高二数学上学期期末考试试题 理 (9)

合集下载

广西钦州市高二数学上学期期末试卷 理(含解析)-人教版高二全册数学试题

广西钦州市高二数学上学期期末试卷 理(含解析)-人教版高二全册数学试题

2015-2016学年某某某某市高二(上)期末数学试卷(理科)一、选择题1.正三棱柱的左视图如图所示,则该正三棱柱的侧面积为()A.4 B.12 C.D.242.直线l:x+y﹣4=0与圆C:x2+y2=4的位置关系是()A.相交 B.相切 C.相离 D.无法确定3.已知全集U=R,集合A={x|x2﹣2x<0},B={x|x﹣1≥0},那么A∩∁U B=()A.{x|0<x<1} B.{x|x<0} C.{x|x>2} D.{x|1<x<2}4.已知复数z=,则z的共轭复数是()A.1﹣i B.1+i C.i D.﹣i5.若l、a、b表示直线,α、β表示平面,下列命题正确的是()A.l∥α,a⊂α⇒l∥a B.a∥α,a∥b⇒b∥αC.a∥α,b⊥α⇒a⊥b D.a∥α,α∥β⇒a∥β6.过点P(2,3)且在两坐标轴上截距相等的直线方程为()A.3x﹣2y=0 B.x+y﹣5=0C.3x﹣2y=0或x+y﹣5=0 D.2x﹣3y=0或x+y﹣5=07.将球的半径变为原来的两倍,则球的体积变为原来的()A.2倍B.8倍C.4倍D.0.5倍8.若幂函数f(x)=x a在(0,+∞)上是增函数,则()A.a>0 B.a<0 C.a=0 D.不能确定9.已知集合A={1,2},集合B满足A∪B={1,2},则这样的集合B有()A.4个B.3个C.2个D.1个10.在空间四边形ABCD各边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF、GH相交于点P,那么()A.点P必在直线AC上B.点P必在直线BD上C.点P必在平面DBC内D.点P必在平面ABC外11.关于斜二侧画法,下列说法正确的是()A.三角形的直观图可能是一条线段B.平行四边形的直观图一定是平行四边形C.正方形的直观图是正方形D.菱形的直观图是菱形12.多面体的直观图如图所示,则其正视图为()A.B.C.D.二、填空题13.函数f(x8)=log2x,则f(16)的值是.14.设a=sin(sin2008°),b=sin(cos2008°),c=cos(sin2008°),d=cos(cos2008°).则a,b,c,d从小到大的顺序是.15.b克糖水中有a克糖(b>a>0),若再加入m克糖(m>0),则糖水更甜了,将这个事实用一个不等式表示为.16.已知数列{log2(a n﹣1)},(n∈N*)为等差数列,且a1=3,a3=9(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和S n.17.一物体受到与它运动方向相同的力:的作用,(x 的单位:m,F的单位:N),则它从x=0运动到x=1时F(x)所做的功等于.18.空间直角坐标系中两点A(0,0,1),B(0,1,0),则线段AB的长度为.三、解答题19.已知椭圆┍的方程为+=1(a>b>0),点P的坐标为(﹣a,b).(1)若直角坐标平面上的点M、A(0,﹣b),B(a,0)满足=(+),求点M的坐标;(2)设直线l1:y=k1x+p交椭圆┍于C、D两点,交直线l2:y=k2x于点E.若k1•k2=﹣,证明:E为CD的中点;(3)对于椭圆┍上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆┍上存在不同的两个交点P1、P2满足+=,写出求作点P1、P2的步骤,并求出使P1、P2存在的θ的取值X围.20.在数列{a n}中,a1=1,a n+1=(1+)a n+,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n.21.在三角形ABC中,,求三角形ABC的面积S.22.对某电子元件进行寿命追踪调查,情况如下:寿命/小时100~200 200~300 300~400 400~500 500~600个数20 30 80 40 30(1)完成频率分布表;分组频数频率100~200200~300300~400400~500500~600合计(2)完成频率分布直方图;(3)估计电子元件寿命在100~400小时以内的概率;(4)估计电子元件寿命在400小时以上的概率.23.求出函数y=sin(﹣x),x∈[﹣2π,2π]的单调递增区间.2015-2016学年某某某某市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题1.正三棱柱的左视图如图所示,则该正三棱柱的侧面积为()A.4 B.12 C.D.24【考点】由三视图求面积、体积.【专题】空间位置关系与距离.【分析】通过左视图,判断几何体的数据,然后求解侧面积.【解答】解:∵正三棱柱的左视图为:,正三棱柱的底面是正三角形,由图知底面正三角形的高为,∴易求得正三角形的边长为2,∴正三棱柱的侧面积为:2×2×3=12.故选:B.【点评】本题考查三视图侧面积的求法,考查学生的视图能力以及计算能力.2.直线l:x+y﹣4=0与圆C:x2+y2=4的位置关系是()A.相交 B.相切 C.相离 D.无法确定【考点】直线与圆的位置关系.【专题】直线与圆.【分析】根据圆心C到直线l的距离正好等于半径,可得直线和圆相切.【解答】解:由于圆心C(0,0)到直线l:x+y﹣4=0的距离为=2,正好等于半径,故直线和圆相切,故选:B.【点评】本题主要考查直线和圆相切的性质,点到直线的距离公式的应用,属于中档题.3.已知全集U=R,集合A={x|x2﹣2x<0},B={x|x﹣1≥0},那么A∩∁U B=()A.{x|0<x<1} B.{x|x<0} C.{x|x>2} D.{x|1<x<2}【考点】交、并、补集的混合运算.【专题】集合.【分析】分别求出A与B中不等式的解集,确定出A与B,找出A与B补集的交集即可.【解答】解:由A中的不等式变形得:x(x﹣2)<0,解得:0<x<2,即A={x|0<x<2},由B中的不等式解得:x≥1,即B={x|x≥1},∵全集U=R,∴∁U B={x|x<1},则A∩(∁U B)={x|0<x<1}.故选:A.【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.4.已知复数z=,则z的共轭复数是()A.1﹣i B.1+i C.i D.﹣i【考点】复数代数形式的乘除运算;复数的基本概念.【专题】计算题.【分析】复数分子、分母同乘分母的共轭复数,化简为a+bi(a,b∈R)的形式,即可得到选项.【解答】解:复数z==所以它的共轭复数为:1﹣i故选A【点评】本题是基础题,考查复数代数形式的乘除运算,复数的基本概念,考查计算能力,常考题型.5.若l、a、b表示直线,α、β表示平面,下列命题正确的是()A.l∥α,a⊂α⇒l∥a B.a∥α,a∥b⇒b∥αC.a∥α,b⊥α⇒a⊥b D.a∥α,α∥β⇒a∥β【考点】空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.【专题】空间位置关系与距离.【分析】A.根据线面平行的性质定理进行判断.B.根据线面平行的判定定理进行判断.C.根据线面垂直的性质定理进行判断.D.根据线面平行的性质进行判断.【解答】解:A.根据线面平行的性质可知,l∥a不一定成立,有可能是异面直线.B.当b⊄α,结论成立,当b⊂α,则结论不成立.C.根据线面垂直和线面平行的性质可知,若a∥α,b⊥α,则a⊥b成立.D.若a∥α,α∥β,则a∥β或a⊂β,∴结论不成立.故选:C.【点评】本题主要考查空间直线和平面位置关系的判断,要求熟练掌握平行或垂直定理的内容及应用.6.过点P(2,3)且在两坐标轴上截距相等的直线方程为()A.3x﹣2y=0 B.x+y﹣5=0C.3x﹣2y=0或x+y﹣5=0 D.2x﹣3y=0或x+y﹣5=0【考点】直线的截距式方程.【专题】计算题;分类讨论.【分析】分两种情况:当直线在两坐标轴上的截距都为0时,设直线l的方程为y=kx,把P 的坐标代入即可求出k的值,得到直线l的方程;当直线在两坐标轴上的截距不为0时,设直线l的方程为x+y=a,把P的坐标代入即可求出a的值,得到直线l的方程.【解答】解:①当直线在两坐标轴上的截距都为0时,设直线l的方程为:y=kx把点P(2,3)代入方程,得:3=2k,即所以直线l的方程为:3x﹣2y=0;②当直线在两坐标轴上的截距都不为0时,设直线l的方程为:把点P(2,3)代入方程,得:,即a=5所以直线l的方程为:x+y﹣5=0.故选C【点评】本题题考查学生会利用待定系数法求直线的解析式,直线方程的截距式的应用,不要漏掉截距为0的情况的考虑,考查了分类讨论的数学思想,是一道中档题7.将球的半径变为原来的两倍,则球的体积变为原来的()A.2倍B.8倍C.4倍D.0.5倍【考点】球的体积和表面积.【专题】规律型;空间位置关系与距离.【分析】根据“球的体积V=πr3”进行推导,进而得出结论.【解答】解:设球的半径为r,则原来的体积S=πr3,当半径变为原来的2倍时,即半径为2r,则体积V=π(2r)3=πr3×8,即这个球的体积就变为原来的8倍.故选B.【点评】解答此题要明确球的半径扩大n倍,其周长扩大n倍,面积扩大n2倍,体积扩大n3倍.8.若幂函数f(x)=x a在(0,+∞)上是增函数,则()A.a>0 B.a<0 C.a=0 D.不能确定【考点】幂函数的性质.【专题】计算题.【分析】由幂函数的性质可判断α的取值,当α>0时,函数单调递增,当α<0时,函数在(0,+∞)单调递减可求【解答】解:由幂函数的性质可知,当α>0时,函数单调递增,当α<0时,函数在(0,+∞)单调递减可求∵f(x)=x a在(0,+∞)上是增函数∴a>0故选A【点评】本题主要考查了幂函数的单调性的应用,解题中要注意α的符号对函数单调性的影响.属于基础试题9.已知集合A={1,2},集合B满足A∪B={1,2},则这样的集合B有()A.4个B.3个C.2个D.1个【考点】并集及其运算.【专题】计算题.【分析】根据题意得到集合B是集合A的子集,所以求出集合A子集的个数即为集合B的个数.【解答】解:因为A∪B={1,2}=A,所以B⊆A,而集合A的子集有:∅,{1},{2},{1,2}共4个,所以集合B有4个.故选A【点评】本题重在理解A∪B=A表明B是A的子集,同时要求学生会求一个集合的子集.10.在空间四边形ABCD各边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF、GH相交于点P,那么()A.点P必在直线AC上B.点P必在直线BD上C.点P必在平面DBC内D.点P必在平面ABC外【考点】平面的基本性质及推论.【专题】计算题.【分析】由EF属于一个面,而GH属于另一个面,且EF和GH能相交于点P,知P在两面的交线上,由AC是两平面的交线,知点P必在直线AC上.【解答】解:∵EF属于一个面,而GH属于另一个面,且EF和GH能相交于点P,∴P在两面的交线上,∵AC是两平面的交线,所以点P必在直线AC上.故选A.【点评】本题考查平面的基本性质及其推论,是基础题.解题时要认真审题,仔细解答.11.关于斜二侧画法,下列说法正确的是()A.三角形的直观图可能是一条线段B.平行四边形的直观图一定是平行四边形C.正方形的直观图是正方形D.菱形的直观图是菱形【考点】平面图形的直观图.【专题】对应思想;定义法;空间位置关系与距离.【分析】根据斜二侧直观图的画法法则,直接判断选项的正确性即可.【解答】解:对于A,三角形的直观图仍然是一个三角形,命题A错误;对于B,平行四边形的直观图还是平行四边形,命题B正确;对于C,正方形的直观图不是正方形,应是平行四边形,命题C错误;对于D,菱形的直观图不是菱形,应是平行四边形,命题D错误.故选:B.【点评】本题考查了斜二侧画直观图的应用问题,注意平行x,y轴的线段,仍然平行坐标轴,不平行坐标轴的线段,只看它们的始点和终点,是基础题.12.