 n 项和为 ,已知 .(1)求证:数列 是等差数列,并求其通项公式;(2)设数列的前 n 项和为 ,且 b = 4n nn +1,若对任意 都成立,求实数 的取值范围.9(2)由(1)可得 b = 1 n (n + 1) n n + 1∴ T = 1 - ⎪ + - ⎪ + L + - ⎛ 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫1 n = 1 -= , ⎪ 2 ⎭ ⎝ 2 3 ⎭⎝ n n + 1 ⎭n + 1 n + 1⎝,即 nλ < n + (-1)n ⋅ 2 对任意⎢⎣ ⎥⎦n 恒成立,令 f (n ) = (n + 2)(n + 1)Q f (n + 1)- f (n ) = n (n + 1)- 2②当 为奇数时, λ < (n - 2)(n + 1)又 (n - 2)(n + 1)= n - - 1 ,易知:f (n ) = n - 在【答案】(1)见证明,【解析】(1)证明:∵;(2),且.,当当即时,时,有,解得 .,即.,于是,即.∵ ,∴为常数,∴数列是 为首项, 为公差的等差数列,∴.1 1= - ,nnn + 1都成立⎡ n (n + 1)+ (-1)n ⋅ 2 (n + 1)⎤⇔ λ <⎢⎥ nmin(n ∈ N *),①当 为偶数时, λ < (n + 2)(n + 1) = n + 2+ 3 ,n nn (n + 1) > 0 ,在 上为增函数,;n 恒成立,2 2 n n n为增函数,,102⨯ 4 ⨯ 3 = 0 ⎧a = -3 ⎪S 4 = 4a 1 + ⎪⎩a = a + 4d = 516 4⎩q3 (a + a + a ) = 120 ∴由①②可知:,综上所述 的取值范围为.第 7 单元 数列(提高篇)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.记 S 为等差数列{a } 的前 n 项和.已知 S = 0 , a = 5 ,则()n n45A . a n = 2n - 5B . a n = 3n - 10C . S = 2n 2 - 8nD . S = 1n nn 2 - 2n【答案】A2.已知等比数列{a }中, a n 3 ⋅ a = 20 , a = 4 ,则 a 的值是( )13 6 10A .16B .14C .6D .5【答案】D【解析】由等比数列性质可知 a ⋅ a = a 2 = 20 ,3138由 a 6 = 4 ,得 q 4= a 2 8 = a 2620 5= ,∴ a = a q 4 = 5 ,本题正确选项 D .10 63.等比数列{a } 中, a + a + a = 30 , a + a + a = 120 ,则 a + a + a = ( )n123456789A .240B .±240C .480D .±480【答案】C【解析】设等比数列{a } 中的公比为 q ,由 a + a + a = 30 , a + a + a = 120 ,n 1 2 3 4 5 6⎧ 得 ⎨a + a + a = 301 2 31 2 3,解得 q 3 = 4 ,∴ a + a + a = q 3 (a + a + a ) = 480.7 8 9 4 5 6112 , N = 4.我国古代的《洛书》中记载着世界上最古老的一个幻方:如图,将1,2,…,9 填入3 ⨯ 3 的方格内,使三行,三列和两条对角线上的三个数字之和都等于 15.一般地,将连续的正整数1,2,3,L , n 2 填入 n ⨯ n 个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做n 阶幻方.记 n 阶幻方的对角线上的数字之和为 N n ,如图三阶幻方的 N 3 = 15 ,那么 N 9 的值为()A .369B .321C .45D .41【答案】A【解析】根据题意可知,幻方对角线上的数成等差数列,根据等差数列的性质可知对角线的两个数相加正好等于1 + n 2,根据等差数列的求和公式 S = n (1+ n 2 ) 9 9 ⨯ (1+ 92 ) 2 = 369 ,故选 A .5.已知 1, a 1 , a 2 ,9 四个实数成等差数列,1, b 1 , b 2 , b 3 ,9 五个数成等比数列,则b 2 (a 2 - a 1 ) = ( A .8 B .-8 C .±8 D .98【答案】A)【解析】由 1, a 1 , a 2 ,9 成等差数列,得公差 d = a 2 - a 1 = 9 - 1 84 - 1 = 3 ,由 1, b , b , b ,9 成等比数列,得 b 2 = 1⨯ 9 ,∴ b = ±3 ,12322当 b = -3 时,1, b , -3 成等比数列,此时 b 2 = 1⨯ (-3) 无解,2 11所以 b = 3 ,∴ b (a - a 2 2 2 1 ) = 3 ⨯ 8= 8 .故选 A .36.已知数列{a n }是公比不为 1 的等比数列, S n为其前 n 项和,满足 a = 2 ,且16a , 9a , 2a2 1 4 7成等差数列,则 S = ()3A . 5B .6C .7D .9【答案】C【解析】数列{a n } 是公比 q 不为 l 的等比数列,满足 a 2 = 2 ,即 a 1q = 2 ,122 ⨯ 2 + 3)⨯ 2 ; 2 ⨯ 2 + 4 )⨯3 ;22- 5 =,且 A n =7n + 45a7= (10B .172C . 143A . 93【解析】因为 7 = 7 = a + a a 2a A = 13 = 7 ⨯13 + 45 = 17 1 13 2 且16a , 9a , 2a 成等差数列,得18a = 16a + 2a ,即 9a q 3 = 8a + a q 6 ,1 47417111解得 q = 2,a = 1 ,则 S = 1 3 1 - 23 1 - 2= 7 .故选 C .7.将石子摆成如图的梯形形状,称数列 5,9,14,20,L ,为“梯形数”.根据图形的构成,此数列的第 2016 项与 5 的差,即 a 2016- 5 = ()A . 2018⨯ 2014B . 2018⨯ 201C .1011⨯ 2015D .1010⨯ 2012【答案】C【解析】由已知的图形我们可以得出图形的编号与图中石子的个数之间的关系为:n =1 时, a = 2 + 3 = 11(n =2 时, a = 2 + 3 + 4 = 2…,由此我们可以推断:1 (a = 2 + 3 + L + (n + 2 ) = 1n⎡⎣2 + (n + 2)⎤⎦ ⨯ (n + 1),∴ a 1⨯ ⎡⎣2 + (2016 + 2)⎤⎦ ⨯ (2016 + 1)- 5 = 1011⨯ 2015 .故选 C .20168.已知两个等差数列{a }和 {b }的前 n 项和分别为 A 和 BnnnnB n + 3 b n 7)17D .15【答案】B771131313(a + a )1 131 13= 2 b 2b b + b 13(b + b ) B 13 + 3 2,故答案选 B .9.已知数列{ }的前 n 项和为 , , ( ),则 ( )A.32B.64C.128D.25613,∴ S B .C . 1a - 1 a - 1,n⎧B . 2019 ) =+ = + = + =2 ,1 1 + 1 + a 2a 2【答案】B【解析】由,得,又,∴- 1 n +1 S - 1n= 2 ,即数列{则∴10.数列1}是以 1 为首项,以 2 为公比的等比数列,,则 ..故选 B .满足: ,若数列 是等比数列,则 的值是()A .1 【答案】B2 D .【解析】数列为等比数列 ⇒ a- 1λa - 2上式恒成立,可知 ⎨λ =q⎩-2 = -q⇒ λ = 2 ,本题正确选项 B .11.