线性二次型的最优控制
【线性系统课件】线性二次型最优控制问题

x (t f ) P (t f ) x (t f )
T
1 2
x (0) P (0) x (0)
T
1 2 1 1 2 1 2 1 2
tf
d dt
[ x P ( t ) x ] dt
T T
T
0 tf
2
[ x P ( t ) x x P ( t ) x x P ( t ) x ] dt { x [ A P ( t ) P ( t ) P ( t ) A ] x u B P ( t ) x x P ( t ) Bu } dt
T
1 2
tf
[ x ( t ) Qx ( t ) u ( t ) Ru ( t )] dt
T T
t0
S , Q : 半正定 , 对称矩阵 R : 正定 , 对称矩阵
求 u (t )
使
J ( u ( t )) min J ( u ( t ))
u (t )
二. 有限时间LQ调节问题
调节问题:受外部动态扰动时,保持x(t)回到零平衡态; 有限时间: t f 为有限值; LQ问题:二次型性能指标。 定理:系统 x Ax Bu , x ( 0 ) x 0 , t [ 0 , t f ] 使性能指标
z Fz Gy Hu , z ( 0 ) z 0 ˆ x T
1
z
在F,G,H,T满足一定条件时,可作为原系统 的观测器。
结论1: x 0 , z 0 , u 任意,上述系统是{A,B,C}的全维状态观测 器的充要条件是:
(1) TA FT GC , T 非奇异 ( 2 ) H TB ( 3 ) i ( F ), i 1, 2 , , n 均具负实部
4.1 线性二次型最优控制

(4-2-10)
用Ω(t,t0)表示方程组(4-2-9)的2n╳2n维转移矩阵,用λ(t0)表示待定的 协态变量初值,则方程组(4-2-9)的解可以表示为
x( t 0 ) x( t ) ( t ) ( t , t 0 ) ( t ) 0
(4-2-11)
• 二次型性能指标中加权矩阵F、Q、R的选取在最优 控制方法中是受人为因素影响最大的步骤。 • 对同样的二次型最优控制问题,选取不同的F、Q、 R,则所得到的最优控制规律也将不一样。 • 控制规律设计(控制器综合)中人为因素影响总是 客观存在的。
(4) 线性二次型最优控制问题的三种类型
状态调节器问题 此时有C(t) = I 为单位矩阵,yr(t) = 0,即有 y(t) = x(t) = -e(t) 输出调节器问题 此时有yr(t) = 0,即有 y(t) = -e(t) 跟踪问题 此时yr(t) ≠ 0, e(t) = yr(t) - y(t)
1 tf 2 为单输出,即e(t)为数量函数时, e ( t )dt 即为经典控制中的动态误 2 t0
Lu u T ( t ) R ( t ) u( t )为衡量控制功率(积分后即为能量)大小的
代价函数,若u(t)表示电流或电压时,则u2(t)正比于电功率;
e T ( t f )Fe( t f ) 是要使末值时刻误差最小。
则(4-2-12)式可写为来自(4-2-13)x ( t f ) 11 ( t f , t ) x ( t ) 12 ( t f , t ) ( t )
(4-2-14) (4-2-15)
( t f ) 21 ( t f , t ) x( t ) 22 ( t f , t ) ( t )
lqr控制器原理

lqr控制器原理
LQR(线性二次型调节器)是一种基于状态反馈的最优控制策略,其原理主要包括以下步骤:
1. 确定状态方程模型:首先需要确定一个描述系统状态的动力学模型,通常以状态空间的形式给出。
2. 线性化处理:对状态方程进行线性化处理,将其转化为线性系统模型。
3. 定义目标函数:目标函数通常是系统状态和控制输入的二次型函数,用于评估控制性能的好坏。
4. 优化目标函数:通过设计状态反馈控制器,使得目标函数取最小值。
这意味着需要找到一个状态反馈控制律,使得系统的状态轨迹能够跟踪参考信号,同时控制输入的二次型能量最小。
5. 求解最优控制律:通过求解优化问题,可以得到最优控制律,即状态反馈控制器的增益。
这个增益可以用来调节系统的状态,以达到最优控制的目的。
6. 控制系统实现:将得到的增益值代入到实际控制系统中,通过闭环控制的方式对系统进行调节,以实现最优控制。
LQR控制器的优点包括:
1. 易于实现:LQR控制器通过线性二次型目标函数进行优化,其解具有封闭形式的解析解,易于计算和实现。
2. 鲁棒性好:LQR控制器对系统参数的变化和扰动具有较强的鲁棒性,能够在不确定环境下实现较好的控制效果。
3. 稳定性高:LQR控制器能够保证系统的状态轨迹收敛到平衡点,具有较好的稳定性和收敛性。
4. 可扩展性:LQR控制器可以与其他先进控制策略相结合,如模糊逻辑、神经网络等,以实现更复杂的控制任务。
总之,LQR控制器是一种有效的最优控制策略,广泛应用于各种线性系统的控制中。
通过合理地选择权矩阵Q和R,可以适应不同的控制要求和系统特性,实现最优控制。
最优控制课后习题答案

