电感式位移传感器的设计
LVDT线性位移传感器数据检测技术

LVDT线性位移传感器数据检测技术及测控电路课程设计姓名:***学号:**********班级:测控09-3班学校:哈尔滨理工大学第一章一、设计目的1、根据LVDT线性位移传感器的工作原理,设计差动变压器电感式位移传感器(包括传感器参数设计和架构设计)。
2、学习集成芯片AD698工作原理以及与LVDT的连接的应用。
3、学习分析设计电路、Altium Designer绘制原理图及PCB图。
4、学习焊接电路板并完成电路板的调试。
5、了解传感器标定方法,并计算传感器的相关参数。
6、运用所学习的理论知识解决实际问题。
第二章一、 原始数据及技术要求1、 最大输入位移为1cm ;2、 灵敏度不小于1v/mm ;3、 非线性误差不大于10%;4、 电源为直流30v; 二、 传感器原理设计2-1.差动变压器的工作原理因为差动输出电动势为)()(1211M f M I j M M I j E S ∆=∆=-=••ωω 所以差动变压器输出电动势为两副边线圈互感之差M ∆的函数。
2-2.螺管型差动变压器的结构设计螺管型差动变压器结构复杂,常用二段式、三段式、一节式的灵敏度高,但三节式的零点较好,如图一所示为三种形式的示意图。
二节式一节式三节式图一 差动变压器的结构形式2-3.螺管型差动变压器的参数计算 1. 激磁绕组长度的确定通常是在给定非线性误差γ及最大动态范围max l ∆的条件下来确定值b ,即⎪⎪⎩⎪⎪⎨⎧∆=∆=∆-=max 222221ll b k l k r 联立以上各式解得γ2max l b ∆=取max l ∆=1cm ,则缘边线圈长度b=2.24 cm, 2k =997 2. 衔铁的长度c l 的确定由结构图二的几何尺寸关系可知,铁芯的长度为212l b d l l c +++=式中1l 、2l --衔铁在两个副边绕组m 中的长度;d --初次线圈间骨架厚度; b --原边线圈的长度;m --两副边绕组长度;初始状态时有021l l l ==,则衔铁的长度由图二的几何尺寸有b d l l b d l lc ++=+++=)(22000设计时,一般取b l =0,故有d b l c 23+=,通常取b d <<,则b lc 3=由一中式求得为b=2.24cm ,求得为c l =6.72cm 。
倍加福接近传感器NCB4-12GM40-N0-V1电感式传感器

倍加福接近传感器NCB4-12GM40-N0-V1电感式传感器倍加福接近传感器NCB4-12GM40-N0-V1电感式传感器电感式传感器简介:电感式传感器是利用线圈自感或互感系数的变化来实现非电量电测的一种装置。
利用电感式传感器,能对位移、压力、振动、应变、流量等参数进行测量。
它具有结构简单、灵敏度高、输出功率大、输出阻抗小、抗干扰能力强及测量精度高等一系列优点,因此在机电控制系统中得到广泛的应用。
它的主要缺点是响应较慢,不宜于快速动态测量,而且传感器的分辨率与测量范围有关,测量范围大,分辨率低,反之则高。
技术参数节选 NCB4-12GM40-N0-V1通用规格开关功能常闭 (NC)输出类型 NAMUR额定工作距离 4 mm安装齐平确保操作距离 0 ... 3,24 mm实际工作距离 3,6 ... 4,4 mm 类型衰减系数 rAl 0,41衰减系数 rCu 0,39衰减系数 r304 0,78输出类型 2 线额定值额定电压 8,2 V (Ri 约 1 kΩ)开关频率 0 ... 1500 Hz迟滞 1 ... 15 类型 5 %反极性保护反极性保护短路保护是适用于 2:1 技术是,无需反极性保护二极管电流消耗未检测到测量板 min. 2,2 mA检测到测量板≤ 1 mA开关状态指示灯黄色多孔 LED功能性安全相关参数安全完整性级别 (SIL) SIL 2MTTFd 3010 a任务时间 (TM) 20 a诊断覆盖率 (DC) 0 %装置应用传感器作为采集和获取信息的工具,对系统的自动化检测和质量监测起着重要作用。
电感式传感器是一种互感式电感传感器,它可将微小的机械量,如位移、振动、压力造成的长度、内径、外径、不平行度、不垂直度、偏心、椭圆度等非电量物理量的几何变化转换为电信号的微小变化,转化为电参数进行测量,是一种灵敏度较高的传感器,具有结构简单可靠、输出功率大、抗阻抗能力强、对工作环境要求不高、稳定性好等一系列优点,因而被广泛应用于各种工程物理量检测与自动控制系统中 [3] 。
电感式位移传感器输出特性仿真分析

21 0 2年 7月
机
电
工
程
Vo . 9 No 7 12 .
