机电一体化知识点

合集下载

机电一体化技术知识点总结

机电一体化技术知识点总结

机电一体化技术知识点总结机电一体化技术是将机械技术、电子技术、信息技术、传感器技术和控制技术等多种技术有机结合,并综合应用于实际产品和系统中的一门交叉学科。

它旨在实现机械系统与电子系统的协同工作,提高产品的性能、质量和可靠性。

以下是对机电一体化技术相关知识点的总结。

一、机械技术机械技术是机电一体化的基础,包括机械设计、机械制造、机械传动等方面。

在机电一体化系统中,机械结构需要满足高精度、高刚性、轻量化等要求。

例如,采用新型材料和先进的制造工艺来减轻机械部件的重量,提高其强度和精度;优化机械传动系统,减少传动误差和能量损耗。

二、电子技术电子技术包括电子电路、数字电路、模拟电路、集成电路等。

在机电一体化系统中,电子技术用于实现信号的采集、处理、传输和控制。

例如,传感器将物理量转换为电信号,经过放大、滤波等处理后,由微控制器进行分析和决策,然后通过驱动电路控制执行机构的动作。

三、信息技术信息技术在机电一体化中起着至关重要的作用,主要包括计算机技术、通信技术和网络技术。

计算机技术用于系统的建模、仿真、优化和控制;通信技术实现系统内部各部分之间以及系统与外部环境之间的信息交换;网络技术则使多个机电一体化系统能够实现互联和协同工作。

