平稳时间序列的模型
第四章平稳时间序列模型的建立

xt 1xt1 p xtp 0 at 1at1 2at2 qatq
此时,所要估计的未知参数有p+q+1个.
第二节 模型识别与定阶
一、模型识别 二、模型定阶
一、模型识别
• 基本原则
ˆk
拖尾 q阶截尾
拖尾
ˆkk
P阶截尾 拖尾
拖尾
选择模型 AR(P) MA(q)
ARMA(p,q)
• 序列的非平稳包括均值非平稳和方差非 平稳.
• 均值非平稳序列平稳化的方法:差分变 换.
• 方差非平稳序列平稳化的方法:对数变 换、平方根变换等.
• 序列平稳性的检验方法和手段主要有: 序列趋势图、自相关图、单位根检验、 非参数检验方法等等.
一、平稳性检验—图检验方法
(一)时序图检验
–根据平稳时间序列均值、方差为常数的性 质,平稳序列的时序图应该显示出该序列 始终在一个常数值附近随机波动,而且波 动的范围有界、无明显趋势及周期特征.
–检验1949年——1998年北京市每年最高气温 序列的平稳性
例1 时序图
例1 自相关图
例2 时序图
例2 自相关图
例3 时序图
例3 自相关图
二、纯随机性检验
(一)纯随机序列的定义
• 纯随机序列也称为白噪声序列,它 满足如下两条性质
(1)EX t , t T
(2)
(t,
s)
2,t
s
,
例5、对1950年—1998年北京市城乡居民定期储
蓄所占比例序列的平稳性与纯随机性进行检验
自相关图
白噪声检验结果
延迟阶数 6 12
LB统计量检验
LB检验统计 量的值
75.46
平稳时间序列模型

(1)一个平稳的时间序列总可以找到生成它
的平稳的随机过程或模型; (2)一个非平稳的随机时间序列通常可以通 过差分的方法将它变换为平稳的,对差分后平稳 的时间序列也可找出对应的平稳随机过程或模型。
(六) 中国GDPP的 ARMA(p,q)模型
ARMA(1,1) ARMA(2,2)
ARIMA(8,2,7)非对称
p阶自回归模型,简记为AR(p):
xt 0 1 xt 1 2 xt 2 p xt p t 2 E ( ) 0 , Var ( ) t t , E ( t s ) 0, s t
0 且 1 1 2 p , Var( x ) t
(二)向量自回归模型定义 VAR(Vector AutoRegression,向量自回归)
•1980年Sims提出向量自回归模型(vector autoregressive model)。 •VAR模型是自回归模型的联立形式,所以称向量自回归 模型。
q 阶移动平均模型,
xt t 1 t 1 2 t 2 q t q q 0 2 E ( t ) 0,Var ( t ) , E ( t s ) 0, s t
特别当
0
时,称为中心化
MA(q) 模型
二、自回归模型
(一) AR模型的定义 1阶自回归模型,记为AR(1): xt=0+1xt-1+t (1) E(t)=0,Var(t)=2, E(ts)=0, st 若序列是弱平稳的,则 E(xt)=, Var(xt)=0, Cov(xt, xt-k)=k 由(1)可得 E(xt)=0+1E(xt-1) 0 因此
第三章线性平稳时间序列模型

可见,AR(1)模型中,xt在t时刻值依赖于两部分,一部分依 模型中, 时刻值依赖于两部分, 可见 模型中 时刻值依赖于两部分 赖于它的前一期的值x 另一部分是依赖于与x 赖于它的前一期的值 t-1;另一部分是依赖于与 t-1不相关 的部分ε 的部分 t 可将AR(1)模型写成另一种形式: 模型写成另一种形式: 可将 模型写成另一种形式
xt = ϕ1xt −1 + ϕ2 xt −2 +L+ ϕ p xt − p + εt
其中: (1) p ≠ 0 (2) εt是白噪声序列 (3) Exsε t = 0, ∀s < t
E (ε t ) = 0,Var (ε t ) = σ ε2 , E (ε t ε s ) = 0, s ≠ t