Jun lo c a ia & Ee t c l gn e n o r a f Me h nc l lcr a ie r g i En i
J1 01 u.2 2
电感 式 位 移 传 感 器 输 出特 性 仿 真 分 ; 学模 型 ; tb仿真 ; 数 Maa l 线性误差
中图分类号 :P 1 T 7 T 22;H 3 文献标 志码 : A 文章编号 :O I一 5 1 2 1 ) 7— 7 5— 4 I D 4 5 (0 2 0 0 9 0
S mu a i n a l ss o u p t c a a t rsi f i l to na y i f o t u h r c e it o c
析 ; 了输入/ 出参数之 间的变化规律 。研究结果表明 : 探讨 输 电感式位移传感器存在一个近似线性工作 区域 ± , 6 其线性度误差受
线圈匝数与半径的影响 ; 在其他参数一定的情况下 , 圈半径与线 圈匝数 分别为定 值 、 次改变线 圈匝数 与线圈半 径时 , 在铁芯 线 依 存
位移 , 当 且 ≤ I I , 6 时 传感器输 出特性近似成线性关系 , 度好 ; 线性 当 ≥ l l , 6 时 传感器输 出特 性为非线 性关 系, 线性度
Ab ta t sr c :Ai n ts u t r n lcr ma n t n u t n c a a tr t s o d cie d s lc me tt n d c r ,i i n vt be t p e mig a t cu e a d ee t r o g ei i d ci h r ce i i fi u t ipa e n a s u e s t si e i l o a p a c o sc n v r a r t e p o l m ew e o ln a t u p t n mp rt r r t y w ih i s n c u a y i afce ,o h a i f n l s fs cu a h r b e b t e n n ni e r y o t u d t i a e ea u e d f ,b h c st t g a c rc s f t d n t e b sso ay i o t tr l i t e i e a s u r c aa tr t sa d w r i g p i cp e o e i d cie d s lc me ts n o ,mah ma ia d lo h e ain h p b t e n ip ta d o t u h r ce si n o k n rn i l f h n u t ipa e n e s r i c t v te t l mo e ft e r lto s i ew e n u n u p t c wa o sr ce sc n tu td,a d t emo e ssmu ae n n lz d b t b s f r .T ec a g e u a in o p t n up t aa tr s i — n dl h wa i lt d a d a a y e y Mal ot e h h e r g lt f n u d o t u r me e s a wa n o i a p wa n
位移传感器的工作原理

位移传感器的工作原理一、引言位移传感器是一种用于测量物体位置或位移变化的设备。
它广泛应用于工业自动化、机械工程、航空航天等领域。
本文将详细介绍位移传感器的工作原理及其应用。
二、工作原理位移传感器的工作原理基于不同的物理效应,常见的工作原理包括电容式、电感式、光电式、压阻式等。
1. 电容式位移传感器电容式位移传感器利用电容量的变化来测量位移。
它由两个电极组成,当物体接近或远离电极时,电容量会发生变化。
通过测量电容量的变化,可以确定物体的位移。