多面体的直观图如图所示,则其正视图为()A.B.C.D.【考点】简单空间图形的三视图.【专题】计算题;规律型;空间位置关系与距离.【分析】直接利用三视图的画法,判断选项即可.【解答】解:应用可知几何体的正视图为:.故选:A.【点评】本题考查简单几何体的三视图,是基础题.二、填空题13.函数f(x8)=log2x,则f(16)的值是.【考点】函数的值.【专题】计算题.【分析】令x8=16,利用指数知识求得x=,再代入解析式右端求出即可.【解答】解:令x8=16,x8=24=8,解得x=,所以f(16)=log2=故答案为:【点评】本题考查函数值求解,要对函数的概念及表示方法有准确的理解和掌握.14.设a=sin(sin2008°),b=sin(cos2008°),c=cos(sin2008°),d=cos(cos2008°).则a,b,c,d从小到大的顺序是b<a<d<c.【考点】三角函数的化简求值.【专题】计算题;规律型;转化思想;三角函数的求值.【分析】先应用诱导公式化简sin2008°=﹣sin28°,cos2008°=﹣cos28°=﹣sin62°,从而a=﹣sin(sin28°),b=﹣sin(sin62°),c=cos(sin28°),d=cos(sin62°),再根据正弦、余弦函数的单调性即可判断a,b,c,d的大小.【解答】解:∵2012°=5×360°+208°,∴a=sin(sin2008°)=sin(sin208°)=sin(﹣sin28°)=﹣sin(sin28°)<0,b=sin(cos2008°)=sin(cos208°)=sin(﹣cos28°)=﹣sin(cos28°)<0,c=cos(sin2008°)=cos(sin208°)=cos(﹣sin28°)=cos(sin28°)>0,d=cos(cos2008°)=cos(cos208°)=cos(﹣cos28°)=cos(cos28°)>0,∵cos28°=sin62°,∴<sin32°<<sin62°,∴c>d,﹣b>﹣a,∴b<a<d<c故答案为:b<a<d<c.【点评】本题考查正弦函数、余弦函数的单调性及应用,注意单调区间,同时考查诱导公式的应用,是一道中档题.15.b克糖水中有a克糖(b>a>0),若再加入m克糖(m>0),则糖水更甜了,将这个事实用一个不等式表示为.【考点】不等关系与不等式.【专题】计算题.【分析】根据“甜度”的定义,先表示出“甜度”为的b千克糖水中加入m(m>0)千克糖时的“甜度”:是,再由“糖水会更甜”,可知此时糖水的“甜度”大于原来糖水的“甜度”,即.【解答】解:∵b千克糖水中含a千克糖(0<a<b)时,糖水的“甜度”为,∴若在该糖水中加入m(c>0)千克糖,则此时的“甜度”是,又∵糖水会更甜,∴故答案为:【点评】本题考查生活常识中出现的不等式及运用不等式求解,易错点是得到加糖后糖的质量和糖水的质量.16.已知数列{log2(a n﹣1)},(n∈N*)为等差数列,且a1=3,a3=9(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和S n.【考点】等差数列的前n项和.【专题】转化思想;综合法;等差数列与等比数列.【分析】(1)利用等差数列的通项公式及其对数的运算性质即可得出;(2)利用等比数列的前n项和公式即可得出.【解答】解:(1)设等差数列 {log2(a n﹣1)},(n∈N*)的公差为d.由且a1=3,a3=9,可得:log2(9﹣1)=log2(3﹣1)+2d,∴3=1+2d,解得d=1.∴log2(a n﹣1)=1+(n﹣1)=n,∴a n=2n+1.(2)由a n=2n+1.∴数列{a n}的前n项和S n=+n=2n+1﹣2+n.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、对数的运算性质,考查了推理能力与计算能力,属于中档题.17.一物体受到与它运动方向相同的力:的作用,(x 的单位:m,F的单位:N),则它从x=0运动到x=1时F(x)所做的功等于.【考点】定积分在求面积中的应用.【专题】计算题;规律型;转化思想.【分析】本题是一个求变力做功的问题,可以利用积分求解,由题意,其积分区间是[0,1],被积函数是力的函数表达式,由积分公式进行计算即可得到答案【解答】解:由题意,的作用,(x 的单位:m,F的单位:N),则它从x=0运动到x=1时F(x)所做的功等于又===综上知,从x=0运动到x=1时F(x)所做的功等于故答案为【点评】本题考查定积分的应用,物理中的变力所做的功用定积分求解是定积分在物理中的重要应用,正确解答本题的关键是理解功与定积分的对应,用代数方法求解物理问题是一个学科之间结合的问题,在近几个的高考改革中,此类问题渐成热点18.空间直角坐标系中两点A(0,0,1),B(0,1,0),则线段AB的长度为.【考点】空间两点间的距离公式.【专题】计算题;空间位置关系与距离.【分析】根据空间两点之间的距离公式,将A、B两点坐标直接代入,可得本题答案.【解答】解:∵点A(0,0,1),点B(0,1,0),∴根据空间两点之间的距离公式,可得线段AB长|AB|==故答案为:【点评】本题给出空间两个定点,求它们之间的距离,着重考查了空间两点之间距离求法的知识,属于基础题.三、解答题19.已知椭圆┍的方程为+=1(a>b>0),点P的坐标为(﹣a,b).(1)若直角坐标平面上的点M、A(0,﹣b),B(a,0)满足=(+),求点M的坐标;(2)设直线l1:y=k1x+p交椭圆┍于C、D两点,交直线l2:y=k2x于点E.若k1•k2=﹣,证明:E为CD的中点;(3)对于椭圆┍上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆┍上存在不同的两个交点P1、P2满足+=,写出求作点P1、P2的步骤,并求出使P1、P2存在的θ的取值X围.【考点】直线与圆锥曲线的综合问题.【专题】计算题;证明题;压轴题.【分析】(1)设M(x,y)根据=(+)分别用三点的坐标表示出三个向量,进而解得x和y,则M点坐标可得.(2)直线l1与椭圆方程联立消去y,根据判别式求得,a2k12+b2﹣p2>0,设C(x1,y1)、D(x2,y2),CD中点坐标为(x0,y0),利用韦达定理可求得x1+x2的表达式,进而求得x0,代入直线方程求得y0,两直线方程联立根据直线l2的斜率求得x=x0,y=y0进而判断出E为CD的中点;(3)先求出PQ的中点的坐标,进而求出直线OE的斜率,再由+=,知E为CD的中点,根据(2)可得CD的斜率,直线CD与椭圆Γ的方程联立,方程组的解即为点P1、P2的坐标.欲使P1、P2存在,必须点E在椭圆内,进而求得q的取值X围.【解答】解:(1)设M(x,y)∵=(+),∴2(x+a,y﹣b)=(a,﹣2b)+(2a,﹣b)∴,解得x=y=﹣M点坐标为(,﹣)(2)由方程组,消y得方程(a2k′1+b2)x2+2a2k1px+a2(p2﹣b2)=0,因为直线l1:y=k1x+p交椭圆于C、D两点,所以△>0,即a2k12+b2﹣p2>0,设C(x1,y1)、D(x2,y2),CD中点坐标为(x0,y0),则x0==﹣,y0=k1x0+p=,由方程组,消y得方程(k2﹣k1)x=p,又因为k2=﹣,所以x==x0,y=k2x=y0故E为CD的中点;(3)求作点P1、P2的步骤:1°求出PQ的中点E(﹣,),2°求出直线OE的斜率k2==,3°由+=,知E为CD的中点,根据(2)可得CD的斜率k1=,4°从而得直线P1P2的方程:y﹣=(x+),5°将直线CD与椭圆Γ的方程联立,方程组的解即为点P1、P2的坐标.欲使P1、P2存在,必须点E在椭圆内,所以+<1,化简得sinθ﹣cosθ<,∴sin(θ﹣)<,又0<q<p,所以﹣<θ﹣<arcsin,故q的取值X围是(0,+arcsin)【点评】本题主要考查了直线与圆锥曲线的综合问题.解题的前提是要求学生对基础知识有相当熟练的把握.20.在数列{a n}中,a1=1,a n+1=(1+)a n+,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n.【考点】数列递推式.【专题】计算题;函数思想;数学模型法;等差数列与等比数列.【分析】(Ⅰ)把已知数列递推式变形,得到,然后利用累加法求数列的通项公式;(Ⅱ)分组后利用等差数列的前n项和及错位相减法求数列{a n}的前n项和S n.【解答】解(Ⅰ)由a n+1=(1+)a n+,得,∴,,,…,累加得:=.∴;(Ⅱ)=,令,则,=,∴,则.【点评】本题考查数列递推式,考查了错位相减法求数列的前n项和,训练了累加法求数列的通项公式,是中档题.21.在三角形ABC中,,求三角形ABC的面积S.【考点】正弦定理的应用.【专题】计算题.【分析】先根据cosB求出sinB的值,再由两角和与差的正弦公式求出sinA的值,由余弦定理求出c的值,最后根据三角形的面积公式求得最后答案.【解答】解:由题意,得为锐角,,,由正弦定理得,∴.【点评】本题主要考查两角和与差的正弦公式和三角形面积公式的应用,属基础题.寿命/小时100~200 200~300 300~400 400~500 500~600个数20 30 80 40 30分组频数频率100~200200~300300~400400~500500~600合计(2)完成频率分布直方图;(3)估计电子元件寿命在100~400小时以内的概率;(4)估计电子元件寿命在400小时以上的概率.【考点】互斥事件的概率加法公式;频率分布直方图.【专题】计算题;作图题.【分析】(1)由题意知,本题已经对所给的数据进行分组,并且给出了每段的频数,根据频数和样本容量做出频率,填出频率分布表(2)结合前面所给的频率分布表,画出坐标系,选出合适的单位,画出频率分步直方图.(3)由累积频率分布图可以看出,寿命在100~400h内的电子元件出现的频率为0.65,我们估计电子元件寿命在100~400h内的概率为0.65.(4)由频率分布表可知,寿命在400h以上的电子元件出现的频率,我们估计电子元件寿命在400h以上的概率为0.35.【解答】解:(1)完成频率分布表如下:分组频数频率100~200 20 0.10200~300 30 0.15300~400 80 0.40400~500 40 0.20500~600 30 0.15合计200 1(2)完成频率分布直方图如下:(3)由频率分布表可知,寿命在100~400小时的电子元件出现的频率为0.10+0.15+0.40=0.65,所以估计电子元件寿命在100~400小时的概率为0.65(4)由频率分布表可知,寿命在400小时以上的电子元件出现的频率为0.20+0.15=0.35,所以估计电子元件寿命在400小时以上的概率为0.35【点评】本题在有些省份会作为高考答题出现,画频率分布条形图、直方图时要注意纵、横坐标轴的意义.通过本题可掌握总体分布估计的各种方法和步骤.23.求出函数y=sin(﹣x),x∈[﹣2π,2π]的单调递增区间.【考点】正弦函数的单调性.【专题】转化思想;转化法;三角函数的图像与性质.【分析】y=sin(﹣x)=﹣sin(x﹣),利用复合三角函数的单调性转化为求y=sin (x﹣),x∈[﹣2π,2π]的单调递减区间.【解答】解:y=sin(﹣x)=﹣sin(x﹣),要求函数y=sin(﹣x),x∈[﹣2π,2π]的单调递增区间.即求y=sin(x﹣),x∈[﹣2π,2π]的单调递减区间.∴由2kπ+≤x﹣≤+2kπ(k∈Z)得:4kπ+≤x≤+4kπ(k∈Z),∴y=sin(﹣x)的递增区间为[4kπ+,+4kπ](k∈Z),又x∈[﹣2π,2π],∴y=sin(﹣x)在x∈[﹣2π,2π]上的递增区间为[﹣2π,﹣]和[,2π].【点评】本题考查复合三角函数的单调性,由2kπ+≤x﹣≤+2kπ(k∈Z)求得y=sin(﹣x)的递增区间是关键,也是易错点,属于中档题.。