那么我们就说xt遵循一个p阶自回归或AR(p)随机过程。
例如: ARIMA(2,1,2)表示先对时间序列进行一阶差分,使之 转化为平稳序列,然后对平稳序列建立ARMA(2,2)模型。 ARIMA(p,0,q)就相当于ARMA(p,q)。 ARIMA(p,0,0)就相当于AR(p)。 ARIMA(0,0,q)就相当于MA(q)。 对于一个ARIMA(p,d,q)也可以用推移算子B表示如下 ϕ (B )(1 − B) d xt = θ ( B)ε t 其中: ϕ (B ) = 1 − ϕ 1 B − ϕ 2 B 2 − L − ϕ p B p
(二).二阶自回归模型,AR(2)
1.设{xt}为零均值的随机序列,如果关于xt的合适模型为: 其中:
xt = ϕ1xt −1 + ϕ2 xt −2 + εt
平稳时间序列模型的建立概述

平稳时间序列模型的建立概述平稳时间序列模型是一种常用的时间序列分析方法,用于描述和预测时间序列数据的变化模式。
该模型假设时间序列数据的统计特性在时间上保持不变,即均值和方差不随时间发生明显的变化。
以下是平稳时间序列模型的建立概述。
第一步是数据的预处理。
在建立平稳时间序列模型之前,需要对原始时间序列数据进行一些预处理,包括去除趋势、季节性和周期性等。
去趋势可以采用差分方法,即对时间序列数据进行一阶差分,得到的差分序列不再具有明显的趋势性。
去除季节性和周期性可以使用季节性差分或移动平均方法。
第二步是对预处理后的序列进行统计特性分析。
这包括计算序列的均值、方差、自相关函数和偏自相关函数等统计指标。
通过分析这些指标,可以了解序列的平稳性、周期性和相关性等统计特性。
第三步是根据统计分析结果选择适合的时间序列模型。
常用的平稳时间序列模型包括自回归移动平均模型(ARMA)、自回归模型(AR)、移动平均模型(MA)和季节性自回归移动平均模型(SARIMA)等。
选择模型的原则是使模型具有较好的拟合效果并具有良好的预测性能。
第四步是模型参数的估计与诊断。
对于选定的时间序列模型,需要估计模型的参数。
这可以通过最大似然估计或最小二乘估计等方法进行。
估计得到模型参数之后,需要对模型进行诊断检验,判断模型是否合理。
常用的诊断方法包括残差平稳性检验、残差序列的白噪声检验和残差的自相关函数和偏自相关函数检验等。
第五步是模型预测与评估。
通过已建立的平稳时间序列模型,可以对未来的序列数据进行预测。
预测的准确性可以通过计算预测误差和拟合优度等指标进行评估。
若模型的预测效果较好,则可应用该模型进行实际预测。
总之,平稳时间序列模型的建立过程包括数据的预处理、统计特性分析、模型选择、参数估计与诊断以及模型预测与评估等步骤。
通过这些步骤的实施,可以建立一个合理且具有较好预测效果的平稳时间序列模型。
平稳时间序列模型的建立概述(续)第一步是数据的预处理。
第二章平稳时间序列模型——ACF和PACF和样本ACFPACF

第⼆章平稳时间序列模型——ACF和PACF和样本ACFPACF⾃相关函数/⾃相关曲线ACFAR(1)模型的ACF:模型为:当其满⾜平稳的必要条件|a1|<1时(所以说,⾃相关系数是在平稳条件下求得的):y(t)和y(t-s)的⽅差是有限常数,y(t)和y(t-s)的协⽅差伽马s除以伽马0,可求得ACF如下:由于{rhoi}其在平稳条件|a1|<1下求得,所以平稳0<a1<1则⾃相关系数是直接收敛到0-1<a1<0则⾃相关系数是震荡收敛到0对于AR(2)模型的ACF:(略去截距项)两边同时乘以y(t),y(t-1),y(t-2)......得到yule-Walker⽅程,然后结合平稳序列的⼀些性质(yule-Walker⽅程法确确实实⽤了协⽅差只与时间间隔有关的性质),得到⾃相关系数如下:rho0恒为1(⼆阶差分⽅程)令⼈惊喜的是,这个⼆阶差分⽅程的特征⽅程和AR(2)模型的是⼀致的。
所以,我们的rho本就是在序列平稳的条件下求得,所以{rhoi}序列也平稳。