已知函数 f (x ) =2( 1 + x 2x ∈ R ),若等比数列满足 a a1 2019= 1 ,则A .2019【答案】A ( )2 C .2D . 1 2【解析】∴ f (a )+ f (a12019,1 + a2 1 + a 2 1 + a 2 1 + a 21 2019 1 1 1为等比数列,则,14b b3B . 16 C . 115D . 2b b= = - ⎭ 数列 的前 项和 T = - + - ⎪ ⎪ , 2 ⎝ 3 5 5 72n + 1 2n + 3 ⎭ 2 ⎝ 3 2n + 3 ⎭可得 λ ≤ 12,即12.已知是公比不为 1 的等比数列,数列.满足: , , 成等比数列,c =1n2n 2n +2,若数列的前 项和对任意的恒成立,则 的最大值为( )A .115【答案】C【解析】由 , ,成等比数列得 a 2 =a a ,2 2nb n又是公比不为 1 的等比数列,设公比为 q ,则 a 2 q2b n-2 = a 2 q 2n ,整理得 b = n + 1,c =111n n2n 2n +21 1 ⎛ 1 1 ⎫ (2n + 1)(2n + 3)2 ⎝ 2n + 1 2n +3 ⎪ ,1 ⎛ 1 1 1 11 1 ⎫ 1 ⎛ 1 1 ⎫+ ⋅⋅⋅ +- = - n数列 是单调递增数列,则当 n =1 时取到最小值为1151 ,即 的最大值为,故选 C .1515,第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分.13.已知{a n } 是等差数列, a 2 + a 4 + a 6 + a 8 = 16 ,则 S 9 = _________.【答案】36【解析】{a n } 是等差数列, a 2 + a 4 + a 6 + a 8 = 16 , a 2 + a 8 = a 4 + a 6 = 2a 5 ,得出 a 5 = 4 ,又由 S = 9 ⋅ (a 1 + a 9 )9 = 9a = 36 .514.在数列 {a }中, a n 1= 1,an +1- a = 2n + 1 ,则数列的通项 a = ________.n n15x【答案】 n 2【解析】当 n ≥ 2 时,a = (a - a ) + (ann n -1n -1- a n -2) + (an -2- a n -3) + L + (a - a ) + (a - a ) + a ,3 2 2 1 1⇒ a = (2n - 1) + (2n - 3) + (2 n - 5) + L + 5 + 3 + 1 = n当 n = 1 , a 也适用,所以 a = n 2 .1nn (2n - 1 + 1) 2= n 2 ,15.设数列{a n } 的前 n 项和为 S n ,且 ∀n ∈ N *, a n +1a = ________.n【答案】 n - 6(n ∈ N * ) (答案不唯一)> a , S ≥ S .请写出一个满足条件的数列{a } 的通项公式n n 6 n【解析】 ∀n ∈ N * , a n +1> a ,则数列{a } 是递增的, ∀n ∈ N * , S ≥ S ,即 S 最小,n n n 6 6只要前 6 项均为负数,或前 5 项为负数,第 6 项为 0,即可,所以,满足条件的数列{a n } 的一个通项公式 a n = n - 6(n ∈ N * ) (答案不唯一).16.已知函数 f ( x ) = x 2 cosπx2,数列 {a }中, a = f (n )+ f (n + 1)(n ∈ N * ) ,则数列{a }的n n n前 40 项之和 S 40 = __________.【答案】1680【解析】函数 f (x ) = x 2 cos π 2且数列 {a }中, a = f (n )+ f (n +1),n n可得 a = f (1)+ f (2) = 0 - 4 = -4 ; a = f (2)+ f (3) = -4 + 0 = -4 ;12a = f (3)+ f (4) = 0 +16 = 16 ; a = f (4)+ f (5) = 16 ;3 4a = f (5)+ f (6) = 0 - 36 = -36 ; a = f (6)+ f (7) = -36 ;…,5 6可得数列 {a n 即有数列 {a n}为 -4 , -4 , 16 ,16 , -36 , -36 , 64 , 64 , -100 , -100 ,…, }的前 40 项之和:S = (-4 - 4 +16 +16)+ (-36 - 36 + 64 + 64)+ (-100 -100 +144 +144)+ 40⋅⋅⋅+ (-1444 -1444 +1600 +1600) = 24 + 56 + 88 +⋅⋅⋅+ 31216= ⨯10 ⨯ (24 + 312 ) = 1680 , ( a b a 1 - 22n 2 + n (n ∈ N * ).2 2 222212本题正确结果1680 .三、解答题:本大题共6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.17.10 分)已知数列{a n}是等比数列,数列 {b }是等差数列,且满足: n 1= b = 1 , + b = 4a , - 3b = -5 .1 2 3 2 3 2(1)求数列{a n }和 {b }的通项公式;n(2)设 c n = a n + b n ,求数列 {c n}的前 n 项和 S n .【答案】(1) a = 2n -1 , n ∈ N * , b = 2n - 1,n ∈ N * ;(2) S = 2n + n 2 - 1 .nn n【解析】(1)设 {an}的公比为 q , {b }的公差为 d ,由题意 q > 0 ,n⎧(1+ d ) + (1+ 2d ) = 4q ⎧-4q + 3d = -2由已知,有 ⎨ ,即 ⎨⎩q 2 - 3(1+ d ) = -5 ⎩ q 2 - 3d = -2⇒ q 2 - 4q + 4 = 0 ⇒ d = q = 2 ,所以 {a n }的通项公式为 an= 2n -1 , n ∈ N * , {b }的通项公式为 b = 2n - 1,n ∈ N * .n n(2) c = a + b = 2n -1 + 2n - 1 ,分组求和,分别根据等比数列求和公式与等差数列求和公式得到nnn1 - 2nn (1+ 2n - 1)S =+= 2n + n 2 - 1 .n18.(12 分)己知数列{a }的前 n 项和为 S n(1)求 {a}的通项公式;nn且 S = n 1 12 2(2)设 b n =1a an n +1,求数列 {b n}的前 100 项和.【答案】(1) a n = n ;(2) T100 =100 101.【解析】(1)当 n ≥ 2 时, S =n两式相减得 a n = S n - S n -1 = n , n 2 + n , S = (n - 1)2 + (n - 1)= n 2 + n- n ,17当 n =1时, a = S = + = 1,满足 a = n ,\ a = n . 2 2骣 1 骣 1 骣1 1 1 1 1001 - + - +L + - +2 = - , n +1 =2 n∈ N * ). ⎧⎬(2)若数列{b }满足: ba + 1 3n4 4 == 3 +n⎩ a n +1⎭a + 1 = 3n ,所以 a =1 - 1 . 3n ( )⇒ S = 2n - 144(2)令 b = 2n + 1,求数列 {b }的前 n 项和 T 及 T 的最小值.a + 2 nn1 11 1 n n(2)由(1)可知 b n =1 1 1= - ,n (n + 1) n n + 1所以数列 {b n}的前 100 项和 T100= b +b +?1 2b100= 琪 琪 琪 琪 - = 1 - = .桫 2桫 3 ? 99 100100 101 101 10119.