四、传感器技术传感器是机电一体化系统获取外界信息的关键部件,能够将物理量、化学量等非电量转换为电量。

常见的传感器有位移传感器、速度传感器、压力传感器、温度传感器等。

传感器的精度、灵敏度、稳定性和可靠性直接影响到系统的性能。

五、控制技术控制技术是机电一体化系统的核心,包括经典控制理论和现代控制理论。

经典控制理论主要用于单输入单输出线性定常系统的分析和设计;现代控制理论则适用于多输入多输出、非线性、时变等复杂系统。

控制算法如 PID 控制、模糊控制、神经网络控制等在机电一体化系统中得到广泛应用。

六、执行机构执行机构是将控制信号转换为机械动作的部件,如电机、气缸、液压马达等。

电机是最常见的执行机构,包括直流电机、交流电机和步进电机等。

机电一体化技术知识点总结

机电一体化技术知识点总结

机电一体化技术知识点总结机电一体化技术是将机械技术、电子技术、信息技术、自动控制技术等多种技术有机结合的一门综合性技术。

它在现代工业生产中发挥着至关重要的作用,极大地提高了生产效率和产品质量,推动了制造业的智能化和自动化发展。

一、机械技术机械技术是机电一体化的基础。

在机电一体化系统中,机械部件需要具备高精度、高刚性、轻量化等特点。

例如,滚珠丝杠、直线导轨等精密传动部件能够实现精确的直线运动;而高强度铝合金、钛合金等新型材料的应用,则有效减轻了机械结构的重量,提高了系统的响应速度。

在设计机械结构时,需要充分考虑力学性能、热学性能以及动态特性等因素。

通过有限元分析等手段,可以对机械部件进行强度、刚度和模态分析,优化结构设计,避免共振等问题的发生。

二、电子技术电子技术包括电力电子技术和微电子技术。

电力电子技术主要用于电机驱动、电源变换等方面。

例如,变频器可以实现电机的调速控制,提高电机的运行效率和节能效果;而开关电源则能够提供稳定、高效的直流电源。

微电子技术则是指集成电路、微处理器等微型电子器件的应用。

在机电一体化系统中,微处理器作为控制核心,负责采集传感器信号、进行数据处理和运算,并输出控制指令。

同时,各种传感器(如压力传感器、温度传感器、位移传感器等)将物理量转换为电信号,为系统提供实时的监测和反馈信息。

三、信息技术信息技术在机电一体化中起着至关重要的作用。

数据采集、信号处理、通信技术等都是信息技术的重要组成部分。

通过数据采集系统,可以实时获取生产过程中的各种参数,如温度、压力、速度等。

对这些数据进行分析和处理,能够帮助我们了解系统的运行状态,及时发现潜在的问题。

信号处理技术包括滤波、放大、调制解调等,用于对传感器采集到的信号进行优化和转换,以便微处理器能够准确识别和处理。

通信技术实现了机电一体化系统中各个部件之间的信息交互。

常见的通信方式有串行通信(如 RS232、RS485)、现场总线(如 CAN 总线、Profibus 总线)以及工业以太网等。

机电一体化知识点

机电一体化知识点

机电一体化知识点1. 机械设计基础
- 机构学与运动学
- 材料力学与强度计算
- 机械设计原理与方法
2. 电气控制基础
- 电路原理与分析
- 电子元器件与应用
- 自动控制原理
3. 传感器与检测技术
- 位移、速度、加速度传感器
- 力、压力、流量传感器
- 温度、湿度、光电传感器
4. 执行器与驱动系统
- 电机与伺服系统
- 液压与气动执行系统
- 机械传动与变速装置
5. 可编程逻辑控制器 (PLC)
- PLC硬件结构与编程
- PLC指令系统与应用
- PLC通信与网络技术
6. 工业机器人
- 机器人机构与运动学
- 机器人控制系统
- 机器人编程与应用
7. 计算机集成制造系统 (CIMS)
- 计算机辅助设计 (CAD)
- 计算机辅助制造 (CAM)
- 制造执行系统 (MES)
8. 现场总线与工业网络
- 现场总线技术 (Profibus、DeviceNet、CAN) - 工业以太网技术 (EtherNet/IP、Profinet) - 无线传感器网络
9. 数据采集与监控系统
- 数据采集硬件与软件
- 过程监控与可视化
- 故障诊断与预测维护
10. 机电一体化系统设计与集成
- 系统需求分析与建模
- 硬件与软件设计集成
- 系统调试、优化与验证
以上是机电一体化领域的主要知识点,涵盖了机械、电气、自动控制、计算机和网络等多个方面的内容,是一个综合性的跨学科专业。

机电一体化知识点总结

机电一体化知识点总结

机电一体化知识点总结机电一体化(Mechatronics)是一门涉及机械工程、电子工程、控制工程和计算机科学等多学科交叉的综合性学科,旨在设计和控制机械系统的自动化装置。

下面将对机电一体化的相关知识点进行总结。

一、机械工程1. 机械设计:包括机械结构设计、传动设计、材料选择及机械零件加工等内容;2. 机械制造:涵盖机械零件的制造、装配及工艺技术等方面的知识;3. 机械运动学:研究机械系统的运动特性、轨迹、速度、加速度等问题;4. 机械动力学:探讨机械系统的力学特性、动力学、力的传递与分析等方面内容;5. 机械控制:关注机械系统的控制方法、控制器设计以及信号处理等技术。

二、电子工程1. 电路基础:电阻、电容、电感等基本电子元件的特性与应用;2. 电子设备与器件:包括半导体器件、集成电路、传感器等元器件的选型与应用;3. 电子电路设计:设计电子电路的原理、电路图、布局等;4. 模拟电子技术:研究模拟信号处理、滤波器设计、放大器设计等;5. 数字电子技术:探索数字信号处理、逻辑门电路设计、数字电路的组合与时序逻辑等。

三、控制工程1. 控制系统理论:包括线性系统、非线性系统、时变系统等控制系统的理论基础;2. 控制系统设计:探索控制系统的稳定性、性能指标的选取以及设计方法;3. 控制器设计与调节:研究PID控制器、模糊控制、自适应控制等控制算法的应用;4. 系统辨识与模型建立:通过实验数据分析建立系统的数学模型以及参数辨识;5. 现代控制理论:涵盖状态空间方法、鲁棒控制、自适应控制等控制理论的进一步发展与应用。

四、计算机科学1. 编程语言与算法:掌握C、C++、Python等编程语言,理解基本的算法设计与分析;2. 嵌入式系统:熟悉嵌入式系统的硬件结构和软件开发,了解操作系统原理;3. 人机交互技术:研究人机界面的设计、用户体验、人工智能等相关技术;4. 网络与通信技术:了解网络通信协议、数据传输原理、网络安全等知识;5. 数据处理与大数据技术:研究数据挖掘、机器学习、深度学习等相关技术的应用。