2. 电感式位移传感器电感式位移传感器利用电感量的变化来测量位移。
它由一个线圈和一个铁芯组成,当物体接近或远离线圈时,线圈的电感量会发生变化。
通过测量电感量的变化,可以确定物体的位移。
3. 光电式位移传感器光电式位移传感器利用光的传输和接收来测量位移。
它由一个发光器和一个接收器组成,当物体接近或远离发光器和接收器时,光的强度会发生变化。
通过测量光的强度的变化,可以确定物体的位移。
4. 压阻式位移传感器压阻式位移传感器利用电阻值的变化来测量位移。
它由一个弹性材料和一个电阻片组成,当物体施加压力或力量时,弹性材料会发生形变,从而改变电阻片的电阻值。
通过测量电阻值的变化,可以确定物体的位移。
三、应用领域位移传感器在许多领域中都有广泛的应用。
1. 工业自动化位移传感器在工业自动化领域中用于测量机器人的位置和姿态,控制机器人的运动轨迹,实现精确的操作和加工。
2. 机械工程位移传感器在机械工程领域中用于测量机械设备的位移、振动和变形,监测设备的状态,提高设备的运行效率和可靠性。
3. 航空航天位移传感器在航空航天领域中用于测量飞机和航天器的结构变形、翼尖位移等参数,确保飞行安全和结构的完整性。
4. 汽车工程位移传感器在汽车工程领域中用于测量汽车零部件的位移、变形和振动,监测车辆的状态,提高驾驶安全性和乘坐舒适度。
5. 医疗设备位移传感器在医疗设备领域中用于测量患者的身体位移和运动,监测病情变化,辅助医生进行诊断和治疗。
位移传感器的原理及应用

2021/2/4
3366
涂层厚度仪
测量线路板的铜膜厚度
2021/2/4
3377
转速测量
在一个旋转体上开一条或数条槽如图3.2.15(a)所示,或者做
成齿,如图3.2.15(b)所示,旁边安装一个涡流传感器。当旋
转体转动时,涡流传感器将周期性地改变输出信号,此电压
经过放大、整形,可用频率计指示出频率数值。此值与槽数
2021/2/4
19
微小位移的测量
1-测端 2-防尘罩 3-轴套 4-圆片簧 5-测杆 6-磁筒 7-磁芯 8-线圈 9-弹簧 10-导线
2021/2/4
20
电感式滚柱直径分选装置
3.2.8 滚柱直径分选装置
1—气缸 2—活塞 3—推杆 4—被测滚柱 5—落料管
6—电感测微器 7—钨钢测头 102—021/容2/4 器(料斗)
8—限位挡板
9—电磁21翻板 21
电感式滚柱直径分选装置(外形)
(参考中原量仪股份有限公司资料) 滑道
轴承滚子外形
分选仓位
2021/2/4
22 20222
电感式滚柱直 径分选装置外 形(参考无锡市通达滚
子有限公司资料)
滑道
11个分选仓位 废料仓
2021/2/4
落料振动 台
23 20223
粗糙度仪外形
参数的变化即可达到探伤的目的。
2021/2/4
3399
在探伤时,重要的是缺陷信号和干扰信号比。为了获得需要 的频率而采用滤波器,如图3.3.16(a)所示,需要进一步抑 制干扰信号,可采用幅值甄别电路。把这一电路调整到裂缝 信号正好能通过的状态,凡是低于裂缝信号都不能通过这一 电路,这样干扰信号都抑制掉了。如图3.2.16(b)所示。
传感器与检测技术3电感式位移传感器

4
29
(二)互感式传感器—差动变压器
❖ 1.互感式传感器的结构与工作原理 ❖ 差动变压器工作在理想情况下(忽略涡流损耗、
磁滞损耗和分布电容等影响)时的等效电路:
30
(二)互感式传感器—差动变压器
❖ 1.互感式传感器的结构与工作原理 ❖ 当衔铁移向次级绕组N1一边,互感M1增大,M2减
小,因而次级绕组N1内的感应电动势大于次级绕 组N2内的感应电动势,这时差动变压器输出电动 势不为零。在传感器的量程内,衔铁位移越大, 差动输出电动势就越大。
0
2 0
0
0
1
线圈 铁芯
δ Δδ
8
(一)自感式传感器
❖1.自感式传感器的工作原理
❖ 变气隙式自感传感器的输出特性
L 1
SN 2 0 2 0
