第二章平稳时间序列模型及其特征
第2章平稳时间序列模型

第二章 平稳时间序列模型本章将介绍Box-Jenkins 方法,主要包括一元平稳时间序列的识别、估计、诊断和预测方法。
2.1 平稳性时间序列t y 的均值和协方差 ()t t E y μ=,cov(,)[()()]t s t t s s t s y y E y y μμγ=--=一个随机过程的线性性质可由均值和协方差来描述。
如果这个过程是正态过程, ,,t t s μγ可以完全刻画这个随机过程的分布性质。
如果没有正态性质,但生成过程是线性的,则在它的均值和方差中可获得关于这个过程的更多的重要特征。
下面的问题是如何来估计t μ,对于一些过程我们可以得到大量的实现(反复做观测),1,2,,.1,2,,.jt y t n j k ==那么,t μ的估计是11ˆkt jt j y k μ==∑但对大多数过程来说,得不到更多的实现。
如,不可能把经济停下来,然后重新开始观测。
对一个实现,不可能估计出t μ。
为了克服这个困难,时间序列分析要做如下的假设:均值和方差不随时间而改变。
如果对任何t, t-s, 都有μ==-)()(s t t y E y E222)()(y s t t y E y E σμμ=-=--s s j t j t s t t y y y y γ==----),cov(),cov(这里 2,y μσ都是常量,与时间无关,s γ是依赖于s 的常量。
这样的随机过程称为协方差平稳。
可以简单地说,如果一个时间序列的均值和协方差不受时间变化影响,则称这个时间序列是协方差平稳。
在一些文献中,协方差平稳的过程也称为弱平稳,二阶矩平稳或宽平稳过程。
(注意一个强平稳过程不一定有有限的均值和方差)。
一个更进一步的假设是遍历性(ergodic )。
这是一个较难理解的一个概念。
遍历性是指,按时间平均11nn t t y y n ==∑是总体均值μ的无偏、一致估计。
即(),()0,()n n E y Var y n μ=↓→∞。
平稳时间序列模型

(1)一个平稳的时间序列总可以找到生成它
的平稳的随机过程或模型; (2)一个非平稳的随机时间序列通常可以通 过差分的方法将它变换为平稳的,对差分后平稳 的时间序列也可找出对应的平稳随机过程或模型。
(六) 中国GDPP的 ARMA(p,q)模型
ARMA(1,1) ARMA(2,2)
ARIMA(8,2,7)非对称
p阶自回归模型,简记为AR(p):
xt 0 1 xt 1 2 xt 2 p xt p t 2 E ( ) 0 , Var ( ) t t , E ( t s ) 0, s t
0 且 1 1 2 p , Var( x ) t
(二)向量自回归模型定义 VAR(Vector AutoRegression,向量自回归)
•1980年Sims提出向量自回归模型(vector autoregressive model)。 •VAR模型是自回归模型的联立形式,所以称向量自回归 模型。
q 阶移动平均模型,
xt t 1 t 1 2 t 2 q t q q 0 2 E ( t ) 0,Var ( t ) , E ( t s ) 0, s t
特别当
0
时,称为中心化
MA(q) 模型
二、自回归模型
(一) AR模型的定义 1阶自回归模型,记为AR(1): xt=0+1xt-1+t (1) E(t)=0,Var(t)=2, E(ts)=0, st 若序列是弱平稳的,则 E(xt)=, Var(xt)=0, Cov(xt, xt-k)=k 由(1)可得 E(xt)=0+1E(xt-1) 0 因此
第2章 平稳时间序列分析

zt
(c1
c2t
cd t d1)1t
cd
t
1 d
1
cptp
复根场合
zt
rt (c1eit
c2eit
) c3t3
c
t
pp
非齐次线性差分方程的解
非齐次线性差分方程的特解
使得非齐次线性差分方程成立的任意一个解zt
zt a1 zt1 a2 zt2 a p zt p h(t)
推导出
0
1 1 p
Green函数定义
设零均值平稳序列 {xt , t 0, 1, 2,...} 能够表示为
xt Gjt j t : WN (0, 2 ) j0
则称上式为平稳序列 {xt } 的传递形式,式中的加权系数 G j
称为Green函数,其中 G0 1 。
Green函数的含义
几个例题
0.8 0.6 0.4 0.2 0.0
2 4 6 8 10 12 14 16 18 20
2.2 2.0 1.8 1.6 1.4 1.2 1.0