机电一体化考试知识点总结

机电一体化考试知识点总结

机电一体化考试知识点总结一、机电一体化基础知识1. 机电一体化的概念和发展历程机电一体化是指在产品或系统的设计、制造、使用和维护过程中,完全将机械、电子、传感器、控制技术和信息技术无缝集成为一个整体。

机电一体化技术是近年来在制造业中迅速发展起来的一种先进生产技术,它结合了机械、电子、信息技术等多种技术,以实现生产过程的全面自动化和智能化。

机电一体化的发展历程可以追溯到20世纪60年代,在那个时候,自动化生产线一度兴起,为生产过程带来了很大的改善。

随着信息技术和电子技术的不断发展,机电一体化技术逐渐成为制造业的主流技术,被广泛应用于汽车制造、电子设备制造、航空航天等领域。

2. 机电一体化的特点机电一体化技术的特点主要包括:集成性、智能化、基于网络、高精度、高速度、高可靠性等。

机电一体化技术通过将机械、电子、信息技术有机结合,实现了产品生产的智能化、自动化和网络化,能够大大提高生产效率和产品质量。

3. 机电一体化的应用领域机电一体化技术被广泛应用于工业机械、汽车制造、工程机械、电子设备制造、医疗器械、航空航天、高速铁路等领域。

在这些领域,机电一体化技术可以实现设备的智能化控制、自动化生产、信息化管理等,为企业提供了更高效的生产方式。

4. 机电一体化技术的发展趋势随着信息技术和电子技术的快速发展,机电一体化技术也在不断地向智能化、网络化、高可靠性、低能耗等方向发展。

未来,机电一体化技术将更加普及,带来更多的应用和创新。

二、传感器技术1. 传感器的基本概念和分类传感器是一种可以感知和采集物理量或化学量的变化并将其转换为可用电信号的设备。

按照测量物理量分类,传感器可分为:力传感器、位移传感器、速度传感器、加速度传感器、压力传感器、温度传感器、湿度传感器、光电传感器等。

2. 传感器的工作原理传感器的工作原理主要取决于其测量物理量的不同。

常见的传感器工作原理有:电压、电流、电阻、电容、电磁感应等。

3. 传感器的特性和性能指标传感器的特性和性能指标包括:静态特性(灵敏度、线性度、分辨率、稳定性)、动态特性(响应时间、过载能力、动态误差)以及环境适应能力(温度、湿度、抗干扰能力)等。

机电一体化知识点

机电一体化知识点

机电一体化技术:将机械技术、电工电子技术、微电子技术、信息技术、传感器技术、接口技术、信号变换技术等多种技术进行有机地结合,并综合应用到实际中去的综合技术。

机电一体化系统构成:计算机、传感器、机械装置、能源、执行装置。

实现机电一体化共性关键技术:检测传感技术、信息处理技术、自动控制技术、伺服驱动技术、机械技术、系统总体技术。

信息处理技术:传感器、A/D、计算机、D/A、执行装置。

控制技术:主要以控制理论为指导,对控制系统设计、仿真、现场调试、可靠运行等。

机械技术:实现机电一体化产品的主功能和构造功能,影响系统的结构、重量、体积、刚性、可靠性等。

系统总体技术:系统总体技术是一种从整体目标出发,用系统工程的观点和方法,将系统各个功能模块有机的结合起来,以实现整体最优。

仿真的内容:机构运动状态的仿真、测试及信号处理系统的仿真、伺服驱动系统的仿真、控制系统的仿真、系统综合性能的仿真。

结构的设计与仿真软件:Solidworks;Autodesk Inventor;Pro/Engineer;;Unigraphics; ADAMS;ANSYS。

信号处理及控制系统的仿真软件:PSPICE;ORCAD;Protel;MATLAB。

在机电产品设计中当前企业的瓶颈:1、系统的控制和电子部分大部分是事后添加上去的;2、能够建立物理模型或数学模型的仍属于少数有经验的工程师;3、系统控制部分的设计与实现仍然局限于领域专家;4、在机电一体化产品设计时既熟悉硬件又懂软件分析的工程师仍为少数。