(12 分)已知数列{a }满足: a n 1 3a -2a n - 3 ( 3a + 4 n(1)证明数列 ⎨ 1 ⎫ 为等差数列,并求数列{a n }的通项公式;⎩ a n + 1⎭nn =3n (n ∈ N * ),求 {b }的前 n 项和 S . nn n【答案】(1)证明见解析, a = n1 2n - 1 9- 1;(2) S = ⨯ 3n +2 + .n【解析】(1)因为 an +1+ 1 = -2a - 3 a + 1 1 3a + 4 1 n + 1 = n ,所以 , 3a + 4 3a + 4 a + 1 a a + 1 n n n +1 n +1 n⎧ 1 ⎫所以 ⎨ ⎬ 是首项为 3,公差为 3 的等差数列,所以n1 n(2)由(1)可知: a =n 1 3n- 1,所以由 b = n 3n a + 1 nn ∈ N * ⇒ b = n ⋅ 3n +1 , nS = 1 ⨯ 32 + 2 ⨯ 33 + L + (n - 1) ⨯ 3n + n ⨯ 3n +1 ①;n3S = 1 ⨯ 33 + 2 ⨯ 34 + L + (n - 1) ⨯ 3n +1 + n ⨯ 3n +2 ②,n①-②得 -2S = 32 + 33 + L + 3n +1 - n ⨯ 3n +2 = n 32 (3n - 1)3 - 1 - n ⨯ 3n +2n9⨯ 3n +2+ .20.(12 分)已知数列{a n}的前 n 项和为 Sn,且 S n = 2a n - 2n -1 .(1)求数列{a n}的通项公式;n nn185 ⨯ 2n -1 (2)Q b = 2n + 1 1 1 1 ⎛ 3 5 7 2n + 1 ⎫ ,则 T n = ⎪ , a + 2 52n -1 5 ⎝ 20 21 22 2n -1 ⎭ T = ⎪ 两式作差得 1 - T = ⨯ ⎢3 + ⎛ 1 ⎫ 1 ⎡ ⎛ 2 2 2 ⎫ 2n + 1⎤ 2n + 5 + +⋅⋅⋅+ - = 1 -2n ⎥⎦ ⎝ 2 ⎭ n 5 ⎣21 22 2n -1 ⎭ 5 ⨯ 2n 5 ⨯ 2n -1 5 ⨯ 2n 5 ⨯ 2n -1 5 ⨯ 2n 5 ⎧( ⎧ n - 1)2n + , n 是奇数 3 - 3n ⎪b n = 2 2 , n 是奇数2 , b = ⎨ ;(2) T = ⎨ .3n ⎪(n - 1)2n + 1 + , n 是偶数 n -2 ⎪b = 2 2 , n 是偶数n n【答案】(1)a = 5 ⨯ 2n -1- 2 (n ∈ N *);(2) T = 2 - 2n +5 3,最小值 . 5【解析】(1)当 n =1 时, a 1 = S 1 = 2a 1 - 2 - 1 ,解得 a 1 = 3 ,当 n ≥ 2 时, a n = S n - S n -1 = 2a n - 2a n -1 - 2 ,解得 a n = 2 a n -1 + 2 .则 a + 2 = 2 (an n -1+ 2),故 {a n + 2}是首项为 a 1 + 2 = 5 ,公比为 2 的等比数列,∴ a = 5 ⨯ 2n -1 - 2 (n ∈ N * ). n = ⨯ (2n + 1)⨯ + + + ⋅⋅⋅ +nn1 1 ⎛2 n 5 ⎝3 5 7 2n - 1 2n + 1 ⎫+ + + ⋅⋅⋅ + +21 22 23 2n -1 2n ⎭⎪ ⎪⎝,所以 T = 2 - n 2n + 5 5 ⨯ 2n -1,2n + 5 2n + 7 2n + 5 -2n - 3令 c = ,有 c - c =- = < 0 ,对 n ∈ N * 恒成立, n n +1 n则数列{c n }是递减数列,故{T n } 为递增数列,则 (T n )min 3= T = . 121.(12 分)已知正项数列且.的前 项和为 ,且 , ,数列 满足 ,(1)求数列(2)令【答案】(1), 的通项公式;,求数列 的前 项和 .n +1 ⎪⎪ n n⎩ n ⎪⎩ 2【解析】(1)当时, ,即 ,,19⎧⎪S + S = a 2 由 ⎨ ,可得= a 2 (n ≥ 2) ,⎪⎩ n由 ⎨ 两式相除,得 n +1 = 2 (n ≥ 2 ),⎧b b = 2n b⎪⎩b n -1b n = 2n -1 (n ≥ 2)综上:b = ⎨ n ⎪b = 2 n -22 , n 是偶数 ⎩ ⎧ 3n ⎪⎪ 2 , 的前 项和为 B ,∴ B = ⎨ , -3n + 1 ⎪ , n 是奇数 ⎧(n - 1)2n + , n 是奇数 ⎪⎪ 2综上: T = ⎨ .3n ⎪(n - 1)2n + 1 + , n 是偶数n +1 n n +1 S + S n -1 n即,又是公差为 ,首项为 的等差数列,,由题意得:,n n +1 b n -1是奇数时,是公比是 ,首项 的等比数列,∴ b = 2nn +1 2 ,同理 是偶数时是公比是 ,首项的等比数列,∴ b = 2nn -2 2 ,n ⎧ n +1⎪b = 2 2 , n 是奇数n.(2)令,即 ,⎧⎪ A = 1⋅ 20 + 2 ⋅ 21 + 3 ⋅ 22 + ⋅⋅⋅ + n ⋅ 2n -1的前 项和为 ,则 ⎨ n⎪⎩2 A n = 1⋅ 21 + 2 ⋅ 22 + 3 ⋅ 23 + ⋅⋅⋅ + n ⋅ 2n,两式相减得 - A = 20 + 21 + 22 + 2n -1 - n ⋅ 2n = n,1 - 2n 1 - 2- n ⋅ 2n ,令n n⎪⎩ 2n 是偶数3 - 3nn⎪⎩ 220ln 22 ln 32 ln n 2 (n - 1)(2n + 1) (当 x ≥ a 时, f '( x ) = 1 - = ,此时要考虑 a 与 1 的大小.(2)由(1)可知当 a = 1 , x > 1 时, x -1 - ln x > 0 ,即 ln x > 1 - x ,所以 ln x = n - 1 - = n - 1 - - ⎪ < n - 1 - + + L + ⎝ 2 n 2 ⎭ ⎝ 2 ⨯ 3 3 ⨯ 4 n(n + 1) ⎭ 1 ⎫ n - 1 = (n - 1) - n + 1 ⎭ 2(n + 1) ⎛ 122.(12 分)已知函数 f ( x ) =| x - a | - ln x(a > 0) .(1)讨论 f ( x ) 的单调性;(2)比较 + +⋯+ 与 的大小 n ∈ N * 且 n > 2) ,并证明你的结论.22 32 n 2 2(n + 1)【答案】(1)见解析;(2)见解析.⎧ x - ln x - a, 【解析】(1)函数 f ( x ) 可化为 f ( x ) = ⎨⎩a - x - ln x,x ≥ a0 < x < a ,当 0 < x < a 时, f '( x ) = -1 - 1 x< 0 ,从而 f ( x ) 在 (0, a) 上总是递减的,1 x - 1x x①若 a ≥ 1 ,则 f '( x ) ≥ 0 ,故 f ( x ) 在 [a, +∞ ) 上递增;②若 0 < a < 1 ,则当 a ≤ x < 1 时, f '( x ) < 0 ;当 x > 1 时, f '( x ) > 0 ,故 f ( x ) 在 [a,1) 上递减,在 (1, +∞) 上递增,而 f ( x ) 在 x = a 处连续,所以当 a ≥ 1 时, f ( x ) 在 (0, a) 上递减,在[a, +∞ ) 上递增;当 0 < a < 1 时, f ( x ) 在 (0,1) 上递减,在[1, +∞ ) 上递增.1< 1 - .x x所以 ln 22 ln 32 ln n 2 1 1 1+ + L + < 1 - + 1 - + L 1 -22 32 n 2 22 32 n 2⎛ 1 1 + ⎝ 22 32 + L + 1 ⎫ 1 1 ⎫ ⎛ 1 ⎪ ⎪2n 2 - 2 - n + 1 (n - 1)(2n + 1) = = .2(n + 1) 2(n + 1)21。