0
0
1
L
0 0
衔铁
L 1
/ 0
L 1 /
0
0
0
线圈 铁芯
δ Δδ
9
(一)自感式传感器
❖1.自感式传感器的工作原理
❖ 变气隙式自感传感器的输出特性
❖ 2. 原理消除零点残余电压方法: ❖ (1)从设计和工艺上保证结构对称性 ❖ 为保证线圈和磁路的对称性,首先,要求提高加
工精度,线圈选配成对,采用磁路可调节结构。 其次,应选高磁导率、低矫顽力、低剩磁感应的 导磁材料。并应经过热处理,消除残余应力,以 提高磁性能的均匀性和稳定性。由高次谐波产生 的因素可知,磁路工作点应选在磁化曲线的线性 段。
20
(一)自感式传感器
❖1.自感式传感器的工作原理
❖ 三种类型比较: ❖ 气隙型自感传感器灵敏度高,它的主要缺点是非
普通物理II实验-实验八 电感位移传感器特性研究

实验八电感位移传感器特性研究【实验目的】1.了解电感位移传感器工作原理;2.测量自感式传感器特性;3.测量差动变压器式传感器特性。
【实验原理】1.自感式位移传感器当磁棒插入线圈中并发生位移时,回路自感的大小与这回路所围面积的磁链数有关,由于磁棒在外部的磁感线是发散的、密度较稀,在内部的磁感线密度很大,所以自感L随磁棒位移x而发生变化。
而自感式传感器是把被待测位移变化转换成自感L变化的一种传感器。
自感式传感器的自变量为L,电感测量常见方法有以下两种。
(1)RL分压法测电感图9.1(a)所示的RL分压法测量电感接线图,因为电感的电流落后电压90°,而串联电路流过的电流是相同的,所以电感的电流与电阻的电压同相位。
我们把电阻电压VR放在X轴上,则电感电压VL在Y轴正向。
因为串联电路流过的电流相同,所以我们可以把电流因子约去。
由图9.1(b)可知V R V i =√VR2+VL2=√1+(ωL/R)(1)L=Rω√(Vi/VR)2−1(2)所以,只要已知R、ω、Vi ,测量VR即可求出L。
(2)LC谐振电流法测量电感如图9.2所示,我们再在RL回路中串入一个电容C。
串联电路流过各元件的电流相同,但电容上的电压落后电流90°。
我们仍把电阻上的电压作为参考量放在x轴,那么,电容电压将位于y轴的负方向。
这样电容上的电压和电感上的电压都位于y轴且方向相反。
一种特殊情况下,无论电感和电容的值是多少,总能找到一个频率使得VC=VL,由图9.2(b)看出,在y方向上的合成量为零。
这种情况称之为谐振,此时回路电流为谐振电流,用取样电阻R就得到了取样电压,此时取样信号与信号源信号同相位且为最大值,利用这个特点,我们可以测量精确电感。
由VC=VL,约去电流因子我们有XC=XL,即ωL=1(3)ωC(4)L=1ω2C可以看出,只要信号源频率、电容C已知,L就可以计算。
这种测量方式避免了测量仪表直接加在被测元件上,对于小容量电容测量很有好处,由于是比较相位,所以特别灵敏。
电感式位移传感器的设计(9页)

电感式位移传感器的设计(第1页)一、设计背景位移传感器在现代工业生产中扮演着重要角色,广泛应用于机械制造、自动化控制、航空航天等领域。
电感式位移传感器作为一种常见的位移检测装置,具有精度高、稳定性好、抗干扰能力强等优点。
本文将详细介绍电感式位移传感器的设计过程。
二、工作原理电感式位移传感器是基于电磁感应原理设计的。
当传感器中的激励线圈通以交流电流时,会在周围产生交变磁场。
当被测物体(通常是金属目标物)进入该磁场并发生位移时,会导致磁路的磁阻发生变化,进而引起线圈感应电动势的变化。
通过检测感应电动势的变化,即可实现对位移量的精确测量。
三、设计目标1. 确保传感器具有较高的测量精度和分辨率;2. 提高传感器的线性度和稳定性;3. 优化传感器结构,使其便于安装和维护;4. 降低成本,提高传感器的性价比。
四、传感器结构设计1. 激励线圈设计(1)线圈的匝数:匝数越多,产生的磁场强度越大,但线圈电阻也会增加,导致功耗增大。