山东省潍坊市2022-2023学年高二上学期期末考试数学试题(含答案)

山东省潍坊市2022-2023学年高二上学期期末考试数学试题(含答案)

所以 "% 2& % $槡&%% ,%4% - 2槡&%% *% 2(& * 分
高二数学答案第 & 页共 4 页
因为#*",0&
#*".所以#/".0#/"*/#*".0#/"*/(&
#*",0%
# &
! 所以
.%
# &
((


5/?5! 05/*5
5/+5得
B! 05'!%&2!% (
又 5
4
&% '%
在椭圆上所以
&!% #
/'!%
0(
所以 B! 0#B0@!
所以存在点 ?% @! 使得$/?*/$/?+0! 成立! (! 分
高二数学答案第"4 页 共 4 页
又因为
)
!7%
所以直线
"$的斜率为
:"$
0& !
槡7&27!70槡&!

4

! 由( 知直线 "$的斜率为槡& 高二数学答案第 ( 页共 4 页
{'! 0!7&
设直线 "$的方程为 '0槡& &2!7 则 &0槡&&'/!7由 &0槡&'/7得 * 分 &!
0%所以
) 2()4 2B ) 2&% 2'% 0%
整理得 B'% 0+) &% 2) ! 3 分

高二数学上学期期末考试试题及答案

高二数学上学期期末考试试题及答案

高二数(Shu)学上学期期末考试试题及答案高(Gao)二数学(理(Li))试(Shi)题第(Di)Ⅰ卷(选择题(Ti) 共60分)一(Yi)、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个(Ge)选项中,只有一项是符合题目要求的.1、命题“若”的逆否命题是()A.若 B.C.若D.2、命题,若是真命题,则实数的取值范围是()A. B. C.D.3、下列各数中最大的数为()A.101111(2) B.1210(3) C.112(8) D.69(12)4、如图所示的程序框图,若输出的S=31,则判断框内填入的条件是()A. B. C. D.5、从某小学随机抽取200名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取36人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为( ).A.3 B.6 C.9 D.12(第4题图)(第5题图)6、袋中装有3个黑球、2个白球、1个红球,从中任取两个,互斥而不对立的事件是()A.“至少(Shao)有一个黑球”和“没有黑球” B.“至少(Shao)有一个白球”和“至少有一个红球”C.“至少有一个白(Bai)球”和“红球黑球各有一个” D.“恰有一个白球(Qiu)”和“恰有一个黑球”7、利用随机数表法对一个容量为500编号(Hao)为000,001,002,…,499的产品进行抽样检验,抽取一个容量为10的样本,若选定从第12行第4列(Lie)的数开始向右读数,(下面摘取了随机数表中的第11行至第15行),根据下图,读出的第3个数是()A.584 B.114 C.311 D.1608、是空(Kong)间的一个单位正交基底,在基(Ji)底{},,a b c下的坐标为,则p在基底下的坐标为()A. B. C.D.9、假设在5秒内的任何时刻,两条不相关的短信机会均等地进入同一部手机,若这两条短信进入手机的时间之差小于2秒,手机就会受到干扰,则手机受到干扰的概率为()A. B. C. D.10、已知是双曲线的左、右焦点,过的直线与的左、右两支分别交于点A、B.若△ABF2为等边三角形,则双曲线的离心率为()A.4 B. C. D.11、已知定义域为的奇函数的导函数为,当时,,若,,,则的大小关系正确的是()A. B. C. D.12、已知是抛物线的焦点,直线与该抛物线交于第一象限内的两点A ,B ,若,则的值是( )A .B .C .D .第(Di)Ⅱ卷(非选择题 共90分)二.填空题:本(Ben)大题共4小题,每小题5分,共20分,把答案填在题中横线上.13、由曲(Qu)线,直(Zhi)线及(Ji)轴所围成的图(Tu)形的面积为 .14、椭(Tuo)圆与(Yu)直线交于两点,过原点与线段中点的直线的斜率为,则的值为 .15、下列命题:①命题“”的否命题为“”;②命题“”的否定是“” ③对于常数,“”是“方程表示的曲线是双曲线”的充要条件;④“”是“”的必要不充分条件;⑤已知向量不共面,则向量可以与向量和向量构成空间向量的一个基底.其中说法正确的有 (写出所有真命题的编号). 16、设定义域为的单调函数,对任意的,都有,若是方程的一个解,且,则实数.三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17、(本小题满分10分) 设关于的一元二次方程.(1)若a 是从1,2,3,4四个数中任取的一个数,是从0,1,2三个数中任取的一个数,求上述方程有两个不等实根的概率;(2)若a 是从区间任取的一个数,b 是从区间任取的一个数,求上述方程有实根的概率.18、(本小题满分12分) 某厂采用新技术改造后生产甲产品的产量x (吨)与相应的生产成本y (万元)的几组对照数据.x 3 4 5 6 y33.54.55(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)已知该厂技改前生产50吨甲产品的生产成本为40万元.试根据(2)求出的线性回归方程,预测生产50吨甲产品的生产成本比技改前降低多少万元?(参考(Kao)数据(Ju):,)19、(本小题(Ti)满分12分)如图(Tu):四棱锥中(Zhong),底面是(Shi)平行四边(Bian)形,且,,,,点(Dian)F是的中点,点在边上移动.(1)证明:当点E在边BC上移动时,总有;(2)当等于何值时,与平面所成角的大小为45°.20、(本小题满分12分)已知函数,(1)若)(xf的一个极值点为1,求a的值;(2)设在上的最大值为b,当时,恒成立,求a的取值范围.21、(本小题满分12分)已知中心在原点,焦点在x轴的椭圆过点,且焦距为2,过点分别作斜率为的椭圆的动弦,设分别为线段,AB CD的中点.(1)求椭圆的标准方程;(2)当,直线是否恒过定点?如果是,求出定点坐标.如果不是,说明理由.22、(本小题满分12分)设函数(1)求函数)(xf的最小值;(2)设,讨论函数的单调性;(3)在第二问的基础上,若方程,()有两个不相等的实数根,求证:.高(Gao)二数学(理)参考答(Da)案DCDAB CCACB DA13. 14. 15. ③⑤ 16. 217. 解:设事件A 为“方程(Cheng)有实根”.当a >0,b >0时,方程(Cheng)有实根的充要条件为a>b(1)由题意知本题是一个古典概型,试验(Yan)发生包含的基本事件共12个: (1,0)(1,1)(1,2)(2,0)(2,1)(2,2)(3,0)(3,1)(3,2)(4,0)(4,1)(4,2) ………………2分(Fen) 其中第一个数表示(Shi)a 的取值,第二个数表示b 的取值.事件A 中包(Bao)含9个基本事件, ………………4分∴事件A 发生的概率为 ………………5分(2)由题意知本题是一个几何概型,试验的全部结束所构成的区域为{(a ,b )|1≤a≤4,0≤b≤2}满足条件的构成事件A 的区域为{(a ,b )|1≤a≤4,0≤b≤2,a≥b}………………8分∴所求的概率是 ………………10分18. 解(1)略 ………………2分(2)由已知42186ii x==∑42166.5ii y==∑4175.5i ii x y==∑所以,由最小二乘法确定的回归方程的系数为:b ^=………………5分a ^=y -b ^x =4-0.7×4.5=0.85 ………………7分 因此,所求的线性回归方程为y ^=0.7x +0.85 ………………8分(3)由(2)的回归方(Fang)程及技改前生产50吨甲产(Chan)品的生产成(Cheng)本,得降低的生(Sheng)产成(Cheng)本为(Wei):40-(0.7×50+0.85)=4.15(万(Wan)元). (12)分(Fen)19. 解解:(1)分别以AD、AB、AP所在直线为x、y、z轴,建立如图所示空间坐标系则可得P(0,0,1),B(0,1,0),F(0,,),D(,0,0)设BE=x,则E(x,1,0)∴=(x,1,﹣1)得=x•0+1×+(﹣1)×=0可得,即AF⊥PE成立;………………5分(2)求出=(,0,﹣1),设平面PDE的一个法向量为则,得………………7分∵PA与平面PDE所成角的大小为45°,=(0,0,1)∴sin45°==,得=………………9分解之得x=或x=∵BE=x,………………11分∴BE=,即当CE等于时,PA与平面PDE所成角的大小为45°.……………12分20. 解: (1),令,则a=1………………3分经检验,当a=1时,1是)(xf的一个极值点………………4分(2) ,所以()g x在[1,2]上是增函数,[2,4]上是减函数………………7分在[)1,x∈+∞上恒成立,由x∈[1,+∞)知,x+ln x>0,………………8分所以f(x)≥0恒成立等价于a≤x2x+ln x在x∈[e,+∞)时恒成立,………………9分令h (x )=x2x +ln x ,x ∈[1,+∞),有h ′(x )=xx -1+2ln xx +ln x 2>0,………………10分所(Suo)以h (x )在[1,+∞)上是(Shi)增函数,有h (x )≥h (1)=1,所(Suo)以a ≤1 ………………12分(Fen)21. 解(Jie):(1)由题(Ti)意知设右(You)焦点………………2分(Fen)椭圆方程为 ………………4分(2)由题意,设直线,即代入椭圆方程并化简得………………5分………………7分同理 ………………8分当时, 直线MN 的斜率………………9分直线MN 的方程为………………10分又 化简得 此时直线过定点(0,)当时,直线MN 即为y 轴,也过点(0,32-)………………12分 综上,直线过定点(0,32-) 22. (1)解:f′(x )=lnx+1(x >0),令f′(x )=0,得.……………2分∵当时,f′(x)<0;当时,f′(x)>0∴当(Dang)时(Shi),.………………3分(Fen)(2)F′(x)=2x﹣(a﹣2)﹣(x>0).当a≤0时(Shi),F′(x)>0,函数F(x)在(0,+∞)上单调递增,函数F(x)的单调增区间为(0,+∞).当a>0时,由(You)F′(x)>0,得x>;由(You)F′(x)<0,得0<x<.所以函数F(x)的单(Dan)调增区间为,单调减(Jian)区间为. (7)分(3)证明:因为x1、x2是方程F(x)=m的两个不等实根,由(1)知a>0.不妨设0<x1<x2,则﹣(a﹣2)x1﹣alnx1=c,﹣(a﹣2)x2﹣alnx2=c.两式相减得﹣(a﹣2)x1﹣alnx1﹣+(a﹣2)•x2+alnx2=0,即+2x1﹣﹣2x2=ax1+alnx1﹣ax2﹣alnx2=a(x1+lnx1﹣x2﹣lnx2).所以a=.因为F′=0,即证明x1+x2>,即证明﹣+(x1+x2)(lnx1﹣lnx2)<+2x1﹣﹣2x2,即证明ln <.设t=(0<t<1).令g(t)=lnt﹣,则g′(t)=.因为t>0,所以g′(t)≥0,当且仅当t=1时,g′(t)=0,所以g(t)在(0,+∞)上是增函数.又g(1)=0,所以当t∈(0,1)时,g(t)<0总成立.所以原题得证………………12分。