高三理科数学一轮总复习第六章 数列

高三理科数学一轮总复习第六章 数列

第六章数列高考导航知识网络6.1 数列的概念与简单表示法典例精析题型一 归纳、猜想法求数列通项【例1】根据下列数列的前几项,分别写出它们的一个通项公式: (1)7,77,777,7 777,… (2)23,-415,635,-863,… (3)1,3,3,5,5,7,7,9,9,…【解析】(1)将数列变形为79·(10-1),79(102-1),79(103-1),…,79(10n -1),故a n =79(10n -1).(2)分开观察,正负号由(-1)n+1确定,分子是偶数2n ,分母是1×3,3×5,5×7, …,(2n -1)(2n +1),故数列的通项公式可写成a n =(-1)n+1)12)(12(2+-n n n.(3)将已知数列变为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,9+0,….故数列的通项公式为a n =n +2)1(1n-+.【点拨】联想与转换是由已知认识未知的两种有效的思维方法,观察归纳是由特殊到一般的有效手段,本例的求解关键是通过分析、比较、联想、归纳、转换获得项与项序数的一般规律,从而求得通项.【变式训练1】如下表定义函数f (x ):对于数列{a n },a 1=4,a n =f (n -1 2 008 ) A.1B.2C.3D.4【解析】a 1=4,a 2=1,a 3=5,a 4=2,a 5=4,…,可得a n +4=a n . 所以a 2 008=a 4=2,故选B.题型二 应用a n =⎪⎩⎪⎨⎧≥-=-)2(),1(11n S S n S n n求数列通项【例2】已知数列{a n }的前n 项和S n ,分别求其通项公式: (1)S n =3n -2; (2)S n =18(a n +2)2 (a n >0).【解析】(1)当n =1时,a 1=S 1=31-2=1,当n ≥2时,a n =S n -S n -1=(3n -2)-(3n -1-2)=2×3n -1,又a 1=1不适合上式,故a n =⎪⎩⎪⎨⎧≥⨯=-)2(32),1(11n n n(2)当n =1时,a 1=S 1=18(a 1+2)2,解得a 1=2,当n ≥2时,a n =S n -S n -1=18(a n +2)2-18(a n -1+2)2,所以(a n -2)2-(a n -1+2)2=0,所以(a n +a n -1)(a n -a n -1-4)=0, 又a n >0,所以a n -a n -1=4, 可知{a n }为等差数列,公差为4,所以a n =a 1+(n -1)d =2+(n -1)·4=4n -2, a 1=2也适合上式,故a n =4n -2.【点拨】本例的关键是应用a n =⎪⎩⎪⎨⎧≥-=-)2(),1(11n S S n S n n求数列的通项,特别要注意验证a 1的值是否满足“n ≥2”的一般性通项公式.【变式训练2】已知a 1=1,a n =n (a n +1-a n )(n ∈N *),则数列{a n }的通项公式是( ) A.2n -1B.(n +1n)n -1C.n 2D.n【解析】由a n =n (a n +1-a n )⇒a n +1a n =n +1n. 所以a n =a n a n -1×a n -1a n -2×…×a 2a 1=n n -1×n -1n -2×…×32×21=n ,故选D.题型三 利用递推关系求数列的通项【例3】已知在数列{a n }中a 1=1,求满足下列条件的数列的通项公式: (1)a n +1=a n 1+2a n ;(2)a n +1=2a n +2n +1.【解析】(1)因为对于一切n ∈N *,a n ≠0,因此由a n +1=a n 1+2a n 得1a n +1=1a n +2,即1a n +1-1a n=2.所以{1a n }是等差数列,1a n =1a 1+(n -1)·2=2n -1,即a n =12n -1.(2)根据已知条件得a n +12n +1=a n 2n +1,即a n +12n +1-a n2n =1.所以数列{a n 2n }是等差数列,a n 2n =12+(n -1)=2n -12,即a n =(2n -1)·2n -1.【点拨】通项公式及递推关系是给出数列的常用方法,尤其是后者,可以通过进一步的计算,将其进行转化,构造新数列求通项,进而可以求得所求数列的通项公式.【变式训练3】设{a n }是首项为1的正项数列,且(n +1)·a 2n +1-na 2n +a n +1a n =0(n =1,2,3,…),求a n .【解析】因为数列{a n }是首项为1的正项数列, 所以a n a n +1≠0,所以(n +1)a n +1a n -na n a n +1+1=0,令a n +1a n=t ,所以(n +1)t 2+t -n =0, 所以[(n +1)t -n ](t +1)=0,得t =n n +1或t =-1(舍去),即a n +1a n =nn +1.所以a 2a 1·a 3a 2·a 4a 3·a 5a 4·…·a n a n -1=12·23·34·45·…·n -1n ,所以a n =1n .总结提高1.给出数列的前几项求通项时,常用特征分析法与化归法,所求通项不唯一.2.由S n 求a n 时,要分n =1和n ≥2两种情况.3.给出S n 与a n 的递推关系,要求a n ,常用思路是:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .6.2 等差数列典例精析题型一 等差数列的判定与基本运算 【例1】已知数列{a n }前n 项和S n =n 2-9n .(1)求证:{a n }为等差数列;(2)记数列{|a n |}的前n 项和为T n ,求 T n 的表达式. 【解析】(1)证明:n =1时,a 1=S 1=-8,当n ≥2时,a n =S n -S n -1=n 2-9n -[(n -1)2-9(n -1)]=2n -10, 当n =1时,也适合该式,所以a n =2n -10 (n ∈N *). 当n ≥2时,a n -a n -1=2,所以{a n }为等差数列. (2)因为n ≤5时,a n ≤0,n ≥6时,a n >0. 所以当n ≤5时,T n =-S n =9n -n 2,当n ≥6时,T n =||a 1+||a 2+…+||a 5+||a 6+…+||a n =-a 1-a 2-…-a 5+a 6+a 7+…+a n =S n -2S 5=n 2-9n -2×(-20)=n 2-9n +40,所以,【点拨】根据定义法判断数列为等差数列,灵活运用求和公式.【变式训练1】已知等差数列{a n }的前n 项和为S n ,且S 21=42,若记b n =1391122a a a --,则数列{b n }( )A.是等差数列,但不是等比数列B.是等比数列,但不是等差数列C.既是等差数列,又是等比数列D.既不是等差数列,又不是等比数列【解析】本题考查了两类常见数列,特别是等差数列的性质.根据条件找出等差数列{a n }的首项与公差之间的关系从而确定数列{b n }的通项是解决问题的突破口.{a n }是等差数列,则S 21=21a 1+21×202d =42.所以a 1+10d =2,即a 11=2.所以b n =1391122a a a--=22-(2a 11)=20=1,即数列{b n }是非0常数列,既是等差数列又是等比数列.答案为C.题型二 公式的应用【例2】设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0. (1)求公差d 的取值范围;(2)指出S 1,S 2,…,S 12中哪一个值最大,并说明理由. 【解析】(1)依题意,有S 12=12a 1+12×(12-1)d 2>0,S 13=13a 1+13×(13-1)d2<0,即⎩⎨⎧<+>+②① 06 011211d a d a由a 3=12,得a 1=12-2d .③将③分别代入①②式,得⎩⎨⎧<+>+03,0724d d所以-247<d <-3.(2)方法一:由d <0可知a 1>a 2>a 3>…>a 12>a 13,因此,若在1≤n ≤12中存在自然数n ,使得a n >0,a n +1<0, 则S n 就是S 1,S 2,…,S 12中的最大值. 由于S 12=6(a 6+a 7)>0,S 13=13a 7<0, 即a 6+a 7>0,a 7<0,因此a 6>0,a 7<0, 故在S 1,S 2,…,S 12中,S 6的值最大.方法二:由d <0可知a 1>a 2>a 3>…>a 12>a 13,因此,若在1≤n ≤12中存在自然数n ,使得a n >0,a n +1<0, 则S n 就是S 1,S 2,…,S 12中的最大值.故在S 1,S 2,…,S 12中,S 6的值最大.【变式训练2】在等差数列{a n }中,公差d >0,a 2 008,a 2 009是方程x 2-3x -5=0的两个根,S n 是数列{a n }的前n 项的和,那么满足条件S n <0的最大自然数n = .【解析】由题意知⎩⎨⎧<-=>=+,05,030092008 2009 2008 2a a a a 又因为公差d >0,所以a 2 008<0,a 2 009>0. 当n =4 015时,S 4 015=a 1+a 4 0152×4 015=a 2 008×4 015<0;当n =4 016时,S 4 016=a 1+a 4 0162×4 016=a 2 008+a 2 0092×4 016>0.所以满足条件S n <0的最大自然数n =4 015.题型三 性质的应用【例3】某地区2010年9月份曾发生流感,据统计,9月1日该地区流感病毒的新感染者有40人,此后,每天的新感染者人数比前一天增加40人;但从9月11日起,该地区医疗部门采取措施,使该种病毒的传播得到控制,每天的新感染者人数比前一天减少10人.