当然,其收敛形式取决于a1和a2MA(1)模型的ACF:模型为:由于y(t)的表达式是由⽩噪声序列中的项组成,所以不需要什么平稳条件,就可以求得rho的形式如下:对于MA(p)模型,rho(p+1)开始,之后都为0.所以说,到了p阶之后突然阶段,变为0了。
ARMA(1,1)模型的ACF:模型为:还是使⽤yule-Walker⽅程法(⽤到了序列平稳则协⽅差只与时间间隔有关的性质)得到:所以有:ARMA(p,q)模型的ACF:ARMA(p,q)的⾃相关系数满⾜:(式1)前p个rho值(rho1,rho2...rhop)可以看做yule-Walker⽅程的初始条件,其他滞后值取决于特征⽅程。
(其实是这样的,rho1,rho2...rhop实际上能写出⼀个表达式,⽽rho(p+1)开始,就满⾜⼀个差分⽅程,⽽这个⽅程对应的特征根(即式1)⽅程和AR(p)对应的⼀模⼀样),所以,他会从之后q期开始衰减。
时间序列分析模型

时间序列分析模型时间序列分析是一种广泛应用于统计学和经济学领域的建模方法,用于研究随时间变化的数据。
它的目的是揭示和预测数据中隐含的模式和关系,以便更好地理解和解释现象,并做出相应的决策。
时间序列分析模型可以分为统计模型和机器学习模型两类。
一、统计模型1.平稳时间序列模型:平稳时间序列是指在统计学意义上均值和方差都是稳定的序列。
常用的平稳时间序列模型包括:自回归移动平均模型(ARMA)、自回归整合移动平均模型(ARIMA)和季节性自回归整合移动平均模型(SARIMA)等。
-自回归移动平均模型(ARMA)是根据时间序列数据的自相关和移动平均性质建立的模型。
它将序列的当前值作为过去值的线性组合来预测未来值。
ARMA(p,q)模型中,p表示自回归项的阶数,q表示移动平均项的阶数。
-自回归整合移动平均模型(ARIMA)在ARMA模型基础上引入差分操作,用于处理非平稳时间序列。
ARIMA(p,d,q)模型中,d表示差分的次数。
-季节性自回归整合移动平均模型(SARIMA)是ARIMA模型的扩展,在存在季节性变化的时间序列数据中应用。
SARIMA(p,d,q)(P,D,Q)s模型中,s表示季节周期。
2.非平稳时间序列模型:非平稳时间序列是指均值和/或方差随时间变化的序列。
常用的非平稳时间序列模型包括:趋势模型、季节性调整模型、自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)等。
- 趋势模型用于描述数据中的趋势变化,例如线性趋势模型(y = ax + b)和指数趋势模型(y = ab^x)等。
-季节性调整模型用于调整季节性变化对数据的影响,常见的方法有季节指数调整和X-12-ARIMA方法。
-自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)在非平稳时间序列中引入差分操作进行模型建立。
二、机器学习模型机器学习模型在时间序列分析中发挥了重要作用,主要应用于非线性和高维数据的建模和预测。
平稳时间序列模型概述

平稳时间序列模型概述平稳时间序列模型是一种常见的时间序列分析方法,用于对事物在一定时间范围内的变化进行建模和预测。
平稳时间序列模型假设时间序列的均值和方差在任意时刻都保持不变,即不受时间的影响。
平稳时间序列模型有许多不同的形式,其中最常见的是自回归移动平均模型(ARMA)和季节性自回归移动平均模型(SARMA)。
ARMA模型由自回归(AR)部分和移动平均(MA)部分组成,描述了时间序列的自相关和滞后误差,可以用来预测未来的观测值。
SARMA模型在ARMA模型的基础上加入了季节性因素,适用于存在明显季节性变化的时间序列。