高二数学上学期期末考试试卷

高二数学上学期期末考试试卷

高二数学上学期期末考试试卷 高二年级数学试题(理)命题人:江国新一、选择题(5分×10=50分)1.已知α,β,γ是两两相交的三个平面,则α∩β∩γ等于A .一个点B .一条直线C .φD .以上三种情况均有可能2.空间四边形ABCD 中,AB=CD ,AB 与CD 成30°角,E 、F 分别为BC 、AD 的中点,则EF 和AB 所成角为A .15°B .75°C .15°或75°D .30° 3.给出以下四个命题①过空间一点有且只有一个平面与两条异面直线都平行②过两条异面直线中的一条有且只有一个平面与另一条直线平行 ③过两条异面直线中的一条有且只有一个平面与另一条直线垂直 ④与两条异面直线都相交的两条直线是异面直线 其中真命题的个数为A .4B .3C .2D .1 4.已知A(1,-2,11),B(4,2,3),C(6,-1,4),则△ABC 是A .钝角三角形B .锐角三角形C .直角三角形D .等腰三角形 5.关于直线m ,n 与平面α、β,有下列四个命题:①若m//α,n//β且α//β,则m//n ②若m ⊥α,n ⊥β且α⊥β,则m ⊥n ③若m ⊥α,n//β且α//β,则m ⊥n ④若m//α,n ⊥β且α⊥β,则n//m 其中真命题的个数为A .1B .2C .3D .4 6.若)21,1,2(),,,1(2=-=b a λλλ,且b a 与的夹角为锐角,则λ的取值范围为A .-1<λ<4B .-1<λ<21 C .21<λ<4 D .-1<λ<21或21<λ<47.双曲线C :)0,0(12222>>=-b a by a x 与直线l :mx+ny+t=0的公共点个数可能为①0个 ②1个 ③2个 ④3个 ⑤4个 其中命题正确的个数为A .2B .3C .4D .58.在正方体ABCD —A 1B 1C 1D 1中,M 为DD 1的中点,O 为ABCD 的中心,P 为棱A 1B 1上的任一点,则直线OP 与AM 所成角为A .30°B .45°C .60°D .90° 9.对于四面体ABCD ,给出下列四个命题①若AB=AC ,DB=DC ,则AD=BC ②若AB=CD ,AC=BD ,则BC ⊥AD ③若AB ⊥AC ,BD ⊥CD ,则BC ⊥AD ④若AB ⊥CD ,BD ⊥AC ,则BC ⊥AD 其中真命题的个数为A .1B .2C .3D .410.长方体ABCD —A 1B 1C 1D 1中,P 为底面ABCD 内的一动点,P 到点B 的距离与P 到直线DD 1的距离之比为e(0<e<1),则点P 的轨迹是A .椭圆的一部分B .双曲线的一部分C .圆的一部分D .线段 二、填空题(5分×5=25分)11.过点P(1,2)且在两坐标轴上的横纵截距互为相反数的直线方程为____________.12.已知⎪⎩⎪⎨⎧≤--≤+-≥022011y x y x x ,则(x -6)2+y 2的最小值为_______________.13.已知)2,0,1(),1,1,1(-==b a ,则b a 在方向上的正射影为_______________.14.设矩形ABCD(AB>AD)的周长为12,把它关于AC 折起来,AB 折过去后,交DC 于点P ,则△ADP 的最大面积为______________.15.已知四面体PABC 中,PA=3,PB=4,PC=5,∠APB=∠BPC=∠APC=60°,则AP 与平面PBC 所成角为_______________,||PC PB PA ++=____________.高二数学上学期期末考试试卷 高二年级数学试题(理)答题卷二、填空题答题卡11._________________ 12.________________ 13.________________ 14.________________ 15.________________ ___________________三、解答题 16.(本小题12分)已知空间四边形OABC 中,OA=OB ,CA=CB ,E 、F 分别为OA 、OB的中点(1)若G 、H 分别为BC 、AC 的中点,求证:四边形EFGH 是矩形; (2)若G 、H 分别为BC 、AC 上的点,且32==CA CH CB CG ,求证三条直线FG 、HE 、OC 交于一点.17.(本小题12分)已知关于x 的不等式2222+-+>++-x x ax x x a x (1)若不等式的解集为R ,求实数a 的取值范围; (2)是否存在实数a 使不等式的解集为(-1,1)?18.(本小题12分)在矩形ABCD 中,AB=3,BC=1,沿对角线BD 将△BCD 折起,使点C 移到C '点,且C '点在平面ABD 上的射影O 恰在AB 上(1)求证:B C '⊥平面A C 'D ;(2)求直线AB 与平面B C 'D 所成角的大小.19.(本小题12分)已知圆C的方程为x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0(t∈R) (1)求圆C的面积的取值范围;(2)过点P(3,4t2)的直线l与圆C的公共点的个数为0或1或2,求t的取值范围.20.(本小题13分)已知矩形ABCD中,AB=a,BC=2,PA⊥平面ABCD,且PA=1 (1)若M、N分别为BC、PD的中点,求证:MN//平面PAB;(2)若BC边上有且只有一个点Q,使PQ⊥DQ,试求异面直线QN与CD所成的角.21.(本小题14分)求出一个数学问题的正确结论后,将其作为条件之一,提出与原来问题有关的新问题,我们把它称为原来问题的一个“逆向”问题. 例如:原来问题是“在平面直角坐标系xOy中,求点P(2,1)到直线3x+4y=0的距离”,求出距离2后,它的一个“逆向”问题可以是“求到直线3x+4y=0的距离为2的点的轨迹方程”;也可以是“若点P(2,1)到直线l:ax+by=0的距离为2,求直线l的方程.”试给出问题“过抛物线C:y2=2px(p>0)焦点F的一条直线与抛物线C交于两点P、Q,经过点P和抛物线顶点的直线交准线于点M,求证:MQ//x轴”的一个有意义的“逆向”问题,并解答你所给出的“逆向”问题.。

河南省许昌市中学2021-2022学年高二数学理上学期期末试卷含解析

河南省许昌市中学2021-2022学年高二数学理上学期期末试卷含解析

河南省许昌市中学2021-2022学年高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 若等差数列{a n}和等比数列{b n}满足,则()A. -1B. 1C. -4D. 4参考答案:B【分析】根据等差数列与等比数列的通项公式,求出公差与公比,进而可求出结果.【详解】设等差数列的公差为,等比数列的公比为,因为,所以,解得,因此,所以.故选B2. 已知f(n)=(2n+7)·3n+9,存在自然数m,使得对任意n∈N,都能使m整除f(n),则最大的m的值为( )A、30B、 26C、 36D、 6参考答案:C略3. 用反证证明:“自然数a,b,c中恰有一个偶数”时正确的假设为()A.a,b,c都是偶数B.a,b,c都是奇数C.a,b,c中至少有两个偶数D.a,b,c中都是奇数或至少两个偶数参考答案:D【考点】反证法.【分析】用反证法法证明数学命题时,假设命题的反面成立,写出要证的命题的否定形式,即为所求.【解答】解:∵结论:“自然数a,b,c中恰有一个偶数”可得题设为:a,b,c中恰有一个偶数∴反设的内容是假设a,b,c都是奇数或至少有两个偶数.故选:D.4. 命题p:a≥1;命题q:关于x的实系数方程x2﹣2x+a=0有虚数解,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:B【考点】2L:必要条件、充分条件与充要条件的判断.【分析】根据复数的有关性质,利用充分条件和必要条件的定义进行判断.【解答】解:若关于x的实系数方程x2﹣2x+a=0有虚数解,则判别式△<0,即8﹣4a<0,解得a>2,∴p是q的必要不充分条件,故选:B5. 已知函数f(x)=xe x,则f′(2)等于()A.e2 B.2e2 C.3e2 D.2ln2参考答案:C【考点】导数的运算.【分析】先根据两乘积函数的导数运算法则求出f(x)的导数,然后将2代入导函数,即可求出所求.【解答】解:∵f(x)=xe x,∴f′(x)=e x+xe x.∴f′(2)=e2+2e2=3e2.故选C.【点评】本题主要考查了导数的运算,以及函数的求值,解题的关键是两乘积函数的导数运算法则,属于基础题.6. 已知函数,若对任意两个不等的正数,都有成立,则实数的取值范围是(A)(B)(C)(D)参考答案:B即在上单增,即恒成立,也就是恒成立,,故选B7. 要描述一个工厂某种产品的生产步骤, 应用A.程序框图B.工序流程图C.知识结构图D.组织结构图参考答案:B略8. 设,则,,()A.都不大于2 B.都不小于2C.至少有一个不大于2 D.至少有一个大于2参考答案:D因为与都不大于2矛盾,所以A错误.若所以B错误.若则a>2,b>2,c>2,所以C错误. 故答案为:D9. 过长方体一个顶点的三条棱长分别为1,2,3,则长方体的一条对角线长为()A. B. C. D. 6参考答案:B10. 若直线与互相垂直,则a等于()A. 3B. 1C. 0或D. 1或-3参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 已知则.参考答案:-1/9略12. (原创)_____________.参考答案:13. 若曲线在点(1,a)处的切线平行于x轴,则a=__________.参考答案:14. 设向量,.其中.则与夹角的最大值为________.参考答案:【分析】由两向量中的已知坐标和未知坐标间的关系,得出两向量的终点的轨迹,运用向量的夹角公式求解.【详解】向量的终点都在以为圆心,1为半径的圆上;向量的终点都在以为圆心,1为半径的圆上;且为圆与圆的距离为1,如图所示,两向量的夹角最大,为.【点睛】本题考查动点的轨迹和空间直角坐标系中向量的夹角,属于中档题.15. 直线y=kx+3与圆(x﹣3)2+(y﹣2)2=4相交于M,N两点,若MN=2,则实数k的值是.参考答案:0或略16. 定义在R上的函数满足:,且对于任意的,都有,则不等式的解集为 __________________参考答案:略17. (原创)已知函数,则.参考答案:1略三、解答题:本大题共5小题,共72分。