(1)分别求出该地区在9月10日和9月11日这两天的流感病毒的新感染者人数; (2)该地区9月份(共30天)该病毒新感染者共有多少人?【解析】(1)由题意知,该地区9月份前10天流感病毒的新感染者的人数构成一个首项为40,公差为40的等差数列.所以9月10日的新感染者人数为40+(10-1)×40=400(人). 所以9月11日的新感染者人数为400-10=390(人).(2)9月份前10天的新感染者人数和为S 10=10(40+400)2=2 200(人),9月份后20天流感病毒的新感染者的人数,构成一个首项为390,公差为-10的等差数列. 所以后20天新感染者的人数和为T 20=20×390+20(20-1)2×(-10)=5 900(人).所以该地区9月份流感病毒的新感染者共有2 200+5 900=8 100(人).【变式训练3】设等差数列{a n }的前n 项和为S n ,若S 4≥10,S 5≤15,则a 4的最大值为 .【解析】因为等差数列{a n }的前n 项和为S n ,且S 4≥10,S 5≤15,所以5+3d 2≤a 4≤3+d ,即5+3d ≤6+2d ,所以d ≤1,所以a 4≤3+d ≤3+1=4,故a 4的最大值为4.总结提高1.在熟练应用基本公式的同时,还要会用变通的公式,如在等差数列中,a m =a n +(m -n )d .2.在五个量a 1、d 、n 、a n 、S n 中,知其中的三个量可求出其余两个量,要求选用公式要恰当,即善于减少运算量,达到快速、准确的目的.3.已知三个或四个数成等差数列这类问题,要善于设元,目的仍在于减少运算量,如三个数成等差数列时,除了设a ,a +d ,a +2d 外,还可设a -d ,a ,a +d ;四个数成等差数列时,可设为a -3m ,a -m ,a +m ,a +3m .4.在求解数列问题时,要注意函数思想、方程思想、消元及整体消元的方法的应用.6.3 等比数列典例精析题型一 等比数列的基本运算与判定【例1】数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n(n =1,2,3,…).求证: (1)数列{S nn}是等比数列;(2)S n +1=4a n .【解析】(1)因为a n +1=S n +1-S n ,a n +1=n +2n S n ,所以(n +2)S n =n (S n +1-S n ).整理得nS n +1=2(n +1)S n ,所以S n +1n +1=2·S nn ,故{S nn }是以2为公比的等比数列.(2)由(1)知S n +1n +1=4·S n -1n -1=4a nn +1(n ≥2),于是S n +1=4(n +1)·S n -1n -1=4a n (n ≥2).又a 2=3S 1=3,故S 2=a 1+a 2=4.因此对于任意正整数n ≥1,都有S n +1=4a n .【点拨】①运用等比数列的基本公式,将已知条件转化为关于等比数列的特征量a 1、q 的方程是求解等比数列问题的常用方法之一,同时应注意在使用等比数列前n 项和公式时,应充分讨论公比q 是否等于1;②应用定义判断数列是否是等比数列是最直接,最有依据的方法,也是通法,若判断一个数列是等比数列可用a n +1a n=q (常数)恒成立,也可用a 2n +1 =a n ·a n +2 恒成立,若判定一个数列不是等比数列则只需举出反例即可,也可以用反证法.【变式训练1】等比数列{a n }中,a 1=317,q =-12.记f (n )=a 1a 2…a n ,则当f (n )最大时,n 的值为( )A.7B.8C.9D.10【解析】a n =317×(-12)n -1,易知a 9=317×1256>1,a 10<0,0<a 11<1.又a 1a 2…a 9>0,故f (9)=a 1a 2…a 9的值最大,此时n =9.故选C.题型二 性质运用【例2】在等比数列{a n }中,a 1+a 6=33,a 3a 4=32,a n >a n +1(n ∈N *). (1)求a n ;(2)若T n =lg a 1+lg a 2+…+lg a n ,求T n .【解析】(1)由等比数列的性质可知a 1a 6=a 3a 4=32, 又a 1+a 6=33,a 1>a 6,解得a 1=32,a 6=1, 所以a 6a 1=132,即q 5=132,所以q =12,所以a n =32·(12)n -1=26-n .(2)由等比数列的性质可知,{lg a n }是等差数列, 因为lg a n =lg 26-n =(6-n )lg 2,lg a 1=5lg 2,所以T n =(lg a 1+lg a n )n 2=n (11-n )2lg 2.【点拨】历年高考对性质考查较多,主要是利用“等积性”,题目“小而巧”且背景不断更新,要熟练掌握.【变式训练2】在等差数列{a n }中,若a 15=0,则有等式a 1+a 2+…+a n =a 1+a 2+…+a 29-n (n <29,n ∈N *)成立,类比上述性质,相应地在等比数列{b n }中,若b 19=1,能得到什么等式?【解析】由题设可知,如果a m =0,在等差数列中有a 1+a 2+…+a n =a 1+a 2+…+a 2m -1-n (n <2m -1,n ∈N *)成立, 我们知道,如果m +n =p +q ,则a m +a n =a p +a q , 而对于等比数列{b n },则有若m +n =p +q ,则a m a n =a p a q , 所以可以得出结论:若b m =1,则有b 1b 2…b n =b 1b 2…b 2m -1-n (n <2m -1,n ∈N *)成立. 在本题中则有b 1b 2…b n =b 1b 2…b 37-n (n <37,n ∈N *). 题型三 综合运用【例3】设数列{a n }的前n 项和为S n ,其中a n ≠0,a 1为常数,且-a 1,S n ,a n +1成等差数列. (1)求{a n }的通项公式;(2)设b n =1-S n ,问是否存在a 1,使数列{b n }为等比数列?若存在,则求出a 1的值;若不存在,说明理由.【解析】(1)由题意可得2S n =a n +1-a 1.所以当n ≥2时,有⎩⎨⎧-=-=-+11,1122a a S a a S n n n n两式相减得a n +1=3a n (n ≥2). 又a 2=2S 1+a 1=3a 1,a n ≠0,所以{a n }是以首项为a 1,公比为q =3的等比数列. 所以a n =a 1·3n -1.(2)因为S n =a 1(1-q n )1-q =-12a 1+12a 1·3n ,所以b n =1-S n =1+12a 1-12a 1·3n .要使{b n }为等比数列,当且仅当1+12a 1=0,即a 1=-2,此时b n =3n .所以{b n }是首项为3,公比为q =3的等比数列. 所以{b n }能为等比数列,此时a 1=-2.【变式训练3】已知命题:若{a n }为等差数列,且a m =a ,a n =b (m <n ,m 、n ∈N *),则a m +n =bn -amn -m .现在已知数列{b n }(b n >0,n ∈N *)为等比数列,且b m =a ,b n =b (m <n ,m ,n ∈N *),类比上述结论得b m +n = .【解析】n -m b na m.总结提高1.方程思想,即等比数列{a n }中五个量a 1,n ,q ,a n ,S n ,一般可“知三求二”,通过求和与通项两公式列方程组求解.2.对于已知数列{a n }递推公式a n 与S n 的混合关系式,利用公式a n =S n -S n -1(n ≥2),再引入辅助数列,转化为等比数列问题求解.3.分类讨论思想:当a 1>0,q >1或a 1<0,0<q <1时,等比数列{a n }为递增数列;当a 1>0,0<q <1或a 1<0,q >1时,{a n }为递减数列;q <0时,{a n }为摆动数列;q =1时,{a n }为常数列.6.4 数列求和典例精析题型一 错位相减法求和【例1】求和:S n =1a +2a 2+3a 3+…+nan .【解析】(1)a =1时,S n =1+2+3+…+n =n (n +1)2.(2)a ≠1时,因为a ≠0, S n =1a +2a 2+3a 3+…+nan ,①1a S n =1a 2+2a 3+…+n -1a n +n an +1.② 由①-②得(1-1a )S n =1a +1a 2+…+1a n -n a n +1=1a (1-1a n )1-1a-n a n +1, 所以S n =a (a n -1)-n (a -1)a n (a -1)2. 综上所述,S n =⎪⎪⎩⎪⎪⎨⎧≠----=+).1()1()1()1(),1(2)1(2a a a a n a a a n n n n 【点拨】(1)若数列{a n }是等差数列,{b n }是等比数列,则求数列{a n ·b n }的前n 项和时,可采用错位相减法;(2)当等比数列公比为字母时,应对字母是否为1进行讨论;(3)当将S n 与qS n 相减合并同类项时,注意错位及未合并项的正负号.【变式训练1】数列{2n -32n -3}的前n 项和为( ) A.4-2n -12n -1 B.4+2n -72n -2 C.8-2n +12n -3 D.6-3n +22n -1 【解析】取n =1,2n -32n -3=-4.故选C. 题型二 分组并项求和法【例2】求和S n =1+(1+12)+(1+12+14)+…+(1+12+14+…+12n -1). 【解析】和式中第k 项为a k =1+12+14+…+12k -1=1-(12)k 1-12=2(1-12k ). 