ARMA模型的一般形式为:\[ X_t = c + \phi_1X_{t-1} + \dots + \phi_pX_{t-p} + \epsilon_t -\theta_1\epsilon_{t-1} - \dots - \theta_q\epsilon_{t-q} \]其中,\( X_t \)是时间序列在时刻\( t \)的观测值,\( c \)是常数,\( \phi_1, \dots, \phi_p \)是自回归系数,\( X_{t-1}, \dots, X_{t-p} \)是过去的观测值,\( \epsilon_t \)是误差项,\( \theta_1, \dots,\theta_q \)是移动平均系数,\( \epsilon_{t-1}, \dots, \epsilon_{t-q} \)是过去的误差项。
SARMA模型的一般形式为:\[ X_t = c + \phi_1X_{t-1} + \dots + \phi_pX_{t-p} -\theta_1\epsilon_{t-1} - \dots - \theta_q\epsilon_{t-q} + \gammaX_{t-m} + \phi_1\gamma X_{t-m-1} + \dots + \phi_p\gammaX_{t-m-p} + \epsilon_t \]其中,\( X_t \)是时间序列在时刻\( t \)的观测值,\( c \)是常数,\( \phi_1, \dots, \phi_p \)是自回归系数,\( X_{t-1}, \dots, X_{t-p} \)是过去的观测值,\( \epsilon_t \)是误差项,\( \theta_1, \dots,\theta_q \)是移动平均系数,\( \epsilon_{t-1}, \dots, \epsilon_{t-q} \)是过去的误差项,\( \gamma \)是季节性系数,\( X_{t-m},\dots, X_{t-m-p} \)是过去的季节性观测值。
时间序列的7种预测模型适用条件

时间序列的7种预测模型适用条件时间序列分析是一种重要的预测方法,它可以用来分析时间序列数据的趋势、季节性、周期性等特征,并预测未来的值。
时间序列的预测模型有许多种,不同的模型适用于不同的情况。
接下来,本文将介绍时间序列的7种预测模型适用条件。
1. 移动平均模型移动平均模型是最简单的时间序列预测模型,它适用于平稳的时间序列。
平稳时间序列是指在时间上的均值和方差都不会发生明显的变化。
在使用移动平均模型时,需要选取合适的平滑因子,通常选择3、5、7等奇数个周期进行平滑。
2. 简单指数平滑模型简单指数平滑模型是一种基于加权移动平均的方法,通过对历史数据进行指数加权平均,预测未来数据的变化趋势。
该模型适用于趋势比较平稳的时间序列,且最好不要出现季节性变化。
3. Holt-Winters 模型Holt-Winters 模型既考虑了时间序列的趋势,又考虑了季节性因素。
该模型适用于具有季节性变化的时间序列,可以通过调整相应的平滑系数和季节系数,获得更准确的预测结果。
4. 季节性自回归移动平均模型 SARIMASARIMA 模型是一种拓展的自回归移动平均模型,可以用于处理具有明显季节变化的时间序列。
该模型适用于具有季节性变化和趋势变化的时间序列,可以通过选择合适的 p、d 和 q 参数以及 P、D 和 Q 参数,拟合不同的模型结构进行预测。
5. 自回归积分滑动平均模型 ARIMAARIMA 模型是一种用于处理时间序列数据的常用模型,可以进行平稳性检验、自相关性和部分自相关性分析等。
该模型适用于没有季节性变化、存在趋势变化的时间序列。
6. 神经网络模型神经网络模型是另一种常用的时间序列预测方法,它可以利用网络的非线性映射能力对时间序列进行建模和预测。
该模型适用于复杂的时间序列,但需要大量的数据进行训练,同时参数设置比较复杂。
7. 非参数回归模型非参数回归模型是一种不依赖于某种特定的函数形式的回归方法。