机电一体化产品设计类型:1、开发性设计;2、适应性设计;3、变参数设计。

机械系统:执行机构传动机构支撑导向机构电气系统:传感器执行器控制器接口:人机接口机电接口通信接口执行机构:用来完成操作任务的直接装置。

机电一体化系统的执行部件通常由执行元件、传动机构和执行机构组成,它是实现系统目的功能的直接操纵者。

执行机构的基本要求:1)实现所需的运动;2)传递必要的动力;3)有良好的动态品质执行机构的功能:执行机构输出运动、力或力矩,可以实现改变运动方向、改变速度、力的放大和反馈、几个零件间的运动同步、物料传送、远距离传动等功能。

机电一体化知识点

机电一体化知识点

一、机电一体化起源与定义:在机械的主功能、动力功能、信息功能、控制功能基础上引入微电子技术,并将机械装置与电子装置用相关软件有机地结合所构成系统的总称。

机电一体化一般包含机电一体化产品(系统)和机电一体化技术两层含义。

典型的机电一体化产品(系统)有:数控机床、机器人、工程机械、汽车、智能化仪器仪表、CAD/CAM系统等。

P26间隙的影响三、机电一体化的目的(功能)使系统(产品)高附加值化,即多功能化、高效率化、高可靠性化、省材料化、省能源化,并使产品结构向轻、薄、短、小巧化方向发展,不断满足人们生活和生产的多样化需要和生产的省力化、自动化需要。

四、 机电一体化发展概况“萌芽阶段”“蓬勃发展阶段”“智能化阶段”1 智能化、2 模块化、3 网络化、4 微型化、5、绿色化、6、人格化五、机电一体化系统的构成1、执行元件(主功能)实现机电一体化系统主功能。

主功能是系统的主要特征部分,完成对物质、能量、信息的交换、传递和储存。

主功能包括三个目的功能:(1)变换(加工、处理)功能;(2)传递(移动、输送)功能;(3)储存(保存、存储、记录)功能2、机械本体(构造功能)机械本体包括机架、机械连接、机械传动等,它是机电一体化的基础,起着支撑系统中其他功能单元、传递运动和动力的作用。

3、动力源(动力功能)是机电一体化产品的能量供应部分,其作用是按照系统控制要求,为系统提供能量和动力,使系统正常运行。

4、传感检测单元(计测功能)对系统运行中所需要的本身和外界环境的各种参数及状态进行检测。

要求:体积小、精度高、抗干扰5、控制与信息处理单元(控制功能)将来自各传感器的检测信息和外部输入命令进行集中、储存、分析、加工,根据信息处理结果,按照一定的程序和节奏发出相应的指令,控制整个系统有目的地运行。

要求:高可靠性、处理速度快、智能化6、接口将各组成单元或子系统连接成一有机的整体。

各要素或子系统之间能顺利进行物质、能量和信息的传递和交换。

机电一体化知识点

机电一体化知识点
的某种电参数物理量的测量部件或装置。被测物理量可以是力、温度、位移、速度、位 置等。电参数物理量可以是电阻、电容、电感、电压、电流等。一般由敏感元件、转换 兀件和基本转换电路二部分组成。
6传感器的分类
按被测物理量分为:位移传感器、速度传感器、加速度传感、力传感器、温度传感器
等。
按传感器工作的物理原理分为:电阻式、电感式、电容式、 光电式等等。
5)机电一体化产品向网络化方向发展,基于网络的各种远程控制和监视意义重大
6机电一体技术的主要特征
1) 整体结构最优化。在设计机电一体化系统时,综合运用机械、电子、硬件、软件等 各种知识和理论,实现系统优化。
2) 系统控制智能化。机电一体化系统具有自动控制、自动检测、自动信息处理、自动 诊断、自动记录、自动显示等功能。
基本转换电路负责将电阻、电容、电感等电参量转换成电压、电流等模拟信号。
量程切换电路:根据信号的不同测量范围,切换量程,实现高精度测量。
模数转换电路负责将模拟信号转换为数字信号供CPU处理
振荡器实现信号的调制与解调。
3、数字式传感器检测系统的组成,及各部分的作用
1)系统组成:数字传感器、放大电路、整形电路、分频电路、辩向电路、计数电路、
2、 机和电的关系:
在机电一体化系统中,“机”指机械部分,包括结构、执行机构、传感器机构等。 “电” 指电子部分,包括控制电路和电气连线等。二者关系是, “机”是基础,“电”是核心。机 电系统在电的控制下,协调各机械部件(传感器、电机、结构等)完成各种指令及功能。
3、 机电一体化的范畴: 凡是由各种现代高新技术与机械和电子技术相互结合而形 成的各种技术、产品以及系统都属于机电一体化的范畴
2、计算机接口技术概括起来一般分为如下几种:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、机电一体化的概念:机电一体化又称机械电子学,它是从系统的观点出发,将机械技术、微电子技术、计算机信息技术、自动控制技术等在系统工程的基础上有机地加以综合,实现整个机械系统最优化而建立起来的一门的科学技术。