所以S n =2[(1-12)+(1-122)+…+(1-12n )] =])111([2个n +⋯++-(12+122+…+12n )] =2[n -12(1-12n )1-12]=2[n -(1-12n )]=2n -2+12n -1. 【变式训练2】数列1, 1+2, 1+2+22,1+2+22+23,…,1+2+22+…+2n -1,…的前n 项和为( ) A.2n -1B.n ·2n -nC.2n +1-nD.2n +1-n -2 【解析】a n =1+2+22+…+2n -1=2n -1,S n =(21-1)+(22-1)+…+(2n -1)=2n +1-n -2.故选D.题型三 裂项相消法求和【例3】数列{a n }满足a 1=8,a 4=2,且a n +2-2a n +1+a n =0 (n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =1n (14-a n )(n ∈N *),T n =b 1+b 2+…+b n (n ∈N *),若对任意非零自然数n ,T n >m 32恒成立,求m 的最大整数值.【解析】(1)由a n +2-2a n +1+a n =0,得a n +2-a n +1=a n +1-a n ,从而可知数列{a n }为等差数列,设其公差为d ,则d =a 4-a 14-1=-2, 所以a n =8+(n -1)×(-2)=10-2n .(2)b n =1n (14-a n )=12n (n +2)=14(1n -1n +2), 所以T n =b 1+b 2+…+b n =14[(11-13)+(12-14)+…+(1n -1n +2)] =14(1+12-1n +1-1n +2)=38-14(n +1)-14(n +2)>m 32, 上式对一切n ∈N *恒成立.所以m <12-8n +1-8n +2对一切n ∈N *恒成立. 对n ∈N *,(12-8n +1-8n +2)min =12-81+1-81+2=163, 所以m <163,故m 的最大整数值为5. 【点拨】(1)若数列{a n }的通项能转化为f (n +1)-f (n )的形式,常采用裂项相消法求和.(2)使用裂项相消法求和时,要注意正负项相消时,消去了哪些项,保留了哪些项.【变式训练3】已知数列{a n },{b n }的前n 项和为A n ,B n ,记c n =a n B n +b n A n -a n b n (n ∈N *),则数列{c n }的前10项和为( )A.A 10+B 10B.A 10+B 102C.A 10B 10D.A 10B 10【解析】n =1,c 1=A 1B 1;n ≥2,c n =A n B n -A n -1B n -1,即可推出{c n }的前10项和为A 10B 10,故选C. 总结提高1.常用的基本求和法均对应数列通项的特殊结构特征,分析数列通项公式的特征联想相应的求和方法既是根本,也是关键.2.数列求和实质就是求数列{S n }的通项公式,它几乎涵盖了数列中所有的思想策略、方法和技巧,对学生的知识和思维有很高的要求,应充分重视并系统训练.6.5 数列的综合应用典例精析题型一 函数与数列的综合问题【例1】已知f (x )=log a x (a >0且a ≠1),设f (a 1),f (a 2),…,f (a n )(n ∈N *)是首项为4,公差为2的等差数列.(1)设a 是常数,求证:{a n }成等比数列;(2)若b n =a n f (a n ),{b n }的前n 项和是S n ,当a =2时,求S n .【解析】(1)f (a n )=4+(n -1)×2=2n +2,即log a a n =2n +2,所以a n =a 2n +2, 所以a n a n -1=a 2n +2a2n =a 2(n ≥2)为定值,所以{a n }为等比数列. (2)b n =a n f (a n )=a 2n +2log a a 2n +2=(2n +2)a 2n +2, 当a =2时,b n =(2n +2) ·(2)2n +2=(n +1) ·2n +2, S n =2·23+3·24+4·25+…+(n +1) ·2n +2, 2S n =2·24+3·25+…+n ·2n +2+(n +1)·2n +3, 两式相减得-S n =2·23+24+25+…+2n +2-(n +1)·2n +3=16+24(1-2n -1)1-2-(n +1)·2n +3, 所以S n =n ·2n +3. 【点拨】本例是数列与函数综合的基本题型之一,特征是以函数为载体构建数列的递推关系,通过由函数的解析式获知数列的通项公式,从而问题得到求解.【变式训练1】设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则数列{1f (n )}(n ∈N *)的前n 项和是( ) A.n n +1 B.n +2n +1C.n n +1D.n +1n 【解析】由f ′(x )=mx m -1+a =2x +1得m =2,a =1.所以f (x )=x 2+x ,则1f (n )=1n (n +1)=1n -1n +1.所以S n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=n n +1.故选C. 题型二 数列模型实际应用问题【例2】某县位于沙漠地带,人与自然长期进行着顽强的斗争,到2009年底全县的绿化率已达30%,从2010年开始,每年将出现这样的局面:原有沙漠面积的16%将被绿化,与此同时,由于各种原因,原有绿化面积的4%又被沙化.(1)设全县面积为1,2009年底绿化面积为a 1=310,经过n 年绿化面积为a n +1,求证:a n +1=45a n +425; (2)至少需要多少年(取整数)的努力,才能使全县的绿化率达到60%?【解析】(1)证明:由已知可得a n 确定后,a n +1可表示为a n +1=a n (1-4%)+(1-a n )16%,即a n +1=80%a n +16%=45a n +425. (2)由a n +1=45a n +425有,a n +1-45=45(a n -45), 又a 1-45=-12≠0,所以a n +1-45=-12·(45)n ,即a n +1=45-12·(45)n , 若a n +1≥35,则有45-12·(45)n ≥35,即(45)n -1≤12,(n -1)lg 45≤-lg 2, (n -1)(2lg 2-lg 5)≤-lg 2,即(n -1)(3lg 2-1)≤-lg 2,所以n ≥1+lg 21-3lg 2>4,n ∈N *, 所以n 取最小整数为5,故至少需要经过5年的努力,才能使全县的绿化率达到60%.【点拨】解决此类问题的关键是如何把实际问题转化为数学问题,通过反复读题,列出有关信息,转化为数列的有关问题.【变式训练2】规定一机器狗每秒钟只能前进或后退一步,现程序设计师让机器狗以“前进3步,然后再后退2步”的规律进行移动.如果将此机器狗放在数轴的原点,面向正方向,以1步的距离为1单位长移动,令P (n )表示第n 秒时机器狗所在的位置坐标,且P (0)=0,则下列结论中错误的是( )A.P (2 006)=402B.P (2 007)=403C.P (2 008)=404D.P (2 009)=405【解析】考查数列的应用.构造数列{P n },由题知P (0)=0,P (5)=1,P (10)=2,P (15)=3.所以P (2 005)=401,P (2 006)=401+1=402,P (2 007)=401+1+1=403,P (2 008)=401+3=404,P (2 009)=404-1=403.故D 错.题型三 数列中的探索性问题【例3】{a n },{b n }为两个数列,点M (1,2),A n (2,a n ),B n (n -1n ,2n)为直角坐标平面上的点. (1)对n ∈N *,若点M ,A n ,B n 在同一直线上,求数列{a n }的通项公式;(2)若数列{b n }满足log 2C n =a 1b 1+a 2b 2+…+a n b n a 1+a 2+…+a n,其中{C n }是第三项为8,公比为4的等比数列,求证:点列(1,b 1),(2,b 2),…,(n ,b n )在同一直线上,并求此直线方程.【解析】(1)由a n -22-1=2n -2n -1n-1,得a n =2n . (2)由已知有C n =22n -3,由log 2C n 的表达式可知: 2(b 1+2b 2+…+nb n )=n (n +1)(2n -3),①所以2[b 1+2b 2+…+(n -1)b n -1]=(n -1)n (2n -5).②①-②得b n =3n -4,所以{b n }为等差数列.故点列(1,b 1),(2,b 2),…,(n ,b n )共线,直线方程为y =3x -4.【变式训练3】已知等差数列{a n }的首项a 1及公差d 都是整数,前n 项和为S n (n ∈N *).若a 1>1,a 4>3,S3≤9,则通项公式a n=.【解析】本题考查二元一次不等式的整数解以及等差数列的通项公式.由a1>1,a4>3,S3≤9得令x=a1,y=d得在平面直角坐标系中画出可行域如图所示.符合要求的整数点只有(2,1),即a1=2,d=1.所以a n=2+n -1=n+1.故答案填n+1.总结提高1.数列模型应用问题的求解策略(1)认真审题,准确理解题意;(2)依据问题情境,构造等差、等比数列,然后应用通项公式、前n项和公式以及性质求解,或通过探索、归纳构造递推数列求解;(3)验证、反思结果与实际是否相符.2.数列综合问题的求解策略(1)数列与函数综合问题或应用数学思想解决数列问题,或以函数为载体构造数列,应用数列的知识求解;(2)数列的几何型综合问题,探究几何性质和规律特征建立数列的递推关系式,然后求解问题.。