它适用于数据量较小或者数据分布较为杂乱,无法使用传统的回归模型进行拟合的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录摘要 (1)第一章绪论 (2)1.1 时间序列模型的发展及其作用 (2)1.2 什么是时间序列模型 (2)1.3 本文研究的主要方法和手段 (2)1.4 本文主要研究思路及内容安排 (2)第二章 ARMA模型 (4)2.1 ARMA模型的基本原理 (4)2.2 样本自协方差函数、自相关函数和偏相关函数 (4)2.3 ARMA模型识别方法 (5)2.4 模型参数估计 (6)第三章实例分析 (7)3.1 题目 (7)3.2 问题分析 (7)3.3 问题求解 (8)3.3.1数据的观测 (8)3.3.2数据处理 (8)3.3.3求解自相关和偏相关函数 (8)3.4 模型的识别及求解 (9)3.5 结论 (11)参考文献 (12)附录 (12)评阅书 (15)《随机过程》课程设计任务书摘要ARMA模型是研究时间序列的重要方法,由自回归模型(简称AR模型)与滑动平均模型(简称MA模型)为基础“混合”构成。
ARMA模型广泛应用在经济、工程等各个领域得益于其在具体预测方面的优势。
在许多方面用该模型所作出的预测比其他传统经济计量方法更加精确。
平稳时间序列模型主要有自回归模型(AR)、滑动平均模型(MA)和自回归滑动平均模型(ARMA)等,这些线性模型考虑因素较简单。
自回归滑动平均模型(ARMA)计算简单,易于实时更新数据。
本文描述了ARMA模型的原理、自相关函数和偏相关函数的计算过程、模型的识别方法以及ARMA模型的计算过程。
并给出一组平稳时间序列的数据,对数据进行分析和处理,求出自相关系数和偏相关,并利用MATLAB软件画出自相关系数和偏相关图形,有图可知它们都是拖尾的,因此可以确定是)ARMA模p,(q 型。
接下来就是确定)ARMA的阶数,本文采用了AIC准则确定模型的阶数,p,(q在实际问题中,为使线性模型简单起见,通常p与q的数值被取得较小,却需都不为零。
确定阶数后,就用我们学过的求解方法解出未知的参数,这样我们就得到了混合模型的表达式。
关键字:)ARMA模型,自相关函数,偏相关函数p,(q第一章 绪 论1.1 时间序列模型的发展及其作用人们的一切活动,其根本目的无不在于认识和改造客观世界。
时间序列分析不仅可以从数量上揭示某一现象的发展变化规律或动态的角度刻画某一现象与其他现象之间的内在关系及其变化规律性,达到认识客观世界之目的,而且运用时间序列模型还可以预测和控制现象的未来行为,修正或重新设计系统以达到利用和改造客观之目的。
时间序列分析在工程技术中有重要的作用,常用于做预报、控制等。
为建立其随机线性模型,首先,我们应明白什么是时间序列:时间序列是随机序列,即参数离散的随机过程。
由于工程中遇到的随机序列的参数经常为时间,故称随机序列为随机时间序列,简称时间序列。
可以说,时间序列是随时间改变而随机变化的序列。
平稳时间序列是平稳序列,它满足期望为零,且任意两个时刻的相关函数与时间t 无关,仅与两个时刻的时间差相关。
1.2 什么是时间序列模型所谓的时间序列模型就是用观测得到的若干数据,即样本数据的基础上,建立符合事物发展规律的数学理论模型,就是根据时间序列t X 的一段样本观测数据t X (1≤t ≤N )所包含的信息,利用自协方差函数r R ∧和偏相关函数kk ϕ具有的“截尾”与“拖尾”性质,判定模型结构及阶数,时间序列的模型我们主要学习了)(p AR ,)(q MA 及混合模型),(q p ARMA 。
1.3 本文研究的主要方法和手段求解模型就是绘制出这些数据的图形观察图形的走向。
通常该图形被分为两种:平稳和非平稳图形。
对于非平稳的图形,我们要用所学过的方法把这些非平稳的数据变成与之对应的平稳的数据,再用平稳的方法去研究它。
对于平稳的图形,我们首先根据理论方法及数学软件,求解出自相关系数和偏相关系数,根据得出的自相关系数和偏相关系数分别绘制出图形,观察图形截尾还是拖尾,因此可以确定是哪类模型。
接下来就是确定模型的阶数。