机电一体化包括机电一体化技术和机电一体化系统两方面的内容。

典型的机电一体化系统有数控机床、工业机器人、汽车等。

2、机和电的关系:在机电一体化系统中,“机”指机械部分,包括结构、执行机构、传感器机构等。

“电”指电子部分,包括控制电路和电气连线等。

二者关系是,“机”是基础,“电”是核心。

机电系统在电的控制下,协调各机械部件(传感器、电机、结构等)完成各种指令及功能。

3、机电一体化的范畴:凡是由各种现代高新技术与机械和电子技术相互结合而形成的各种技术、产品以及系统都属于机电一体化的范畴4、机电一体化的发展趋势:1)性能上,向高精度、高效率、高性能、智能化的方向发展。

2)功能上,向小型化、轻型化、多功能化方向发展。

3)层次上,向系统化、复合集成化的方向发展。

系统结构采用采用开放式和模式化的总线结构,并具有强大的通讯功能,如RS232、RS485、CAN等。

4)机电一体化单元向模块化方向发展,利用标准模块解决系统集成中的不匹配、不兼容问题。

5)机电一体化产品向网络化方向发展,基于网络的各种远程控制和监视意义重大。

6、机电一体技术的主要特征1)整体结构最优化。

在设计机电一体化系统时,综合运用机械、电子、硬件、软件等各种知识和理论,实现系统优化。

2)系统控制智能化。

机电一体化系统具有自动控制、自动检测、自动信息处理、自动诊断、自动记录、自动显示等功能。

3)操作性能柔性化。

通过软件和程序实现对系统机构的控制和协调。

操作流程通过软件设定,灵活、方便。

7、机电一体化的目的功能:任何一种机电一体化产品或系统都是为满足人们某种需要而开发生产的,都具有相应的目的功能。

概括起来必须具有三大目的功能:1)变换(加工、处理)功能;2)传递(移动、输送)功能;3)存储(保存、记录)功能。

17、机电一体化系统开发工程路线主要分为以下几个阶段:可行性论证、初步设计、详细设计、实施和测试、运行和维护。

39、电平检测电路概述功能:实现对两个输入模拟量进行比较,并输出逻辑电平,根据逻辑电平可以指示两输入模拟量的大小关系。

组成:电压比较器、二极管、逻辑器件等。

应用:温度、液位等上下限检测等。

10、可变磁阻式自感型电感传感器工作原理1)可变磁阻式自感型电感传感器由线圈、铁芯、衔铁、气隙组成。

2)传感器磁路的自感L由公式确定。

式中:W为线圈的匝数、μ0 为空气导磁率。

公式表明,自感L与气隙σ的大小成反比,与气隙的导磁截面积S0成正比。

3)当固定S0不变而改变σ时,L与σ呈非线性关系。

通过测量自感的变化,我们就可以得到气隙间距的变化,这就是该传感器的工作原理。

56、信号的滤波电路概述1、滤波器的分类滤波器是具有频率选择作用的电路或运算处理系统,具有滤除噪声和分离各种不同信号的功能。

简单理解就是,有用频率信号通过,无用频率信号被抑制的电路。

按传递函数的微分方程阶数分:零阶、一阶、二阶、高阶滤波器。

按滤波器的选频作用分:低通、高通、带通和带阻滤波器。

带通滤波器可由高通滤波器和低通滤波器串联组成。

带阻滤波器可由高通滤波器和低通滤波器并联组成。

根据构成滤波器的元件类型分:RC、LC或晶体谐振滤波器。

根据构成滤波器的电路性质分:有源滤波器和无源滤波器。

有源滤波器采用RC网络和运算放大器组成,其中运算放大器具有极间隔离和信号放大的作用,RC网络通常作为运算放大器的负反馈网络根据滤波器所处理的信号性质分:模拟滤波器与数字滤波器。