有关高考数列的题PPT

有关高考数列的题PPT
第六章 数 列 高考专题突破三 高考中的数列问题
热点题型
命题分析
综合考查等差数列与等比数列的定义、通项公式、
前n项和公式、等差(比)中项、等差(比)数列的性 类型一:等差数列、等
质.重点考查基本量(即“知三求二”,解方程(组)) 比数列及综合应用
的计算,灵活运用等差、等比数列的性质以及转化
化归、构造等思想解决问题.
∵a5=5,S5=15,∴a51a+1+4d5=×5(,25-1)d=15,∴ad1==11,,
∴an=a1+(n-1)d=n.
∴ana1n+1=n(n+1 1)=1n-n+1 1,



1 anan+1


100
项 和 为 1-12 + 12-31 + … +
1100-1101=1-1101=110001.
高考总复习·数学理科(RJ)
第六章 数 列
角度二 数列与不等式的交汇 【例 4】 (2018·郑州质检二)已知数列{an}的前 n 项和为 Sn, a1=-2,且满足 Sn=12an+1+n+1(n∈N*). (1)求数列{an}的通项公式; (2)若 bn=log3(-an+1),设数列bnb1n+2的前 n 项和为 Tn,求 证:Tn<34.
高考总复习·数学理科(RJ)
第六章 数 列
【解析】 (1)由 Sn=12an+1+n+1(n∈N*),得 Sn-1 =21an+n(n≥2,n∈N*), 两式相减,并化简,得 an+1=3an-2, 即 an+1-1=3(an-1),又 a1-1=-2-1=-3≠0, 所以{an-1}是以-3 为首项,3 为公比的等比数列, 所以 an-1=(-3)·3n-1=-3n. 故 an=-3n+1.

2024届高三数学二轮专题复习数列求和—裂项相消法教学设计

2024届高三数学二轮专题复习数列求和—裂项相消法教学设计

高三二轮复习数列求和—裂项相消法教学设计内容教学目的掌握裂项相消求和的使用环境及一般过程和思路.教学重点难点识别裂项相消求和的使用环境.如何裂项?如何相消?教学过程过程一、强调本微课学习内容,学习目标,重难点,易错点。

学习目标:掌握裂项相消求和的使用环境及一般过程和思路.学习重点:识别裂项相消求和的使用环境.学习难点:如何裂项?如何相消?易错点:裂项时忘记配平,相消时留下哪些项?过程二、通过熟悉的典型例子入手,引导学生回顾裂项相消的具体类型。

裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消(注意消项规律),从而求得前n项和.看下面两个例子:)211(2121+-=+nnnn)(⎪⎭⎫⎝⎛+-+-+=⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛+-++⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-=+++⨯+⨯+⨯211121121211......513141213112121......531421311nnnnnn)(()()))2)(1(1)1(1(21211++-+=++nnnnnnn()()⎪⎪⎭⎫⎝⎛++-=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛++-+++⎪⎭⎫⎝⎛⨯-⨯+⎪⎭⎫⎝⎛⨯-⨯=++++⨯⨯+⨯⨯+⨯⨯)2)(1(12121)2)(1(1)1(1......43132132121121211......543143213211nnnnnnnnn过程三、因为是二轮专题复习,学生经过一轮的复习,对于裂项的方法有一定的理解,在此基础上直接点出裂项的四种基本类型,并强调裂项的常用方法为通分的逆运算,分母有理化,对数的运算等。

本质是恒等变形,运用化归与转化思想、等式思想。

等差型:1a n a n+1=1d(1a n-1a n+1),其中a n≠0,d≠0. . (通分的逆运算)指数型:(a-1)a n(a n+b)(a n+1+b)=1a n+b-1a n+1+b. (通分的逆运算)无理型:1a+b=1a-b(a-b)(a>0,b>0). (分母有理化)对数型:log n a n +1a n=log n a n +1-log n a n (a n >0). (对数的运算法则)过程四、对照四种类型,分别用4道典型例题进行讲解与说明,并敲掉裂项时要配平,求和相消时要注意消去哪些项,剩下哪些项。

高考数学复习各地数列模拟测试题及解析

高考数学复习各地数列模拟测试题及解析

高考数学复习各地数列模拟测试题及解析一、有关通项问题1、利用11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩求通项.(北师大版第23页习题5)数列{}n a 的前n 项和21n S n =+.(1)试写出数列的前5项;(2)数列{}n a 是等差数列吗?(3)你能写出数列{}n a 的通项公式吗?变式题1、(2005湖北卷)设数列}{n a 的前n 项和为S n =2n 2,求数列}{n a 的通项公式; 解:(1):当;2,111===S a n 时,24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当故{a n }的通项公式为4,2}{,241==-=d a a n a n n 公差是即的等差数列. 变式题2、(2005北京卷)数列{a n }的前n 项和为S n ,且a 1=1,113n n a S +=,n =1,2,3,……,求a 2,a 3,a 4的值及数列{a n }的通项公式.解:(I )由a 1=1,113n n a S +=,n=1,2,3,……,得 211111333a S a ===,3212114()339a S a a ==+=,431231116()3327a S a a a ==++=, 由1111()33n n n n n a a S S a +--=-=(n ≥2),得143n n a a +=(n ≥2),又a 2=31,所以a n =214()33n -(n ≥2),∴ 数列{a n }的通项公式为21114()233n n n a n -=⎧⎪=⎨⎪⎩≥变式题3、(2005山东卷)已知数列{}n a 的首项15,a =前n 项和为n S ,且*15()n n S S n n N +=++∈,证明数列{}1n a +是等比数列.解:由已知*15()n n S S n n N +=++∈可得12,24n n n S S n -≥=++两式相减得()1121n n n n S S S S +--=-+即121n n a a +=+从而()1121n n a a ++=+当1n =时21215S S =++所以21126a a a +=+又15a =所以211a =从而()21121a a +=+ 故总有112(1)n n a a ++=+,*n N ∈又115,10a a =+≠从而1121n n a a ++=+即数列{}1n a +是等比数列;2、解方程求通项:(北师大版第19页习题3)在等差数列{}n a 中,(1)已知812148,168,S S a d ==求和;(2)已知658810,5,a S a S ==求和;(3)已知3151740,a a S +=求.变式题1、{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于(A )667 (B )668 (C )669 (D )670 分析:本题考查等差数列的通项公式,运用公式直接求出. 解:1(1)13(1)2005n a a n d n =+-=+-=,解得669n =,选C点评:等差等比数列的通项公式和前n 项和的公式是数列中的基础知识,必须牢固掌握.而这些公式也可视作方程,利用方程思想解决问题.3、待定系数求通项:(人教版第38页习题4)写出下列数列{}n a 的前5项:(1)111,41(1).2n n a a a n -==+>变式题1、(2006年福建卷)已知数列{}n a 满足*111,21().n n a a a n N +==+∈ 求数列{}n a 的通项公式; 解:*121(),n n a a n N +=+∈112(1),n n a a +∴+=+{}1n a ∴+是以112a +=为首项,2为公比的等比数列.12.n n a ∴+=即 *21().n n a n N =-∈4、由前几项猜想通项:(北师大版第10页习题1)根据下面的图形及相应的点数,在空格及括号中分别填上适当的图形和数,写出点数的通项公式.(1) (4)(7)( ) ( )变式题1、(深圳理科一模).如下图,第(1)个多边形是由正三角形“扩展“而来,第(2)个多边形是由正方形“扩展”而来,……,如此类推.设由正n 边形“扩展”而来的多边形的边数为n a ,则6a = ;345991111a a a a +++⋅⋅⋅+= .解:由图可得:22(1)n a n n n n n =+-=+,所以642a =;又211111(1)1n a n n n n n n ===-+++ 所以345991111a a a a +++⋅⋅⋅+=1111111197()()()3445991003100300-+-++-=-=变式题2、(北师大版第11页习题2)观察下列各图,并阅读下面的文字,像这样,10条直线相交,交点的个数最多是( ),其通项公式为 . A .40个 B .45个 C .50个 D .55个解:由题意可得:设{}n a 为n 条直线的交点个数,则21a =,1(1),(3)n n a a n n -=+-≥,因为11n n a a n --=-,由累加法可求得:(1)12(1)2n n n a n -=+++-=,所以10109452a ⨯==,选B.2条直线相交,最多有1个交点3条直线相交,最多有3个交点4条直线相交,最多有6个交点二、有关等差、等比数列性质问题1、(北师大版第35页习题3)一个等比数列前n 项的和为48,前2n 项的和为60,则前3n 项的和为( )A .83B .108C .75D .63变式题1、一个等差数列前n 项的和为48,前2n 项的和为60,则前3n 项的和为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返回目录
第10讲
核 心 知 识 聚 焦
等差数列、等比数列教
体验高考
6. [2013· 广东卷改编] 若 1⑥ 等比数列{an}满足 a2a4= , 2 则 a1a32a5=________.
主干知识 ⇒ 等比数列项的性 质 关键词:等比数列、 项的性质,如⑥.
[答案]
1 4
2 1 a1a5=a2a4=a3 = ,所以