山西省朔州市怀仁市2020-2021学年高二上学期期末(理科)数学试卷 (解析版)

山西省朔州市怀仁市2020-2021学年高二上学期期末(理科)数学试卷 (解析版)

2020-2021学年山西省朔州市怀仁市高二(上)期末数学试卷(理科)一、选择题(共12小题).1.抛物线y=x2的准线方程为()A.B.y=﹣2C.x=﹣2D.x=﹣2.“3<m<7”是“方程=1为椭圆”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知双曲线的渐近线方程为,则其对应的双曲线方程不可能为()A.B.C.D.x2﹣4y2=6 4.已知函数y=f(x)的导函数的图象如图所示,则下列结论正确的是()A.﹣1是函数f(x)的极小值点B.﹣4是函数f(x)的极小值点C.函数f(x)在区间(﹣∞,﹣4)上单调递增D.函数f(x)在区间(﹣4,﹣1)上先增后减5.椭圆上的一点A关于原点的对称点为B,F为它的右焦点,若AF⊥BF,则△AFB的面积是()A.1B.2C.4D.86.已知抛物线y2=4x的焦点为F,过点F的直线交抛物线于A,B两点,且|FA|•|FB|=8,则|AB|=()A.6B.7C.8D.97.已知椭圆+y2=1(m>1)和双曲线﹣y2=1(n>0)有相同的焦点F1,F2,P是它们的一个交点,则△F1PF2的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.随m,n的变化而变化8.从某个角度观察篮球(如图1),可以得到一个对称的平面图形,如图2所示,篮球的外轮席为圆O,将篮球表面的粘合线看成坐标轴和双曲线,若坐标轴和双曲线与圆O的交点将圆O的周长八等分,且AB=BC=CD,则该双曲线的离心率为()A.B.C.D.9.已知A(﹣3,0),B是圆x2+(y﹣4)2=1上的点,点P在双曲线的右支上,则|PA|+|PB|的最小值为()A.9B.2+4C.8D.710.已知点A,B是双曲线的左、右顶点,F1,F2是双曲线的左、右焦点,若|F1F2|=2,P是双曲线上异于A,B的动点,且直线PA,PB的斜率之积为定值4,则|AB|=()A.2B.C.D.411.如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE,若M为线段A1C的中点,则在△ADE翻折过程中,下面四个命题中不正确的是()A.|BM|是定值B.点M在某个球面上运动C.存在某个位置,使DE⊥A1CD.存在某个位置,使MB∥平面A1DE12.已知函数f(x)是定义在R上连续的奇函数,当x>0时,xf'(x)+2f(x)>0,且f (1)=1,则函数g(x)=f(x)﹣的零点个数是()A.0B.1C.2D.3二、填空题(共4小题).13.已知椭圆C:+=1的AB的中点M的坐标为(2,1),则直线AB的方程为.14.如果F1,F2分别是双曲线的左、右焦点,AB是双曲线左支上过点F1的弦,且|AB|=6,则△ABF2的周长是.15.已知函数f(x)=在(0,1)内存在最小值,则a的取值范围为.16.如图,P为椭圆+=1上一个动点,过点P作圆C:(x﹣1)2+y2=1的两条切线,切点分别为A,B,则当四边形PACB面积最大时,•的值为.三、解答题(共6小题).17.设命题p:方程表示中心在原点,焦点在坐标轴上的双曲线;命题q:实数a使曲线x2+y2﹣4x﹣2y﹣a2+6a+12=0表示一个圆.(1)若命题p为真命题,求实数a取值范围;(2)若命题“p∨q”为真,命题“p∧q”为假,求实数a的取值范围.18.如图,在四棱锥P﹣ABCD中,AB⊥PC,AD∥BC,AD⊥CD且PC=BC=2AD=2CD =2,PA=2.(1)证明:平面PAC⊥平面ABCD.(2)若M为侧棱PD的中点,求二面角M﹣AC﹣P的余弦值.19.已知函数.(Ⅰ)当时,判断函数f(x)是否有极值;(Ⅱ)若时,f(x)总是区间(2a﹣1,a)上的增函数,求实数a的取值范围.20.过抛物线C:y2=2px(p>0)的焦点F且斜率为1的直线交抛物线C于M,N两点,且|MN|=2.(1)求p的值;(2)抛物线C上一点Q(x0,1),直线l:y=kx+m(其中k≠0)抛物线C交于A,B 两个不同的点(A,B均与点Q不重合)设直线QA,QB的斜率分别为k1,k2,k1k2=,直线l是否定点?若是,求出所有定点;若不是,请说明理由.21.已知双曲线x2﹣y2=1的焦点是椭圆的顶点,F1为椭圆C的左焦点且椭圆C经过点.(1)求椭圆C的方程;(2)过椭圆C的右顶点A作斜率k(k<0)的直线交椭圆C于另一点B,连结BF1,并延长BF1,交椭圆C于点M,当△AOB的面积取得最大值时,求△ABM的面积.22.已知函数f(x)=ax2+(2﹣a)lnx+2.(1)求函数在点(1,f(1))处的切线方程,并讨论函数f(x)的单调性;(2)若关于x的不等式f(x)≥(a+2)x在[1,+∞)恒成立,求实数a的取值范围.参考答案一、选择题(共12小题).1.抛物线y=x2的准线方程为()A.B.y=﹣2C.x=﹣2D.x=﹣解:根据题意,抛物线的方程为:y=x2,则其标准方程为:x2=8y,其焦点在y轴正半轴上,且p=4,则其准线方程为:y=﹣2;故选:B.2.“3<m<7”是“方程=1为椭圆”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:当m=5时,方程为圆,“方程为椭圆”则,解得“3<m<5或5<m<7”,∴“3<m<7”是“方程为椭圆”的必要不充分条件.故选:B.3.已知双曲线的渐近线方程为,则其对应的双曲线方程不可能为()A.B.C.D.x2﹣4y2=6解:的渐近线方程为:;的渐近线方程为:;的渐近线方程为:y=±2x;x2﹣4y2=6,的渐近线方程为:;故选:C.4.已知函数y=f(x)的导函数的图象如图所示,则下列结论正确的是()A.﹣1是函数f(x)的极小值点B.﹣4是函数f(x)的极小值点C.函数f(x)在区间(﹣∞,﹣4)上单调递增D.函数f(x)在区间(﹣4,﹣1)上先增后减解:结合导函数的图象,f(x)在(﹣∞,﹣4)递减,在(﹣4,+∞)递增,对于A,﹣1不是f(x)的极值点;对于B,﹣4是函数f(x)的极小值点;对于C,函数f(x)在区间(﹣∞,﹣4)上单调递减;对于D,函数f(x)在区间(﹣4,﹣1)上单调递增;故选:B.5.椭圆上的一点A关于原点的对称点为B,F为它的右焦点,若AF⊥BF,则△AFB的面积是()A.1B.2C.4D.8【分析】由椭圆上的一点A关于原点的对称点为B,F为它的右焦点,AF⊥BF,可得|AO|=2,求出A的纵坐标,再求出三角形△AFB的面积.解:椭圆中a=4,b=2,c=2,∵椭圆上的一点A关于原点的对称点为B,F为它的右焦点,AF⊥BF,∴|AO|=|BO|=|OF|=2,设A(x,y),则x2+y2=12,∵椭圆,联立消去x,化简可得|y|=,∴三角形△AFB的面积是2×=4,故选:C.6.已知抛物线y2=4x的焦点为F,过点F的直线交抛物线于A,B两点,且|FA|•|FB|=8,则|AB|=()A.6B.7C.8D.9【分析】设A(x1,y1),B(x2,y2),直线AB的斜率为k,联立方程组消元,根据根与系数的关系和弦长公式即可得出|AB|的值.解:抛物线y2=4x,p=2,抛物线的焦点坐标为F(1,0),设直线AB方程为y=k(x﹣1),联立方程组,消去y得:k2x2﹣(2k2+4)x+k2=0,设A(x1,y1),B(x2,y2),则x1x2=1,抛物线的准线方程为x=﹣1,故|FA|=x1+1,|FB|=x2+1,∴|FA||FB|=(x1+1)(x2+1)=x1+x2+x1x2+1=x1+x2+2=8,∴|AB|=|FA|+|FB|=x1+x2+2=8.故选:C.7.已知椭圆+y2=1(m>1)和双曲线﹣y2=1(n>0)有相同的焦点F1,F2,P是它们的一个交点,则△F1PF2的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.随m,n的变化而变化【分析】由双曲线的定义|PF1|﹣|PF2|=2,由椭圆的定义|PF1|+|PF2|=2,再由|F1F2|=2,利用勾股定理能判断△F1PF2的形状.解:由题意设两个圆锥曲线的焦距为2c,椭圆的长轴长2,双曲线的实轴长为2,不妨令P在双曲线的右支上,由双曲线的定义|PF1|﹣|PF2|=2,①由椭圆的定义|PF1|+|PF2|=2,②∵m﹣n=2,∴n=m﹣2,①2+②2得|PF1|2+|PF2|2=2(m+n),又∵椭圆+y2=1(m>1)和双曲线﹣y2=1(n>0)有相同的焦点F1,F2,∴m﹣1=n+1,∴m﹣n=2,∴|PF1|2+|PF2|2=2(m+n)=4m﹣4,|F1F2|2=(2)2=4m﹣4,∴|PF1|2+|PF2|2=|F1F2|,则△F1PF2的形状是直角三角形故选:B.8.从某个角度观察篮球(如图1),可以得到一个对称的平面图形,如图2所示,篮球的外轮席为圆O,将篮球表面的粘合线看成坐标轴和双曲线,若坐标轴和双曲线与圆O的交点将圆O的周长八等分,且AB=BC=CD,则该双曲线的离心率为()A.B.C.D.【分析】设出双曲线方程,通过坐标轴和双曲线与圆O的交点将圆O的周长八等分,且AB=BC=CD,推出点在双曲线上,然后求解离心率即可.解:设双曲线的方程为,则OC=a.因为AB=BC=CD,所以CD=2OC,所以OD=3OC=3a.因为坐标轴和双曲线与圆O的交点将圆O的周长八等分,所以点在双曲线上,代入双曲线方程得,解得.所以双曲线的离心率为.故选:D.9.已知A(﹣3,0),B是圆x2+(y﹣4)2=1上的点,点P在双曲线的右支上,则|PA|+|PB|的最小值为()A.9B.2+4C.8D.7【分析】设双曲线右焦点为M,利用双曲线定义可求出|PA|=|PM|+4,再利用圆的性质把PB的距离转化为P到圆心的距离减去半径,然后再利用两点间距离最短即可求解.解:设圆心为C,双曲线右焦点为M(3,0),且|PB|+|BC|≥PC|,即|PB|≥|PC|﹣1,|PA|=|PM|+4,所以|PB|+|PA|≥|PC|+|PA|+3≥|MC|+3=8,如图所示:当且仅当M,B,C三点共线时取得等号,故选:C.10.已知点A,B是双曲线的左、右顶点,F1,F2是双曲线的左、右焦点,若|F1F2|=2,P是双曲线上异于A,B的动点,且直线PA,PB的斜率之积为定值4,则|AB|=()A.2B.C.D.4【分析】设A(﹣a,0),B(a,0),P(x,y)求出斜率,利用斜率乘积推出a、b关系,结合焦距,转化求解a,即可推出|AB|.解:设A(﹣a,0),B(a,0),P(x,y),则,所以,又因为,所以,又因为c2=a2+b2,所以a=1,b=2,所以|AB|=2a=2,故选:A.11.如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE,若M为线段A1C的中点,则在△ADE翻折过程中,下面四个命题中不正确的是()A.|BM|是定值B.点M在某个球面上运动C.存在某个位置,使DE⊥A1CD.存在某个位置,使MB∥平面A1DE【分析】取CD中点F,连接MF,BF,则平面MBF∥平面A1DE,可得D正确;由余弦定理可得MB2=MF2+FB2﹣2MF•FB•cos∠MFB,所以MB是定值,M是在以B为圆心,MB为半径的圆上,可得A,B正确.A1C在平面ABCD中的射影为AC,AC与DE不垂直,可得C不正确.解:取CD中点F,连接MF,BF,则MF∥DA1,BF∥DE,∴平面MBF∥平面A1DE,∴MB∥平面A1DE,故D正确由∠A1DE=∠MFB,MF=A1D=定值,FB=DE=定值,由余弦定理可得MB2=MF2+FB2﹣2MF•FB•cos∠MFB,所以MB是定值,故A正确.∵B是定点,∴M是在以B为圆心,MB为半径的圆上,故B正确,∵A1C在平面ABCD中的射影为AC,AC与DE不垂直,∴存在某个位置,使DE⊥A1C不正确.故选:C.12.