因此,需在磁场强度和功耗之间寻找平衡。
(2)线圈的材料:选择具有较高磁导率和电阻率的材料,以提高线圈的性能。
(3)线圈的形状:根据实际应用场景,设计合适的线圈形状,使其在有限的空间内产生较强的磁场。
2. 检测线圈设计(1)线圈与激励线圈的相对位置:确保检测线圈能充分感应到激励线圈的磁场变化。
(2)线圈的匝数:匝数越多,感应电动势越大,但线圈电阻也会增加。
需在灵敏度与功耗之间进行权衡。
(3)线圈的材料:选择具有较高磁导率和电阻率的材料。
电感式位移传感器的设计(第2页)五、信号处理电路设计1. 激励信号源(1)频率选择:激励信号的频率应适中,频率太低会导致灵敏度下降,频率太高则可能引起电磁干扰。
(2)幅值稳定:确保激励信号幅值稳定,以减少测量误差。
2. 感应电动势检测感应电动势的检测是位移测量的关键步骤。
检测电路设计如下:(1)放大电路:由于感应电动势信号较弱,需通过放大电路对其进行放大,以便后续处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电感式传感器测量电路设计学院:信自学院姓名:xxxxx学号:13专业:自动化班级:103班2012年12月26日目录摘要 (3)1.绪论 (5)1.1 引言 (5)1.2 传感器介绍 (5)1.3 研究的基本内容,拟解决的主要问题 (7)2.整体的方框图与工作原理 (8)3.各个单元电路设计 (8)3.1 8051单片机简介 (8)3.2 电感式位移传感器的基本原理 (13)3.3 电感测头的结构 (15)3.4 正弦波电路的设计 (16)3.5 零点残余电压的调整 (18)3.6 交流放大电路 (20)3.7 相敏检波电路 (22)3.8 A/D转换及显示电路 (28)4.软件部分的设计 (30)4.1本系统设计的程序流程图 (30)4.2单片机8051的C语言程序清单 (31)5、参考文献 (33)摘要随着现代制造业的规模逐渐扩大,自动化程度愈来愈高。
要保证产品质量,对产品的检测和质量管理都提出了更高的要求。
我们为此要设计一种精度的检测位移的仪器。
电感测微仪是一种分辨率极高、工作可靠、使用寿命很长的测量仪,应用于微位移测量已有比较长的历史.国外生产的电感测微仪产品比较成熟,精度高、性能稳定,但价格昂贵.国内生产的电感测微仪存在漂移大、工作可靠性不高、高精度量程范围小等问题,一直与国外的传感器水平保持一定的差距.在超精密加工技术迅猛发展的今天,这种测量精度越来越显得不适应加工技术发展的需求.该文针对这些问题,对电感传感器测量电路进行了一定的设计和改进.对电感测微仪的正弦波生成电路、交流放大电路、带通滤波电路、相敏检波电路等进行了分析和相应的设计。
关键词:正弦波发生器,相敏检波,零点残余电压。
电感式位移传感器实例电感式位移传感器实例绪论引言测量技术是实现超精加工的前提和基础。
精密加工和超精密加工过程中不仅要对工件和表面质量进行检验,而且要检验加工设备和基础元部件的精度,如果没有权威性的测控技术和仪器,就不能证实所达到的加工质量。
加工和检测是不可分的,测量是对加工的支持,无论多么精密的加工,都必须用更为精密的测量技术作保障。
因此,位移测量的精密和超精密测量已经成为整个超精密加工体系中一项至为关键的技术。
检测技术和装置是自动化系统中不可缺少的组成部分。
任何生产过程都可以看作是“物流”和“信息流”组合而成,反映物流的数量、状和趋向的信息流则是人们管理和控制物流的依据。
人们为了有目的地进行控制,首先必须通过检测获取有关信息,然后才能进行分析判断以便实现自动控制。
所谓自动化,就是用各种技术工具与方法代替人来完成检测、分析、判断和控制工作。
一个自动化系统通常由多个环节组成,分别完成信息获取、信息转换、信息处理、信息传送及信息执行等功能。