2 4 6 8 10 12 14 16 18 20
几个例题
(5) yt 1.6yt1 0.9yt2 (6) yt 1.6yt1 1.1yt2
有关。
2.时间序列的协方差函数与自相关函数
协方差函数:
(t, s) E( Xt t ) X s s
(x t ) y s dFt,s (x, y) 其中,Ft,s (x, y) 为 ( X t , X s )的二维联合分布。
自相关函数:
(t, s) (t, s) / (t,t) (s, s)
特征根判别
AR(p)模型平稳的充要条件是它的p个特征根都在单 位圆内
平稳时间序列模型及其特征

第一章平稳时间序列模型及其特征第一节模型类型及其表示一、自回归模型(AR)由于经济系统惯性的作用,经济时间序列往往存在着前后依存关系。
最简单的一种前后依存关系就是变量当前的取值主要与其前一时期的取值状况有关。
用数学模型来描述这种关系就是如下的一阶自回归模型:X t=φX t-1+εt(2.1.1)常记作AR(1)。
其中{X t}为零均值(即已中心化处理)平稳序列,φ为X t对X t-1的依赖程度,εt为随机扰动项序列(外部冲击)。
如果X t 与过去时期直到X t-p的取值相关,则需要使用包含X t-X t-p在内的p阶自回归模型来加以刻画。
P阶自回归模型的一1 ,……般形式为:X t=φ1 X t-1+φ2 X t-2+…+φp X t-p+εt(2.1.2)为了简便运算和行文方便,我们引入滞后算子来简记模型。
设B 为滞后算子,即BX t=X t-1, 则B(B k-1X t)=B k X t=X t-k B(C)=C(C为常数)。
利用这些记号,(2.1.2)式可化为:X t=φ1BX t+φ2B2X t+φ3B3X t+……+φp B p X t+εt从而有:(1-φ1B-φ2B2-……-φp B p)X t=εt记算子多项式φ(B)=(1-φ1B-φ2B2-……-φp B P),则模型可以表示成φ(B)X t=εt (2.1.3) 例如,二阶自回归模型X t=0.7X t-1+0.3X t-2+0.3X t-3+εt可写成(1-0.7B-0.3B2)X t=εt二、滑动平均模型(MA)有时,序列X t的记忆是关于过去外部冲击值的记忆,在这种情况下,X t可以表示成过去冲击值和现在冲击值的线性组合,即X t=εt-θ1εt-1-θ2εt-2-……-θqεt-q (2.1.4) 此模型常称为序列X t的滑动平均模型,记为MA(q),其中q为滑动平均的阶数,θ1,θ2…θq为参滑动平均的权数。
相应的序列X t称为滑动平均序列。
第二章平稳时间序列模型——ACF和PACF和样本ACFPACF

第⼆章平稳时间序列模型——ACF和PACF和样本ACFPACF⾃相关函数/⾃相关曲线ACFAR(1)模型的ACF:模型为:当其满⾜平稳的必要条件|a1|<1时(所以说,⾃相关系数是在平稳条件下求得的):y(t)和y(t-s)的⽅差是有限常数,y(t)和y(t-s)的协⽅差伽马s除以伽马0,可求得ACF如下:由于{rhoi}其在平稳条件|a1|<1下求得,所以平稳0<a1<1则⾃相关系数是直接收敛到0-1<a1<0则⾃相关系数是震荡收敛到0对于AR(2)模型的ACF:(略去截距项)两边同时乘以y(t),y(t-1),y(t-2)......得到yule-Walker⽅程,然后结合平稳序列的⼀些性质(yule-Walker⽅程法确确实实⽤了协⽅差只与时间间隔有关的性质),得到⾃相关系数如下:rho0恒为1(⼆阶差分⽅程)令⼈惊喜的是,这个⼆阶差分⽅程的特征⽅程和AR(2)模型的是⼀致的。
所以,我们的rho本就是在序列平稳的条件下求得,所以{rhoi}序列也平稳。
当然,其收敛形式取决于a1和a2MA(1)模型的ACF:模型为:由于y(t)的表达式是由⽩噪声序列中的项组成,所以不需要什么平稳条件,就可以求得rho的形式如下:对于MA(p)模型,rho(p+1)开始,之后都为0.所以说,到了p阶之后突然阶段,变为0了。
ARMA(1,1)模型的ACF:模型为:还是使⽤yule-Walker⽅程法(⽤到了序列平稳则协⽅差只与时间间隔有关的性质)得到:所以有:ARMA(p,q)模型的ACF:ARMA(p,q)的⾃相关系数满⾜:(式1)前p个rho值(rho1,rho2...rhop)可以看做yule-Walker⽅程的初始条件,其他滞后值取决于特征⽅程。