确定阶数后即可求解出相关系数,这样就得到我们所要的模型表达式。
1.4 本文主要研究思路及内容安排第一章介绍了时间序列模型的发展及其作用,什么是时间序列模型,课题研究工作和论文的内容安排。
第二章介绍)ARMA的原理,自相关函数和偏相关函数,时间序列模型p,(q模型的识别方法以及)pARMA的求解。
(q,第三章利用具体问题,对问题分析,判断出符合)ARMA模型和并求解p(q,pARMA模型,并对文章进行总结。
,)(q第二章 ARMA 模型 2.1 ARMA 模型的基本原理),(q p ARMA 模型:如果时间序列t X 满足:1111t t p t p t t q t q X X X a a a ϕϕθθ----=+++--- 则称时间序列为t X 服从(p,q)阶自回归滑动平均混合模型。
或者记为:()()t t B X B a ϕθ=,特殊情况:q=0,模型即为AR(p),p=0,模型即为MA(q)。
将预测指标随时间推移而形成的数据序列看作是一个随机序列,这一组随机过程所具有的依存关系体现着原始数据在时间上的延续性。
一方面,影响因素的影响,另一方面,又有自身变动规律,假定影响因素为1x ,2x ,,t x 由回归分析:其中Y 是预测对象的观测值, e 为误差。
作为预测对象Yt 受到自身变化的影响,其规律可由下式体现:误差项在不同时期具有依存关系,由下式表示:由此,获得ARMA 模型表达式:0112201122t t t p t p t t q t q t Y x x x ββββααααμ------=++++++++++2.2 样本自协方差函数、自相关函数和偏相关函数平稳序列21012,,,,,ωωωωω--, ()0t E ω=,对于样本,定义自协方差函数:112211ˆn k k k n k n k j k j j n n ωωωωωωγωω-++-+=+++==∑, 则自相关函数为:0ˆˆˆ/k k ργγ=。
同时为了保证ˆk k γγ=,ˆk k ρρ=一般取50,/4n k n ><。
常取/10k n =。
为求出样本的偏相关函数,需要求解如下的Yule-Walker 方程:121111122221121111k k k kk k k ρρρφρρρφρρρρφρρρρ--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭ 解得1112111122211121ˆˆˆˆˆ1ˆˆˆˆ1ˆˆˆˆˆˆˆ1ˆk k k k k kk φρρρρρρρφρρρρρρρφ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦ 2.3 ARMA 模型识别方法通常平稳时间序列t Z ,0,1t =±仅进行有限n 次测量(50)n ≥,得到一个样本函数,且利用平稳序列各态历经性:11nj j Z Z n μ=≈=∑做变换,t t Z ω=,1,t n =,将1,,n Z Z 样本换算成为样本1,,n ωω,然后再确定平稳时间序列{,0,1}t t ω=±的随机线性模型。
按样本自相关函数和样本偏相关函数的值分别作出点图,按“截尾”,“拖尾”情况,查表确定模型的类别与阶数p ,q 。
理论上,线性模型的类别的确定可以根据kk φ和k ρ的拖尾性和截尾性来判别。
但是在实际应用中,我们常用有一个样本算出^k ρ=k ρ,^kk ϕ=kk φ判别k ρ,kk φ是拖尾还是截尾的。
随机线性模型的三种形式:)(p AR ,)(q MA ,),(q p ARMA 的判别分别如下:(1)若k ρ拖尾,kk φ截尾在p k =处,则线性模型为)(p AR 模型。
k ρ拖尾可以用的点图判断,只要样本自相关函数的绝对值愈变愈小(k 增大时);但是,用样本偏相关函数判断kk φ 截尾在k=p 处应该如何作呢?因为k>p 时,样本偏相关函数不为零,而偏相关函数0=kk φ,这就给判断带来一定的困难。