已知函数f(x)是定义在R上连续的奇函数,当x>0时,xf'(x)+2f(x)>0,且f (1)=1,则函数g(x)=f(x)﹣的零点个数是()A.0B.1C.2D.3【分析】根据题意,设h(x)=x2f(x),由函数的零点与方程的关系分析可得函数g(x)=f(x)﹣的零点就是方程x2f(x)=1的根,分析可得h(x)为R上连续的奇函数,且在R上为增函数,又由f(1)的值可得h(1)的值,据此可得方程x2f(x)=1只有一个根,即函数g(x)=f(x)﹣只有1个零点,可得答案.解:根据题意,若g(x)=f(x)﹣=0,变形可得g(x)==0,设h(x)=x2f(x),则函数g(x)=f(x)﹣的零点就是方程x2f(x)=1的根,h(x)=x2f(x),其定义域为R,又由f(x)为定义在R上连续的奇函数,则h(﹣x)=(﹣x)2f(﹣x)=﹣h(x),则h(x)为R上连续的奇函数,h(x)=x2f(x),则h′(x)=2xf(x)+x2f′(x)=x[xf'(x)+2f(x)],又由当x>0时,xf'(x)+2f(x)>0,则有h′(x)>0,即函数h(x)为(0,+∞)上的增函数,又由h(x)为R上连续的奇函数,且h(0)=0,则h(x)为R上的增函数,又由f(1)=1,则h(1)=f(1)=1,则方程x2f(x)=1只有一个根,故函数g(x)=f(x)﹣只有1个零点,故选:B.二、填空题(本大题共4小题,每小题5分,共20分)13.已知椭圆C:+=1的AB的中点M的坐标为(2,1),则直线AB的方程为x+2y ﹣4=0.【分析】设A(x1,y1),B(x2,y2),则2=,,=k.代入椭圆方程可得:=1,=1.相减化简整理即可得出.解:设A(x1,y1),B(x2,y2),则2=,,=k.代入椭圆方程可得:=1,=1.∴+=0,∴=0,解得k=﹣.∴直线AB的方程为:y﹣1=(x﹣2),化为:x+2y﹣4=0.故答案为:x+2y﹣4=0.14.如果F1,F2分别是双曲线的左、右焦点,AB是双曲线左支上过点F1的弦,且|AB|=6,则△ABF2的周长是28.【分析】本题涉及到双曲线上的点和两焦点构成的三角形问题,可用定义处理,由定义知|AF2|﹣|AF1|=8①,|BF2|﹣|BF1|=8②,两式相加再结合已知|AB|=6即可求解.解:由题意知:a=4,b=3,故c=5.由双曲线的定义知|AF2|﹣|AF1|=8①,|BF2|﹣|BF1|=8②,①+②得:|AF2|+|BF2|﹣|AB|=16,所以|AF2|+|BF2|=22,所以△ABF2的周长是|AF2|+|BF2|+|AB|=28故答案为:2815.已知函数f(x)=在(0,1)内存在最小值,则a的取值范围为(﹣2,﹣1)∪(1,2).【分析】f′(x)=x2+2x+(1﹣a2),由函数f(x)=在(0,1)内存在最小值,可得f′(x)=(x+1)2﹣a2在(0,1)内存在一个零点,因此f′(0)•f′(1)<0.解:f′(x)=x2+2x+(1﹣a2),∵函数f(x)=在(0,1)内存在最小值,∴f′(x)=x2+2x+(1﹣a2)=(x+1)2﹣a2在(0,1)内存在一个零点,∴f′(0)•f′(1)<0,即(1﹣a2)(4﹣a2)<0,解得:﹣2<a<﹣1,或1<a<2.故答案为:(﹣2,﹣1)∪(1,2).16.如图,P为椭圆+=1上一个动点,过点P作圆C:(x﹣1)2+y2=1的两条切线,切点分别为A,B,则当四边形PACB面积最大时,•的值为.【分析】连接PC,设∠APC=θ,当四边形PACB面积最大时,就是|PA|最大,结合椭圆性质可得当点P在椭圆左顶点时,|PC|最大,利用向量数量积公式求解.解:连接PC,设∠APC=θ,由切线性质可得|PA|=|PB|,四边形PACB面积S=|PA|×1×2=|PA|,当四边形PACB面积最大时,就是|PA|最大,|PA|=,结合椭圆性质可得当点P在椭圆左顶点时,|PC|最大,此时|PA|=,则sin,,•的值为|PA|2cos2θ=8×(1﹣×2)=,故答案为:.三、解答题(本大题共6小题共70分解答应写出文字说明、证明过程或演算步骤)17.设命题p:方程表示中心在原点,焦点在坐标轴上的双曲线;命题q:实数a使曲线x2+y2﹣4x﹣2y﹣a2+6a+12=0表示一个圆.(1)若命题p为真命题,求实数a取值范围;(2)若命题“p∨q”为真,命题“p∧q”为假,求实数a的取值范围.【分析】(1)由题意(a﹣3)(2a+7)<0,解得a的取值范围.(2)利用复合命题的真假性可以得出p,q一真一假,进而求出实数a的取值范围.解:(1)由题意(a﹣3)(2a+7)<0,解得.所以a的范围是.(2)命题q:实数a使曲线x2+y2﹣4x﹣2y﹣a2+6a+12=0表示一个圆,(x﹣2)2+(y﹣1)2=a2﹣6a﹣7表示圆.则需a2﹣6a﹣7>0,解得a>7或a<﹣1,∵命题“p∨q”为真,命题“p∧q”为假∴得﹣1≤a<3或得或a>7∴a的取值范围为.18.如图,在四棱锥P﹣ABCD中,AB⊥PC,AD∥BC,AD⊥CD且PC=BC=2AD=2CD =2,PA=2.(1)证明:平面PAC⊥平面ABCD.(2)若M为侧棱PD的中点,求二面角M﹣AC﹣P的余弦值.【分析】(1)证明AD⊥CD,AB⊥AC,结合AB⊥PC,证明AB⊥平面PAC,然后证明平面PAC⊥平面ABCD.(2)取BC的中点E,则AE、AD、求出平面ACD的一个法向量,平面MAC的法向量利用空间向量的数量积求解二面角M﹣AC﹣P的余弦值即可.【解答】(1)证明:∵在底面ABCD中,AD∥BC,AD⊥CD,且,∴AB=AC=2,,∴AB⊥AC,又∵AB⊥PC,AC∩PC=C,AC⊂平面PAC,PC⊂平面PAC,∴AB⊥平面PAC,又∵AB⊂平面ABCD,∴平面PAC⊥平面ABCD.(2)解:∵PA=AC=2,,∴PA⊥AC,又∵PA⊥AB,AB∩AC=A,AB⊂平面ABCD,AC⊂平面ABCD,∴PA⊥平面ABCD.取BC的中点E,则AE、AD、AP三条直线两两垂直,以A为坐标原点,AE、AD、AP所在的直线分别为x、y、z轴,建立空间直角坐标系,,,所以,,由(1)知平面ACD的一个法向量,设平面MAC的法向量为,则,令,则,所以平面MAC的一个法向量为,所以,,所以二面角M﹣AC﹣P的余弦值.19.已知函数.(Ⅰ)当时,判断函数f(x)是否有极值;(Ⅱ)若时,f(x)总是区间(2a﹣1,a)上的增函数,求实数a的取值范围.【分析】(Ⅰ)先求函数的导数,f′(x)>0在(﹣∞,+∞)上恒成立,得到函数的单调性,从而可判定是否有极值.(Ⅱ)先求出极值点,f′(x)=0的点附近的导数的符号的变化情况,得到函数的单调区间,函数f(x)在区间(﹣∞,0)与(,+∞)内都是增函数,只需(2a﹣1,a)是区间(﹣∞,0)与(,+∞)的子集即可.解:(Ⅰ)当时,cosθ=0,f(x)=4x3,则f(x)在(﹣∞,+∞)内是增函数,故无极值.(II)f′(x)=12x2﹣6x cosθ,令f′(x)=0,得x1=0,x2=.①当θ=时,则f(x)在(﹣∞,+∞)内是增函数,故只要2a﹣1<a即a<1时,f(x)总是区间(2a﹣1,a)上的增函数,②当时,>0.则函数f(x)在区间(﹣∞,0)与(,+∞)内都是增函数.由函数f(x)在(2a﹣1,a)内是增函数,则参数a须满足不等式组或由于,故cosθ∈(0,)故要使不等式2a﹣1≥cosθ关于参数θ恒成立,必有2a﹣1≥,解得则a≤0或综上①②可得,实数a的取值范围是a≤0或.20.过抛物线C:y2=2px(p>0)的焦点F且斜率为1的直线交抛物线C于M,N两点,且|MN|=2.(1)求p的值;(2)抛物线C上一点Q(x0,1),直线l:y=kx+m(其中k≠0)抛物线C交于A,B 两个不同的点(A,B均与点Q不重合)设直线QA,QB的斜率分别为k1,k2,k1k2=,直线l是否定点?若是,求出所有定点;若不是,请说明理由.【分析】(1)求得抛物线的焦点F和准线方程,设出MN的方程,联立抛物线方程,可得x的二次方程,运用韦达定理和弦长公式,解方程可得所求值;(2)求得抛物线方程和Q的坐标,设出A,B的坐标,联立直线l的方程和抛物线方程,可得y的二次方程,运用韦达定理和直线的斜率公式,化简整理可得m+1=﹣3k,即可得到直线l恒过的定点.解:(1)抛物线C:y2=2px(p>0)的焦点F(,0),准线方程为x=﹣,过焦点F(,0)且斜率为1的直线方程设为y=x﹣,代入抛物线的方程可得x2﹣3px+=0,设M(x1,y1),N(x2,y2),可得x1+x2=3p,由抛物线的定义可得|MN|=x1+x2+p=3p+p=2,可得p=;(2)由(1)可得抛物线的方程为y2=x,从而可得Q(1,1),设A(x3,y3),B(x4,y4),由y=kx+m与抛物线方程y2=x联立,可得ky2﹣y+m=0,k≠0,△=1﹣4km>0,y3+y4=,y3y4=,k1k2=•=•====﹣,即有m+1=﹣3k,满足△>0,则直线l:y=k(x﹣3)﹣1,即直线l恒过定点(3,﹣1).21.已知双曲线x2﹣y2=1的焦点是椭圆的顶点,F1为椭圆C的左焦点且椭圆C经过点.(1)求椭圆C的方程;(2)过椭圆C的右顶点A作斜率k(k<0)的直线交椭圆C于另一点B,连结BF1,并延长BF1,交椭圆C于点M,当△AOB的面积取得最大值时,求△ABM的面积.【分析】(1)根据题意,求出双曲线的焦点坐标,即可得椭圆的顶点坐标,可得a的值,将点的坐标代入椭圆的方程可得,解可得a、b的值,将a、b的值代入椭圆的方程即可得答案;(2)根据题意,设直线AB的方程为y=k(x﹣),与椭圆的方程联立,可得,分析可以用k表示△AOB的面积,由基本不等式的性质分析可得答案.解:(1)根据题意,双曲线x2﹣y2=1的焦点为(±,0),则椭圆的顶点为(±,0),且椭圆C经过点.则有,解得,所以C的方程为.(2)由已知结合(1)得,所以设直线,联立,得,得,当且仅当,即时,△AOB的面积取得最大值,所以,此时B(0,1),所以直线BF1:y=x+1,联立,解得,所以,点到直线BF1:y=x+1的距离为,所以.22.已知函数f(x)=ax2+(2﹣a)lnx+2.(1)求函数在点(1,f(1))处的切线方程,并讨论函数f(x)的单调性;(2)若关于x的不等式f(x)≥(a+2)x在[1,+∞)恒成立,求实数a的取值范围.【分析】(1)依题意,对f(x)求导的f′(x),由导数的几何意义可得k切=f′(1),再由点斜式可得y﹣f(1)=k切(x﹣1),进而可得切线的方程;分三种情况若0≤a≤2,若a>2,若a<0,讨论函数f(x)的单调性.(2)根据题意可得h(x)=ax2﹣(a+2)x+(2﹣a)lnx+2,且h(1)=0.对h(x)求导,得h′(x)=,分三种情况①当时,②当时,③当a≤0时,函数h(x)的单调性,进而确定是否能使得h(x)min≥0,进而可得实数a的取值范围.解:(1)依题意,,因为f'(1)=a+2,且f(1)=a+2,所以函数在点(1,a+2)处的切线方程为y=(a+2)x,又,若0≤a≤2,f'(x)>0,函数在(0,+∞)上单调递增,若a>2,当时,f'(x)<0,故函数f(x)在上单调递减,在上单调递增,若a<0,当时,f'(x)>0,当时,f'(x)<0,故函数f(x)在上单调递增,在单调递减.综上,若0≤a≤2,函数在(0,+∞)上单调递增,若a>2,函数f(x)在上单调递减,在上单调递增,若a<0,函数f(x)在上单调递增,在单调递减.(2)令h(x)=f(x)﹣(a+2)x,则h(x)=ax2﹣(a+2)x+(2﹣a)lnx+2,h(1)=0.因为,①当时,因为x≥1,所以,所以h'(x)≥0,此时h(x)在[1,+∞)上单调递增,h(x)≥h(1)=0,符合.②当时,,因为x≥1,x﹣1≥0,所以由h'(x)<0,得,此时h(x)在上单调递减,所以当时,h(x)<h(1)=0,不合要求,舍去③当a≤0时,2ax+a﹣2<0,h'(x)<0,h(x)在[1,+∞)上单调递减,所以当x∈[1,+∞)时,h(x)<h(1)=0,不合要求,舍去综上所述,实数a的取值范围是.。