2、滤波器的基本参数滤波器的主要参数有截止频率、带宽、品质因数(Q值)和倍频程选择性等。

(1)截止频率:增益下降到通频带增益除以根号2时,所对应的频率称为滤波器的截止频率。

公式为,其中K为通频带增益。

用分贝表示就是-3dB。

(2)带宽B:上下两截止频率之间的频率范围称为滤波器带宽,即B =f2-f1,单位为Hz。

带宽决定了滤波器的频率分辨力,带宽越小,分辨力越高。

(3)品质因数Q:中心频率f0和带宽之比称为滤波器的品质因数Q。

(4)倍频程选择性:是指在上截止频率f2与2f2之间或在下截止频率f1与f1/2之间增益的衰减量,即频率变化一个倍频程时的衰减量,以dB为单位。

它决定了滤波器对带宽外频率成分的衰阻能力。

滤波器的阶数越高、衰减越快,选择性越好。

26、信号放大电路概述1、信号放大电路的作用:信号放大电路亦称放大器,用于将传感器或经基本转换电路输出的微弱信号不失真地加以放大,以便于进一步加工和处理。

2、信号放大电路的要求:传感器输出信号较弱,最小的达0.1μV,动态范围较宽,往往有很大的共模干扰电压。

测量放大电路的目的是检测叠加在高共摸电压上的微弱信号,因此要求测量放大电路具有高输入阻抗、共模抑制能力强、失调及漂移小、噪声低、闭环增益稳定性高等性能。

现在使用最多的工业控制微机主要集中在PC总线工控机、STD总线工控机、单片机或单板机组成的微机系统和可编程控制器等几大类10、单片机概念单片机全称是单片微型计算机,英文为Single Chip Microcomputer。

就是在一个集成电路上集成了微型计算机的全部基本资源,包括中央处理器(CPU)、只读存储器(ROM)、随机存储器(RAM)、定时器/计数器、串行通信及中断系统和各种输入输出接口等多种资源。

11、单片机的特点(1)体积小、重量轻、功耗低、功能强、性价比高。

(2)数据大都在单片机内部传送,运行速度快,抗干扰能力强,可靠性高。

(3)结构灵活,易于组成各种微机应用系统。

(4)应用广泛,既可用于过程控制、机电一体化产品等场合,又可用于测量仪器、医疗仪器、家用电器、计算机网络及通讯等领域。

此外在航空、航天等军工领域,单片机应用也十分广泛。

当今社会,单片机的应用无所不在。

12、单片机最小系统,或者称为最小应用系统,是指用最少的元件组成的单片机可以工作的系统。

对51系列单片机来说,最小系统一般应该包括:单片机、晶振电路、复位电路和供电电源。

3、人机交互接口是操作者与机电一体化系统(主要是计算机控制器)之间进行信息交换的接口。

按信息的传递方向,人机接口可以分为两大类:输入接口与输出接口。

人机交互接口具有专用性、低速性、高性价比等特点,设计时需要予以考虑。

4、人机交互接口的作用:操作者通过输入接口向计算机控制器输入各种控制命令,对系统运行进行控制,实现系统要求完成的各项功能及任务;同时计算机控制器通过输出接口向操作者显示系统的各种状态、运行参数及结果等信息。

4、常用的输入设备:按钮、开关、拨码盘、键盘、触摸屏等。

5、常用的输出设备:状态指示灯、扬声器、数码管显示器、LCD显示器等。

7、结合简单开关输入电路原理图,说明电路功能及如何选择上拉电阻的大小。

P277电路功能:1)实现开关状态向逻辑电平的转换,供单片机采样;2)当开关断开时,高电平5V送给单片机采样;3)当开关闭合时,低电平0V送给单片机采样。

电阻选择:1)阻值不能过大,阻值过大会降低传输的高电平值;2)阻值不能过小,阻值过小会增大电路功耗;3)上拉电阻应全面考虑开关的触点电流和整个电路的功耗再确定,通常10K左右。