在实现自动化的过程中,信息的获取与转换是极其重要的组成环节,只有精确及时地将被控对象的各项参数检测出来并转换成易于传送和处理的信号,整个系统才能正常地工作。
因此,自动检测与转换是自动化技术中不可缺少的组成部分。
检测系统或检测装置目前正迅速地由模拟式、数字式向智能化方向发展。
带有微处理机的各种智能化仪表已经出现,这类仪表选用微处理机做控制单元,利用计算机可编程的特点,使仪表内的各个环节自动地协调工作,并且具有数据处理和故障诊断功能,成为一代崭新仪表,把检测技术自动化推进到一个新水平。
传感器介绍传感器是获取被测量信息的元件,其质量和性能的好坏直接影响到测量结果的可靠性和准确度,衡量其质量的特性有许多,主要包括静态和动态两个方面。
当被测量不随时间变化或变化很慢时,可以认为输入量和输出量都和时间无关。
表示它们之间关系的是一个不含时间变量的代数方程,在这种关系的基础上确定的性能参数为静态特性;当被测量随时间变化很快时,就必须考虑输人量和输出量之间的动态关系。
这时,表示它们之间关系的是一个含有时间变量的微分方程,与被测量相对应的输出响应特性称为动态特性。
位移传感器主要有以下几种:电容式位移传达室感器、差动式电感受式位移传感器和电阻应变式位移传感器一般用于小位移的测量(几微米至毫米);差动变压器用于中等位移的测量,这种传感在工业测量中应用得最多;电阻电位器式传感器适用于较大范围位移的测量,但精度高;感应同步器、光栅、磁栅、激光位移传感器等用于精密检测系统的位移的测量,测量精度高(可达1pm )量程也可大到几米。
电容式位移传感器根据被测物体的位移变化转换为电容变化的一种传感器,一般用于高频振动微小位移的测量,与电位式、电感式等多种位移传感器相比,它的优点是:结构简单;能实现非接触测量,只要极小的输入力就能使支极板移动,并且在移动过程中没有摩擦和反作用力;灵敏度高、分辨力强,能敏感±甚至更小的位移;动态响应好;能在恶劣环境中(高、低温,各种形式的辐射等)工作。
但它也存在着一些缺点,主要是输出特性的非线性和对绝缘电阻要求比较高,为了克服寄生电容的影响,降低电容的内阻,要求对传感器及输出导线采取屏蔽措施和采用较高的电源频率等。
光栅是一种新型的位移检测元件,是把位移变为数字量的位移-数字转换装置。
它主要用于高精度直线位移和角位移的数字检测系统。
其测量精确度高(可达1um)光栅传感器具有抗电磁干扰、耐久性好、准分布式传感、绝对测量、尺寸小、灵敏度高、精度高、频带宽、信噪比高等优点,是结构局部健康监测最理想的智能传感元件之一,可以直接或间接(通过某种封装或灵巧装置)监测应变、温度、裂缝、位移、振动、腐蚀、应力等物理量,部分取代传统的测试手段,广泛用于土木工程、航空航天工业、船舶工业、电力工业、石油化工、核工业、医学等领域。
电感式位移传感器是把被测移量转换为线圈的自感或互感的变化,从而实现位移的测量的一类传感器。
它具有灵敏度高、分辨力大,能测出±甚至更小的线性位移变化和度的角位移,输出信号比较大,电压灵敏度一般每毫米可达几百毫伏,因此有利于信号的传输.测量范围为±25um-50mm,测量精度与电容式位移传达室感器差不多,但是它的频率响应较低,不宜于高频动态测量。
研究的基本内容,拟解决的主要问题:该智能电感测微仪的硬件电路主要包括电感式传感器、正弦波振荡器、放大器、相敏检波器及单片机系统。
正弦波振荡器为电感式传感器和相敏检波器提供了频率和幅值稳定的激励电压,正弦波振荡器输出的信号加到测量头中。
工件的微小位移经电感式传感器的测头带动两线圈内衔铁移动,使两线圈内的电感量发生相对的变化。
当衔铁处于两线圈的中间位置时,两线圈的电感量相等,电桥平衡。
当测头带动衔铁上下移动时,若上线圈的电感量增加,下线圈的电感量则减少;若上线圈的电感量减少,下线圈的电感量则增加。
交流阻抗相应地变化,电桥失去平衡从而输出了一个幅值与位移成正比,频率与振荡器频率相同,相位与位移方向相对应的调制信号。