我们可以采用一下方法解决:当p k >时,平均20个样本偏相关函数中至多有一个使|^kk ϕ| ≥则认为kk φ截尾在p k =处。
(2)若kk φ拖尾,k ρ在p k =处截尾,那么线性模型为)(q MA 滑动平均模型。
kk φ拖尾可以根据样本偏相关函数的点图判断,只要|^kk ϕ|愈变愈小(k 增大时)。
但是,用样本自相关函数判断自相关函数k ρ在p k =处截尾可采用如下方法:当p k >时,若平均20个样本自相关函数中至多有一个使|^k ρ|≥(3)若样本自相关函数和样本偏相关函数都是拖尾的,则线性模型可以看成混和模型(或者,样本自相关函数和样本偏相关函数都不为截尾的,又被负指数型的数列所控制)。
其具体的判别方法和上述一样。
如下表所示:2.4 模型参数估计1、()AR p 模型参数估计:()AR p 模型有2p +个参数:212,,,,,p p αφφφσ。
利用Yule-Walker 方程,利用Toeplitz 矩阵求逆和作矩阵乘法的方法算样本偏相关函数kk φ。
()AR p 模型的参数值不必作专门的计算,只要在样本偏相关函数计算的记录中取出样本参数值即可。
此时12,,,p φφφ,都已经确定了,经过推理我们可以得到:201p j j j ασγφγ==-∑。
2、()MA q 滑动平均模型参数估计: 22221221+1ˆˆˆˆ(1),0ˆˆˆˆˆˆˆ(),1q k k k q k q k k q αασθθθγσθθθθθ-⎧++++=⎪=⎨-+++≤≤⎪⎩ 可得1q +个方程,求212ˆˆˆˆ,,q αθθθσ,即解这个非线性方程组。
3、(,)ARMA p q 混和模型参数估计对于满足一个条件:1111......t t p t p t t p t q a a a ωφωφωθθ-------=---采用先计算12ˆˆˆ,,,p φφφ,在计算212ˆˆˆˆ,,q αθθθσ的方法,具体如下:1)可利用Toeplitz 矩阵和作矩阵乘法的方法求出12ˆˆˆ,,,p φφφ。
2)令'11...t t t p t p ωωφωφω--=---混和模型化为:'11...t t t p t q a a a ωθθ--==---这是关于't ω的()MA q 模型,用't ω的样本协方差函数估计212ˆˆˆˆ,,q αθθθσ的值。
第三章 实例分析3.1题目z的观测数据如下所示,N=64,建立表示测某简谐振动位移离平衡点的距离t数据序列的时间序列模型。
表-1 原始数据-0.17007 -2.05056 -4.18035 0.11153 2.17675 4.08507 0.24983-4.92336 -8.15675 -4.42107 -2.64058 -0.52570 -0.22015 0.36515 2.61949 1.53203 -0.77529 -3.25439 -0.41904 3.92127 2.97641 1.05303 -3.07748 -3.41256 -5.37570 -3.53729 -0.79940 -1.07239 0.78588 -2.48208 -4.03418 0.16420 -0.39307 3.88025 6.03561 5.70750 1.45257 -2.97501 -3.16561 -3.15184 -5.66101 -4.55502 0.10608 0.04231 0.79915 -0.12247 -5.97528 -9.16058 -9.73835-5.22347 0.62229 4.34356 1.32363 -1.25405 -3.90467 -3.027892.78487 7.61065 6.145803.51779 1.79635 0.74996 -0.19133-1.404283.2 问题分析本问题是让我们建立时间序列模型,题中给出了64个数据首先用所给数据绘制图形。