18、点亮LED数码管有静态和动态两种方法。

所谓静态显示就是数码管显示某一字符时,相应的发光二极管恒定的导通或截止。

静态显示时,较小的电流能得到较高的亮度,所以可以由单片机IO口直接驱动,静态显示方法适合与显示位数少的情况。

当位数较多时,用静态显示需要占用太多的IO口,所以,一般采用动态显示的方法。

所谓动态显示就是一位一位地轮流点亮各位数码管,即扫描点亮。

数码管的亮度既与导通电流有关,也与点亮时间和扫描间隔时间有关。

通过调整电流和时间参数,可以实现高亮度、高稳定的显示。

动态显示需要电流较大,一般需要在单片机和数码管之间增加驱动电路。

机械有触点开关常用的三种变换方式:控制系统自带电源方式、外接电源方式、恒流源方式。

29、A/D转换器的主要技术指标:1)转换时间和转换速度。

转换时间是A/D完成一次转换所需要的时间。

转换时间的倒数即为转换速率。

2)分辨率。

A/D转换器的分辨率习惯上用输出二进制位数或BCD码位数表示。

12位AD的分辨率为1/2^12。

3)A/D转换精度。

A/D转换精度定义为一个实际A/D转换器与一个理想A/D转换器在量化值上的差值,可用绝对误差和相对误差表示。

控制系统检测的信号概括起来有三种:开关信号(如限位开关、时间继电器等)、模拟信号(如热敏电阻、应变片等)、频率信号(如霍尔速度传感器、超声波无损探伤等)。

1、检测系统的定义:检测系统是机电一体化系统中的一个重要组成部分,用于检测有关外界环境及自身状态的各种物理量(如力、温度、距离、变形、位置、功率等)及其变化,并将这些信号转换成电信号,然后再通过相应的变换、放大、调制与解调、滤波、运算等电路将所需要的信号检测出来,反馈给控制装置并显示。

实现上述功能的传感器及其信号处理电路就构成了机电一体化系统中的检测系统。

检测系统由于使用的传感器不同分为模拟式传感器检测系统和数字式传感器检测系统。

2、模拟式传感器检测系统的组成,及各部分的作用1)系统组成:模拟传感器、基本转换电路、量程切换电路、放大电路、调制解调电路、滤波电路、运算电路、模数转换电路、计算中心、显示执行机构、电源等。

2)各部分的作用:模拟传感器负责将被测的位移、温度等非电物理量转换成电阻、电容、电感等电参量或直接转换成电压、电流等模拟信号。

基本转换电路负责将电阻、电容、电感等电参量转换成电压、电流等模拟信号。

量程切换电路:根据信号的不同测量范围,切换量程,实现高精度测量。

模数转换电路负责将模拟信号转换为数字信号供CPU处理振荡器实现信号的调制与解调。

3、数字式传感器检测系统的组成,及各部分的作用1)系统组成:数字传感器、放大电路、整形电路、分频电路、辩向电路、计数电路、寄存电路、计算机和显示执行机构组成。

2)各部分的作用:数字传感器负责将检测的物理量转换成数字式的脉冲信号,脉冲频率表示物理量的大小。

放大电路和整形电路负责将不规则的脉冲信号调整成标准的数字脉冲信号,幅度和上升下降沿适合后续测量。

分频电路也叫细分电路,目的是提高计数精度。

辩向电路识别信号是增大还是减小。

计数器负责脉冲计数。

计算机根据计数结果控制和显示。

4、机电一体化对检测系统在性能方面的要求:精度、灵敏度和分辨率高;线性、稳定性和重复性好;抗干扰能力强,静、动态特性好。

此外,某些系统对传感器及其检测系统提出了一些特殊要求,如体积小、重量轻、价格便宜、便于安装与维修、耐环境性能好等。

5、传感器的概念传感器是一种以一定精度将被测物理量转换为与之有确定对应关系的、易于测量的某种电参数物理量的测量部件或装置。

相关文档
最新文档