(其实是这样的,rho1,rho2...rhop实际上能写出⼀个表达式,⽽rho(p+1)开始,就满⾜⼀个差分⽅程,⽽这个⽅程对应的特征根(即式1)⽅程和AR(p)对应的⼀模⼀样),所以,他会从之后q期开始衰减。
平稳时间序列模型概述

平稳时间序列模型概述平稳时间序列模型是一种常见的时间序列分析方法,用于对事物在一定时间范围内的变化进行建模和预测。
平稳时间序列模型假设时间序列的均值和方差在任意时刻都保持不变,即不受时间的影响。
平稳时间序列模型有许多不同的形式,其中最常见的是自回归移动平均模型(ARMA)和季节性自回归移动平均模型(SARMA)。
ARMA模型由自回归(AR)部分和移动平均(MA)部分组成,描述了时间序列的自相关和滞后误差,可以用来预测未来的观测值。
SARMA模型在ARMA模型的基础上加入了季节性因素,适用于存在明显季节性变化的时间序列。
ARMA模型的一般形式为:\[ X_t = c + \phi_1X_{t-1} + \dots + \phi_pX_{t-p} + \epsilon_t -\theta_1\epsilon_{t-1} - \dots - \theta_q\epsilon_{t-q} \]其中,\( X_t \)是时间序列在时刻\( t \)的观测值,\( c \)是常数,\( \phi_1, \dots, \phi_p \)是自回归系数,\( X_{t-1}, \dots, X_{t-p} \)是过去的观测值,\( \epsilon_t \)是误差项,\( \theta_1, \dots,\theta_q \)是移动平均系数,\( \epsilon_{t-1}, \dots, \epsilon_{t-q} \)是过去的误差项。
SARMA模型的一般形式为:\[ X_t = c + \phi_1X_{t-1} + \dots + \phi_pX_{t-p} -\theta_1\epsilon_{t-1} - \dots - \theta_q\epsilon_{t-q} + \gammaX_{t-m} + \phi_1\gamma X_{t-m-1} + \dots + \phi_p\gammaX_{t-m-p} + \epsilon_t \]其中,\( X_t \)是时间序列在时刻\( t \)的观测值,\( c \)是常数,\( \phi_1, \dots, \phi_p \)是自回归系数,\( X_{t-1}, \dots, X_{t-p} \)是过去的观测值,\( \epsilon_t \)是误差项,\( \theta_1, \dots,\theta_q \)是移动平均系数,\( \epsilon_{t-1}, \dots, \epsilon_{t-q} \)是过去的误差项,\( \gamma \)是季节性系数,\( X_{t-m},\dots, X_{t-m-p} \)是过去的季节性观测值。
平稳时间序列模型及其特征 (1)

第一章平稳时间序列模型及其特征第一节模型类型及其表示一、自回归模型(AR)由于经济系统惯性的作用,经济时间序列往往存在着前后依存关系。
最简单的一种前后依存关系就是变量当前的取值主要与其前一时期的取值状况有关。
用数学模型来描述这种关系就是如下的一阶自回归模型:X t=φX t-1+εt(常记作AR(1)。
其中{X t}为零均值(即已中心化处理)平稳序列,φ为X t对X t-1的依赖程度,εt为随机扰动项序列(外部冲击)。
如果X t 与过去时期直到X t-p的取值相关,则需要使用包含X t-X t-p在内的p阶自回归模型来加以刻画。
P阶自回归模型的一1 ,……般形式为:X t=φ1 X t-1+φ2 X t-2+…+φp X t-p+εt(为了简便运算和行文方便,我们引入滞后算子来简记模型。
设B为滞后算子,即BX t=X t-1, 则B(B k-1X t)=B k X t=X t-k B(C)=C(C为常数)。
利用这些记号,(X t=φ1BX t+φ2B2X t+φ3B3X t+……+φp B p X t+εt从而有:(1-φ1B-φ2B2-……-φp B p)X t=εt记算子多项式φ(B)=(1-φ1B-φ2B2-……-φp B P),则模型可以表示成φ(B)X t=εt ( 例如,二阶自回归模型X t=0.7X t-1+0.3X t-2+0.3X t-3+εt可写成(1-0.7B-0.3B2)X t=εt二、滑动平均模型(MA)有时,序列X t的记忆是关于过去外部冲击值的记忆,在这种情况下,X t可以表示成过去冲击值和现在冲击值的线性组合,即X t=εt-θ1εt-1-θ2εt-2-……-θqεt-q ( 此模型常称为序列X t的滑动平均模型,记为MA(q),其中q为滑动平均的阶数,θ1,θ2…θq为参滑动平均的权数。