此信号经放大,由相敏检波器鉴出极性,得到一个与衔铁位移相对应的直流电压信号,经A/D 转换器输入到单片机,经过数据处理进行显示。
电感式传感器测位移时,由于线圈中的电流不为零,因而衔铁始终承受电磁吸力,会引起附加误差,而且非线性误差较大;另外,外界的干扰(如电源电压频率的变化,温度的变化)也会使输出产生误差。
所以在实际工作中常采用差动形式,这样既可以提高传感器的灵敏度,又可以减小测量误差。
两个完全相同的单个线圈的电感式传感器共用一个活动衔铁就构成了差动式电感传感器。
采用差动式结构除了可以改善线性、提高灵敏度外,对外界影响,如温度的变化、电源频率的变化等也基本上可以相互抵消,衔铁承受的电磁吸力也较小,从而减小了测量误差。
零点残余电压也是反映差动变压器式传感器性能的重要指标。
理想情况是在零点时,两个次级线圈感应电压大小相等方向相反,差动输出电压为零实际情况是两组次级线圈的不对称铁心的B-H曲线的非线性,以及激励电源存在的高次谐波等因素引起零点处U≠0知。
其数值约为零点几毫伏,有时甚至可达几十毫伏,并且无论怎样调节衔铁的位置均无法消除。
零点残余电压的存在,使传感器的灵敏度降低,分辨率变差和测量误差增大。
克服办法主要是提高次级两绕组的对称性(包括结构和匝数等),另外输出端用相敏检测和采用电路补偿方法,可以减小零点残余电压影响。
2.整体的方框图与工作原理电感式位移传感器元件由静止的螺管线圈和可在线圈上移动的衔铁测头组成,它依据电磁感应原理工作.当线圈由高频电源驱动时,其两路引出端将输出两个感应电势,这些信号经信号检出电路综合后,形成在幅值及相位上随测头位置而变的电压信号,代表了位移量的大小和方向.此信号再经放大、滤波及整形等初步调理后,由A/D转换器转换为对应的数字量送入微控制器。
微控制器对它进行信号处理、存储以及显示,获得较高精度的测量结果,然后按系统组成态设定的输出方式,以要求的信号形式将测量结果输出。
系统的整体方框图如图1所示。
图1系统的整体方框图3.各个单元电路的设计3.1 8051单片机简介目前,8051单片机在工业检测领域中得到了广泛的应用,因此我们可以在许多单片机应用领域中,配接各种类型的语音接口,构成具有合成语音输出能力的综合应用系统,以增强人机对话的功能。
89C51是Intel公司生产的一种单片机,在一小块芯片上集成了一个微型计算机的各个组成部分。
每一个单片机包括:一个8位的微型处理器CPU;一个256K的片内数据存储器RAM;片内程序存储器ROM;四个8位并行的I/O接口P0-P3,每个接口既可以输入,也可以输出;两个定时器/记数器;五个中断源的中断控制系统;一个全双工UART的串行I/O口;片内振荡器和时钟产生电路,但石英晶体和微调电容需要外接。
最高允许振荡频率是12MHZ。
以上各个部分通过内部总线相连接。
下面简单介绍下其各个部分的功能。
中央处理器CPU是单片微型计算机的指挥、执行中心,由它读人用户程序,并逐条执行指令,它是由8位算术/逻辑运算部件(简称ALu)、定时/控制部件,若干寄存器A、B、B5w、5P以及16位程序计数器(Pc)和数据指针寄存器(DM)等主要部件组成。
算术逻辑单元的硬件结构与典型微型机相似。
它具有对8位信息进行+、-、x、/ 四则运算和逻辑与、或、异或、取反、清“0”等运算,并具有判跳、转移、数据传送等功能,此外还提供存放中间结果及常用数据寄存器。
控制器部件是由指令寄存器、程序计数器Pc、定时与控制电路等组成的。
指令寄存器中存放指令代码。
枷执行指令时,从程序存储器中取来经译码器译码后,根据不同指令由定时与控制电路发出相应的控制信号,送到存储器、运算器或I/o接口电路,完成指令功能。
程序计数器Pc 程序计数器Pc用来存放下一条将要执行的指令,共16位.可对以K字节的程序存储器直接寻址c指令执行结束后,Pc计数器自动增加,指向下一条要执行的指令地址。