江苏省徐州市新沂第九中学高二数学理上学期期末试题含解析

江苏省徐州市新沂第九中学高二数学理上学期期末试题含解析

江苏省徐州市新沂第九中学高二数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是.假设各局比赛结果相互独立,则甲队以3︰2获得比赛胜利的概率为()A.B.C.D.参考答案:B2. 图2是判断闰年的流程图,以下年份是闰年的为()A. 1995年B.2000年C.2100年D.2005年参考答案:B略3. 已知直线⊥平面,直线平面,则下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则参考答案:D4. 有关命题的说法错误的是 ( )A.命题“若, 则”的逆否命题为:“若, 则”.B.“”是“”的充分不必要条件.C.若为假命题,则、均为假命题.D.对于命题:使得. 则:均有.参考答案:C5. 在首项为21,公比为的等比数列中,最接近1的项是().A.第三项 B.第四项 C.第五项 D.第六项参考答案:C6. 已知命题p:?x∈R,2x﹣3≤0.若(¬p)∧q是假命题,则命题q可以是()A.椭圆3x2+4y2=2的焦点在x轴上B.圆x2+y2﹣2x﹣4y﹣1=0与x轴相交C.若集合A∪B=A,则B?AD.已知点A(1,2)和点B(3,0),则直线x+2y﹣3=0与线段AB无交点参考答案:D【考点】复合命题的真假.【分析】求出p是假命题,根据(¬p)∧q是假命题,得到q是假命题,判断出A、B、C 是真命题,D是假命题,得到答案即可.【解答】解:命题p:?x∈R,2x﹣3≤0,易判断命题p是假命题,若(¬p)∧q是假命题,则q为假命题,选项A、B、C均正确,对于D,直线x+2y﹣3=0与线段AB有交点,故选:D.【点评】本题考查了复合命题的判断,考查椭圆的定义,集合的定义,是一道基础题.7. 甲船在A处观察到乙船在它的北偏东的方向,两船相距海里,乙船正在向北行驶,若甲船的速度是乙船的倍,则甲船应取北偏东方向前进,才能尽快追上乙船,此时()A. B. C. D.参考答案:A8. 设f(x)是展开式的中间项,若在区间上恒成立,则实数m的取值范围是()A.[0,+∞) B. C. D.[5,+∞)参考答案:D9. 如图,阴影部分的面积是()A.B.C.D.参考答案:C略10. 已知()A. B. C. D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 已知a2+b2+c2=1, x2+y2+z2=9, 则ax+by+cz的最大值为参考答案:312. 如果的展开式中各项系数之和为128,则展开式中的系数是______ . 参考答案:-189令,得展开式中各项系数之和为.由,得,所以展开式的通项为.由,得,展开式中系数是.13. 在区间上随机取一个数,的值介于0至之间的概率为________.参考答案:14. 设抛物线,过焦点的直线交抛物线于两点,线段的中点的横坐标为,则=_____________.参考答案:15. 下面给出了解决问题的算法:S1 输入x S2 若则执行S3,否则执行S4 S3 使y=2x-3 S4 使S5 输出y 当输入的值为时,输入值与输出值相等。

河南省天一大联考2024_2025学年高二数学上学期期末考试试题理

河南省天一大联考2024_2025学年高二数学上学期期末考试试题理

河南省天一大联考2024-2025学年高二数学上学期期末考试试题 理考生留意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.不等式282x x -+<-1的解集为 A.(-3,2) B.(-3,-2) C.(-3,4) D.(-2,4) 2.下列命题为真命题的是A.∃x 0∈R ,x 02+4x 0+6≤0 B.正切函数y =tanx 的定义域为R C.函数y =1x的单调递减区间为(-∞,0)∪(0,+∞) D.矩形的对角线相等且相互平分 3.已知直线x +2y =4过双曲线C :22221(0,0)x y a b a b-=>>的一个焦点及虚轴的一个端点,则此双曲线的标准方程是A.2211612x y -= B.221164x y -= C.221124x y -= D.221258x y -= 4.已知{a n }为等差数列,公差d =2,a 2+a 4+a 6=18,则a 5+a 7= A.8 B.12 C.16 D.205.已知直线l 和两个不同的平面α,β,若α⊥β,则“l //α”是“l ⊥β”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,A =60°,c =4,a =,则sinAsinB=A.23B.3 D.37.在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB//DC ,CADC =90°,AD =AB =3,PD =4,DC =6,则DB 与CP 所成角的余弦值为A.5B.6C.26D.138.已知等比数列{a n }的前n 项和为S n ,公比q>0,a 1=1,a 12=9a 10,要使数列{λ+S n }为等比数列,则实数λ的值为 A.13 B.12C.2D.不存在 9.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,B =23π,b =b 2+c 2-a 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