相应的序列X t称为滑动平均序列。
使用滞后算子记号,(X t=(1-θ1B-θ2B2-……- θq B q)q t=θ(B)εt ( 三、自回归滑动平均模型如果序列{X t}的当前值不仅与自身的过去值有关,而且还与其以前进入系统的外部冲击存在一定依存关系,则在用模型刻画这种动态特征时,模型中既包括自身的滞后项,也包括过去的外部冲击,这种模型叫做自回归滑动平均模型,其一般结构为:X t=φ1X t-1+φ2X t-2+……+φp X t-p+εt-θ1εt-1-θ2εt-2-……-θqεt-q( 简记为ARMA(p, q)。
平稳时间序列模型的性质概述

平稳时间序列模型的性质概述平稳时间序列模型是一种描述时间序列数据的统计模型,它的核心假设是数据在时间上的统计特性不发生变化。
具体而言,平稳时间序列模型具有以下性质:1. 均值稳定性:平稳时间序列的均值不随时间变化而变化,即序列的均值是恒定的。
这意味着序列的长期趋势是稳定的,不存在明显的上升或下降趋势。
2. 方差稳定性:平稳时间序列的方差不随时间变化而变化,即序列的方差是恒定的。
这意味着序列的波动性是稳定的,不存在明显的波动增长或缩减。
3. 自协方差稳定性:平稳时间序列的自协方差(序列任意两个时间点之间的协方差)仅依赖于时间点之间的间隔,而不依赖于特定的时间点。
这意味着序列的相关性结构是稳定的,不存在明显的季节性或周期性变化。
4. 纯随机性:平稳时间序列被认为是纯随机的,没有系统性的模式或规律可寻。
这意味着序列的未来值无法通过过去的观察值来准确预测。
根据这些性质,我们可以使用平稳时间序列模型来进行时间序列的建模和预测。
常见的平稳时间序列模型包括自回归移动平均模型(ARMA模型)、自回归积分移动平均模型(ARIMA 模型)以及季节性模型等。
总而言之,平稳时间序列模型具有均值稳定性、方差稳定性、自协方差稳定性和纯随机性等性质,这使得它们成为分析和预测时间序列数据的常用工具。
通过运用这些模型,我们可以揭示序列的短期和长期特征,提供数据的统计属性并进行未来值的预测。
平稳时间序列模型是时间序列分析中非常重要的方法之一,它能够帮助我们理解和预测一系列观测值之间的关系。
在实际应用中,平稳时间序列模型常被用于金融市场分析、经济学研究、气象预测等领域。
首先,均值稳定性是平稳时间序列模型的一个重要性质。
这意味着序列的长期平均水平是恒定的,不随时间变化而变化。
例如,在金融市场中,股票价格的均值稳定性意味着股票价格的长期趋势是稳定的,不存在明显的上升或下降趋势。
通过建立平稳时间序列模型,我们可以更好地理解价格的平均水平,并预测未来的价格走势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17
材
四、自回归移动平均模型
yt 1 yt1 2 yt2 ... p yt p t 来自 t1 2 t2 ... q tq
Byt B t
B 11B ...pB p ,B 11B ...qBq
应用时间序列分析●”十一五“国家级规划教
18
材
应用时间序列分析●”十一五“国家级规划教
应用时间序列分析●”十一五“国家级规划教
7
材
❖ 特征方程
p 1p1 ... p 0
❖ 特征方程的根称为特征根,记作 1, 2 , , p
❖ 齐次线性差分方程的通解
▪ 不相等实数根场合
zt c11t c2t2 cptp
▪ 有相等实根场合
zt
(c1
c2t
cd
t
d1 )1t
cd
t
1 d
40
50
60
70
80
90
100
yt 0.2 yt1 t
应用时间序列分析●”十一五“国家级规划教
11
材
应用时间序列分析●”十一五“国家级规划教
12
材
❖ AR(1)模型的特例——随机游动
yt yt1 t
t
~ WN
0,
2
4
2
0
-2
-4
-6
-8
-10
-12
0
10
20
30
40
50
60
70
应用时间序列分析●”十一五“国家级规划教
16
材
q阶滑动平均模型MA(q)
yt t 1 t1 2 t2 ... q tq ❖ 有限个白噪声的和总是平稳的,因此通常MA(q)
模型是平稳的。 ❖ 如果对该模型作向前一步预测,则有
q
yˆt(11) ˆi ti i 1
应用时间序列分析●”十一五“国家级规划教
19
材