⇒ 等差数列的概 念与通项 关键词:等差数 列、通项公式,如 ①.
[答案] 35 [解析] 根据等差数列的定义可知,a1+b1,a3+b3, a5+b5也是等差数列.
返回目录
第10讲
核 心 知 识 聚 焦
等差数列、等比数列教
体验高考
2.[2012· 辽宁卷改编] 在 等 差 数 列 {an} 中 , 已 知 a4+a8=16② , 则 a2 + a10 = ________.
专题四


第10讲 第11讲
等差数列、等比数列 数列求和及数列的简单应用
核 心 知 识 聚 焦 命 题 考 向 探 究 命 题 立 意 追 溯
返回目录
第10讲 等差数列、等比数列 教
核 心 知 识 聚 焦
第10讲 等差数列、等比数列教 主干知识
1.[2012· 江西卷改编] 设 体验高考 数 列 {an} , {bn} 都 是 等差数列 ,若 a1+b1=7,a3 + b3 = 21 , 则 a5 + b5 = ________.
[解析]
2
12 1 a1a3 a5= = . 2 4
2
返回目录
第10讲
核 心 知 识 聚 焦
等差数列、等比数列教
体验高考
7. [2013· 全国卷改编] 已 知数列 {an}满足 3an + 1 +an = 4 0 , a2 = - 3 , 则 {an} 的 前10项和⑦ 等于________.
主干知识
返回目录
第10讲
核 心 知 识 聚 焦
等差数列、等比数列教
体验高考
5 . [2013· 江西卷改编] 等比数列 x, 3x+3, 6x+6, „ 的第四项等于________.

主干知识 ⇒ 等比数列概念 与通项 关键词:等比数 列、通项公式,如 ④⑤.
[答案] -24
[解析] 由(3x+3)2=x(6x+6)得 x=-1 或 x=-3. 当 x=-1 时,x,3x+3,6x+6 分别为-1,0,0,不 能构成等比数列,所以舍去;当 x=-3 时,x,3x+3, 6x+6 分别为-3,-6,-12,且构成等比数列,则可求出 第四个数为-24.
⇒ 等比数列求和公 式 关键词:等比数列、 和,如⑦.
[答案]
3(1-3
-10
)
返回目录
第10讲
核 心 知 识 聚 焦
等差数列、等比数列教
[解析] 由 3an+1+an=0,得 an≠0(否则 a2=0) an+1 1 1 且 =-3,所以数列{an}是公比为-3的等比数列, an 代入 a2 可得 a1=4, 110 4×1--3 110 故 S10= =3×1- =3(1-3-10). 1 3 1+ 3
主干知识 ⇒ 等差数列求和公 式 关键词:等差数列、 和,如③.
[答案] 80 [解析] 由已知可得a1=-1,d=2, 所以S10=-10+10×9=80.
返回目录
第10讲
核 心 知 识 聚 焦
等差数列、等比数列教
体验高考
4 . [2013· 新课标全国卷 改编] 若数列{an}的前 n 项和 2 1 Sn = an + , 则 {an} 的 3 3 通项公式④ 是 an=________.
主干知识
⇒ 等差数列项的性 质 关键词:等差数列、 项的性质,如②.
[答案] 16 [解析] a2+a10=a4+a8=16.
返回目录
第10讲
核 心 知 识 聚 焦
等差数列、等比数列教
体验高考
3.[2012· 重庆卷改编] 在 等差数列 {an} 中, a2 = 1 , a4 = 5 ,则 {an} 的 前10项和③ S10 =________.
主干知识 ⇒ 等比数列概念 与通项 关键词:等比数 列、通项公式,如 ④⑤.
[答案]
(-2)n
-1
返回目录
第10讲
核 心 知 识 聚 焦
等差数列、等比数列教
2 1 [解析] 因为 Sn=3an+3①, 2 1 所以 Sn-1=3an-1+3(n≥2)②, 2 2 ①-②得 an= an- an-1(n≥2),即 an=-2an-1(n≥2), 3 3 2 1 又因为 S1=a1= a1+ ⇒a1=1, 所以数列{an}是以 1 为首项, 3 3 -2 为公比的等比数列,所以 an=(-2)n-1.
[答案] B
返回目录
第10讲
等差数列、等比数列教
[解析] 因为 an+1=an,所以 an=a1.又因为 bn+1+cn+1=
命 题 考 向 探 究
1 1 (b +c )+an= (bn+cn)+a1, 2 n n 2 1 所以 bn+1+cn+1-2a1=2(bn+cn-2a1), 1 所以 bn+cn-2a1= n(b1+c1-2a1),又因为 b1+c1-2a1=0, 2 所以 bn+cn=2a1,故△AnBnCn 中边 BnCn 的长度不变,另外两 1 边 AnBn,AnCn 的和不变.因为 bn+1-cn+1=- (bn-cn), 2 1n-1 且 b1-c1>0,所以 bn-cn=-2 (b1-c1),当 n→+∞时, bn→cn,也就是 AnCn→AnBn,所以△AnBnCn 中 BnCn 边上的高随 着 n 的增大而增大. 设△AnBnCn 中 BnCn 边上的高为 hn, 则{hn} 1 单调递增,所以 Sn=2a1hn 是增函数.答案为 B.
返回目录
第10讲
等差数列、等比数列教
—— 基础知识必备 ——
返回目录
第10讲
等差数列、等比数列教

考向一
数列的一问题
考向:数列的性质(单调性、最值),数列的通项与前n项 和的关系等.
命 题 考 向 探 究
返回目录
第10讲
等差数列、等比数列教
例 1
[2013· 新课标全国卷Ⅰ] 设△AnBnCn 的三边长分
别为 an,bn,cn,△AnBnCn 的面积为 Sn,n=1 ,2,3,„. cn+an bn+an 若 b1>c1, b1+c1=2a1, an+1=an, bn+1= , cn+1= , 2 2
命 题 考 向 探 究
则(
) A. {Sn}为递减数列 B.{Sn}为递增数列 C.{S2n-1}为递增数列,{S2n}为递减数列 D.{S2n-1}为递减数列,{S2n}为递增数列
相关文档
最新文档