云天化中学2016—2017学年上学期期末考试试卷高 二 数学(理)说明: 1.时间:120分钟; 分值:150分;2. 本卷分Ⅰ、Ⅱ卷,请将答案作答在答题卡上,在试卷上作答无效.第Ⅰ卷 选择题(共60分)一、选择题:(每小题5分,共60分.每小题只有一个选项符合题意.)1. 高二某班共有学生56人,座号分别为1,2,3,…,56,现根据座号,用系统抽样的方法,抽取一个容量为4的样本.已知4号、18号、46号同学在样本中,那么样本中还有一个同学的座号是( ) A .30 B .31 C .32 D .332. 设,,R y x ∈则“x ≥1且y ≥1”是“22y x +≥2”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分又不必要条件3.设n S 是等差数列{}n a 的前n 项和,3432=++a a a ,则5S 为( ) A .5 B .7 C .9 D .114. 在区间[]1,0上随机取两个数y x ,,则事件“y x +≤32”的概率是( ) A .21 B .32 C .94 D . 925.如果执行如图的程序框图,那么输出的S=( )A .22B .46C .94D .1906.如上图是一名篮球运动员在最近5场比赛中所得分数的茎叶图,若该运动员在这5场比赛中的得分的中位数为12,则该运动员这5场比赛得分的平均数不可能为( )A .568B .569 C .14 D .5717.已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF →1⊥PF →2.若△PF 1F 2的面积为9,则b =( )A .3B .6C .33D .238.直线30x y -+=被圆064422=+-++y x y x 截得的弦长等于( )A . 23B .6 C. 3 D .629.已知变量y x ,满足⎪⎩⎪⎨⎧≤-+≥≤+-041034y x x y x ,则y x -的取值范围是( )A .]56,2[- B .]0,2[- C. ]56,0[ D .]1-,2[- 10. 如图是一个几何体的三视图,在该几何体的各个面中,面积最小的面的面积为( )A. 8B. 4C.24D. 3411.在平面直角坐标系xOy 中,已知直线0:=++a y x l 与点)20(,A ,若直线l 上存在点M 满足1022=+MO MA (O 为坐标原点),则实数a 的取值范围是( ) A.()15,15--- B. ]15,15[--- C. ()122,122--- D. ]122,122[---12. 若以)0,3()03(21F F ,,-为焦点的双曲线与直线1-=x y 有公共点,则该双曲线的离心率的最小值为( )A .26 B.553 C. 23 D. 3 第Ⅱ卷 客观题(共90分)二、填空题(每小题5分,4小题共20分)13.在ABC ∆中, 75=A , 60=C ,1=c ,则边b 的长为 .14.已知双曲线12222=-by a x (a >0,b >0)的一条渐近线过点)3,2(,且双曲线的一个焦点为)07(,-F ,则双曲线的方程为 .15.某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段: [40,50),[50,60),…,[90,100]后得到频率分布直方图(如右图所示),则分数在[70,80)内的人数是 .16.椭圆15222=+y a x (a 为定值,且5>a )的左焦点为F ,直线m x =与椭圆交于B A ,两点,FAB ∆的周长的最大值是12,则该椭圆的离心率为_____.三、解答题(第17题10分,其余每题12分,共70分,解答应写出证明过程或演算步骤) 17.已知命题p :2450x x --≤,命题q :22210x x m -+-≤(0m >). (1)若p 是q 的充分条件,求实数m 的取值范围;(2)若5m =,p q ∨为真命题,p q ∧为假命题,求实数x 的取值范围.18.某产品的三个质量指标分别为,,x y z ,用综合指标s x y z =++评价该产品的等级,若4s ≤,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:产品编号 1A2A3A4A5A质量指标 (,,x y z ) (1,1,2)(2,1,1)(2,2,2)(1,1,1)(1,2,1)产品编号 6A 7A8A9A10A质量指标 (,,x y z )(1,2,2)(2,1,1)(2,2,1)(1,1,1)(2,1,2)(1)利用上表提供的样本数据估计该批产品的一等品率; (2)在该样本的一等品中,随机抽取2件产品,①用产品编号列出所有可能的结果;②设事件B 为“在取出的2件产品中,每件产品的综合指标S 都等于4”.求事件B 发生的概率.19. 已知椭圆C 的中心在原点,焦点在x 轴上,长轴长为4,且点⎪⎪⎭⎫⎝⎛23,1在椭圆C 上.(1)求椭圆C 的方程;(2)斜率为1的直线l 过椭圆的右焦点,交椭圆于,A B 两点,求||AB .20.设ABC ∆的内角C B A ,,所对应的边长分别是,,,a b c 且2cos (cos cos )C a B b A c +=. (1)求角C ;(2)若7c =ABC ∆33,求ABC ∆的周长.21. 设数列{}n a 的前n 项和为n S ,且)(1)2(2*N n a n S n n ∈-+=. (1) 求1a 的值,并用1-n a 表示n a ; (2) 求数列{}n a 的通项公式; (3) 设25342311111+++++=n n n a a a a a a a a T ,求证:35<n T .22.已知焦点在y轴上的椭圆E的中心是原点O E的长轴和短轴为对角线的四边形的周长为=+与y轴交于点P,与椭圆E交于、:l y kx mA B两个相异点,且=.APλPB(1) 求椭圆E的方程;(2)是否存在m,使4+λ?若存在,求m的取值范围;若不存在,请说明理由.=云天化中学2016—2017学年上学期期末考试试卷高 二 数学(理)(参考答案)一、选择题(每题5分,共60分) 1 2 3 4 5 6 7 8 9 10 11 12 CBADCDABACDB二、填空题(每题5分,共20分)13.36 14.13422=-y x 15.30 16. 32三、解答题(其中第17题10分,其余每题12分,共70分) 17.(1)对于p :[]1,5A =-,对于q :[]1,1B m m =-+, 由已知,A B ⊆,∴11,15m m -≤-⎧⎨+≥⎩,∴[4,)m ∈+∞.…………5分(2)若p 真:15x -≤≤,若q 真:46x -≤≤.…………6分 由已知,p 、q 一真一假. ①若p 真q 假,则15,46,x x x -≤≤⎧⎨<->⎩或无解;…………8分②若p 假q 真,则15,46,x x x <->⎧⎨-≤≤⎩或∴[4,1)(5,6]x ∈--.…………10分18. 解:(1)计算10件产品的综合指标S ,如下表:产品编号A 1A 2A 3A 4A 5A 6A 7A 8A 9A 10S4463454535其中S ≤4的有A 1,A 2,A 4,A 5,A 7,A 9,共6件,故该样本的一等品率为610=0.6.从而可估计该批产品的一等品率为0.6.(2) ①在该样本的一等品中,随机抽取2件产品的所有可能结果为{A 1,A 2},{A 1,A 4},{A 1,A 5},{A 1,A 7},{A 1,A 9},{A 2,A 4},{A 2,A 5},{A 2,A 7},{A 2,A 9},{A 4,A 5},{A 4,A 7},{A 4,A 9},{A 5,A 7},{A 5,A 9},{A 7,A 9},共15种.②在该样本的一等品中,综合指标S 等于4的产品编号分别为A 1,A 2,A 5,A 7,则事件B 发生的所有可能结果为{A 1,A 2},{A 1,A 5},{A 1,A 7},{A 2,A 5},{A 2,A 7},{A 5,A 7}, 共6种.所以P (B )=615=25.19.解:(1)椭圆C 的方程为1422=+y x .…………6分 (2)58|AB |= 20.解:(1)()2cos cos cos C a B b A c +=由正弦定理得:()2cos sin cos sin cos sin C A B B A C ⋅+⋅=()2cos sin sin C A B C⋅+=,∵πA B C ++=,()0πA B C ∈、、,,∴()sin sin 0A B C +=>∴2cos 1C =,1cos 2C =,∵()0πC ∈,,∴π3C =…………6分(2)由余弦定理得:2222cos c a b ab C =+-⋅,221722a b ab =+-⋅,()237a b ab +-= 1333sin 2S ab C ab =⋅==,∴6ab =,∴()2187a b +-=,5a b += ∴ABC △周长为57a b c ++=+…………12分21.(1)由11121)21(2a a S =-+=,得11=a ………………1分 当2≥n 时,21)1(21)2(11-+--+=-=--n n n n n a n a n S S a1(1)n n na n a -⇒=+ (2≥n ),即11n n n a a n-+= (2n ≥).………………5分 (2) 由(Ⅰ),得2132a a =,3243a a =,4354a a =,11n n n a a n-+=, 将以上(1)n -个式子相乘,得112n n a a +=.而11=a ,故12n n a +=. ………………8分 (3) ∵214(1)(3)n n a a n n +=++ 112()13n n =-++ ………………9分)]3111()6141()5131()4121[(2+-+++-+-+-=n n T n 11112()2323n n =+--++.………11分52253233n n =--<++ ………12分 22. 解:(Ⅰ)根据已知设椭圆E 的方程为()222210y x a b a b +=>>,焦距为2c ,由已知得32c a =,∴22223,4a cb ac ==-=.…………………………3分 ∵以椭圆E 的长轴和短轴为对角线的四边形的周长为52,1a b ====.∴椭圆E 的方程为2214y x +=.…………5分 (Ⅱ)根据已知得()0,P m ,由AP PB λ=,得()OP OA OB OP λ-=-.∴()1OA OB OP λλ+=+.∵4OA OB OP λ+=,∴()14=OP OP λ+,若0m =,由椭圆的对称性得AP PB =,即0OA OB +=.…………………………7分 ∴0m =能使4OA OB OP λ+=成立. 若0m ≠,则14λ+=,解得3λ=.设()()1122,,,A x kx m B x kx m ++,由22440y kx m x y =+⎧⎨+-=⎩得()2224240k x mkx m +++-=,由已知得()()222244440m k k m∆=-+->,即2240k m -+>.且212122224,44km m x x x x k k --+==++.…10分由3AP PB =得123x x -=,即123x x =-.∴()21212340x x x x ++=, ∴()()2222224412044m k m k k -+=++,即222240m k m k +--=.当21m =时,222240m k m k +--=不成立.∴22241m k m -=-,∵2240k m -+>,∴2224401m m m --+>-,即()222401m mm ->-.∴214m <<,解得21m -<<-或12m <<.综上述,当21m -<<-或0m =或12m <<时,4OA OB OP λ+=.…………12分。

相关文档
最新文档