❖ 当q=0时,ARMA(p,0)模型就是AR(p)模 型,当p=0时,ARMA(0,q)模型就是MA(q) 模型,因此自回归模型和移动平均模型都是 ARMA(p,q)模型的特例 。
应用时间序列分析●”十一五“国家级规划教
20
材
第二节 格林函数和平稳性
❖ 一、ARMA(p,q)的格林函数 ❖ (一)ARMA(p,0)系统的格林函数
❖ ARMA(p,q)模型:
yt 1 yt1 2 yt2 ... p yt p t 1 t1 2 t2 ... q tq
应用时间序列分析●”十一五“国家级规划教
10
材
二、自回归模型
❖ 一阶自回归模型AR(1)
2
1.5
1
0.5
0
-0.5
-1
-1.5
-2
-2.5
0
10
20
30
应用时间序列分析●”十一五“国家级规划教
2
材
第一节 模型类型及其表示
一、预备知识
应用时间序列分析●”十一五“国家级规划教
3
材
❖ 一阶差分(相距一期的两个序列值之间的减法运算称为1阶差分运算)
❖ 阶差p分
xt xt xt1
❖ 步差k分
p xt
x p1 t
p1 xt1
k xt xtk
对1阶差分后序列再进行一次1阶差分运算称为2阶差分▽2xt=▽xt-▽xt-1 依此类推,对p-1阶差分后序列再进行一次1阶差分运算称为p阶差分
14
材
❖ 一般自回归模型
yt 1 yt1 2 yt2 ... p yt p t
模型的特点有:
1)t
~ WN
0,
2
, t 与 yt j ( j 1,2,3 ) 无关。
2) p 0 。
3)系统的一步超前预测 yˆt(11) ˆ1 yt1 ˆ2 yt2 ... ˆ p ytp 。
80
90
100
应用时间序列分析●”十一五“国家级规划教
13
材
随机游动模型有以下特征:
❖ 1)模型有非常强的一期记忆性。
❖ 2)系统的一步超前预测
yˆ t(11)
y
。
t 1
❖ 3)与AR(1)模型类似,随机游动模型可以写
成
yt
ti
,可以看出噪声对yt的影响并不随着
时间的i推0 移而减弱。
应用时间序列分析●”十一五“国家级规划教
应用时间序列分析●”十一五“国家级规划教
4
材
2.滞后算子
❖ 滞后算子类似于一个时间指针,当前序列值乘以一 个滞后算子,就相当于把当前序列值的时间向过去 拨了一个时刻
❖ 记B为滞后算子,有
xtp B p xt ,p 1
应用时间序列分析●”十一五“国家级规划教
5
材
❖
B0 1
❖
B(c xt ) c B(xt ) c xt1, c为任意常数
应用时间序列分析●”十一五“国家级规划教
1
材
第二章 平稳时间序列模型及其特征
❖ 在本章,我们介绍平稳时间序列的三种主要类型 的模型,AR模型、MA模型、ARMA模型,这三 种模型都是线性模型,它们能用有限的参数刻画 时间序列的动态性。尽管线性关系的假定在解决 实际问题时是一个比较苛刻的条件,但无疑它是 理论研究的基础。这三种模型是最基本的时间序 列模型之一,对这三种模型性质的研究有助于研 究更为复杂的时间序列模型。
1
cptp
▪ 复根场合
zt rt (c1eit c2eit ) c3t3 cptp
应用时间序列分析●”十一五“国家级规划教
8
材
应用时间序列分析●”十一五“国家级规划教
9
材
❖AR(p)模型 :
yt 1 yt1 2 yt2 ... p yt p t
❖ MA(q)模型:
yt t 1 t1 2 t2 ... q tq
❖ 若一个系统被表示为yt= G j t j ,则系数
函数称为格林函数或记忆函数j。0
应用时间序列分析●”十一五“国家级规划教
21
材
AR(P)过程格AR林(P函) 数为
j
G j i*G ji . i 1
G0 1
1
* i
i
0
i0 1i p
i p
❖
B(xt yt ) xt1 yt1
❖
❖
B n xt xtn
n
(1 B)n
(1)
n
C
i n
B
i
,其中
C
i n
n! i!(n i)!
i0
应用时间序列分析●”十一五“国家级规划教
6
材
❖ 线性差分方程
wt 1wt1 ... p wt p at
❖ 齐次线性差分方程
wt 1wt1 ... p wt p 0
4) yt 由两部分构成,一部分依赖于 yt1,..., ytp ,另一部
分则依赖于与 yt1 不相关的随机干扰部分 t 。
应用时间序列分析●”十一五“国家级规划教
15
材
三、 移动平均模型
❖ 一阶滑动平均模型MA(1)
yt t 1 t1
❖ 用MA(1)模型作预测,那么得到的预测值仅仅 取决于上期系统的随机扰动项。