最优控制课后习题答案最优控制课后习题答案最优控制是现代控制理论中的重要分支,它研究如何在给定约束条件下,使系统的性能指标达到最优。
在最优控制的学习过程中,课后习题是巩固理论知识、培养解决问题能力的重要环节。
本文将为大家提供一些最优控制课后习题的答案,希望能对大家的学习有所帮助。
1. 线性二次型最优控制问题考虑一个线性时不变系统,其状态方程和性能指标分别为:$$\begin{align*}\dot{x}(t) &= Ax(t) + Bu(t) \\J(u) &= \int_{0}^{T} (x^T(t)Qx(t) + u^T(t)Ru(t))dt\end{align*}$$其中,$x(t)$为系统的状态向量,$u(t)$为控制输入向量,$A$和$B$为系统矩阵,$Q$和$R$为正定矩阵,$T$为最优控制的时间段。
求解该问题的最优控制输入$u^*(t)$。
答案:根据最优控制的原理,最优控制输入$u^*(t)$满足以下的最优性条件:$$\begin{align*}\frac{\partial J}{\partial u}(u^*(t)) &= 2R u^*(t) + 2B^T P(t)x(t) = 0 \\\dot{P}(t) &= -PA - A^T P - Q + PBR^{-1}B^T P\end{align*}$$其中,$P(t)$为状态向量的共轭变量矩阵。
通过求解上述的代数方程和微分方程,可以得到最优控制输入$u^*(t)$和状态向量的共轭变量矩阵$P(t)$。
2. 非线性最优控制问题考虑一个非线性系统,其状态方程和性能指标分别为:$$\begin{align*}\dot{x}(t) &= f(x(t), u(t)) \\J(u) &= \int_{0}^{T} g(x(t), u(t)) dt\end{align*}$$其中,$f(x(t), u(t))$为非线性函数,$g(x(t), u(t))$为性能指标函数。
第4章线性二次型最优控制

λ(t) = [Ω 22 (t f , t) − FΩ12 (t f , t)]−1[FΩ11 (t f , t) − Ω 21 (t f , t)]x(t)
此式表明λ(t)与 x(t)之间存在线性关系。令
λ(t) = P(t)x(t)
考虑Ω(tf ,tf)=I2n╳2n, 即
首先列出该问题的 Hamilton 函数
H
=
1 2
xT
(t)Q(t)x(t)
+
1 2
uT
(t)R(t)u(t)
+
λT [A(t)x(t)
+
B(t)u(t)]
(4-2-3)
因 u(t)不受约束,所以沿最优轨线有
∂H ∂u (t )
=
0
即
∂H ∂u(t)
=
R(t)u(t)
+
BT
(t )λ (t )
=
0
(4-2-4)
则取较小值。 z 若要减少各分量间的关联耦合作用,系数矩阵可不为对角线矩阵,只需
将在系数矩阵中对应关联分量位置的元素取为非零的正数,其大小也依
对消除各分量间关联的重视程度而定,即最优性能指标也可以用于解耦
控制设计。 z 当 Q、R 取为时变矩阵 Q(t)和 R(t)时,可以反映不同时间阶段的系统控
制要求。如当 t = t0 时 e(t)可能很大,但此时并不反映系统的控制性能, 可以将 Q(t)取得较小;当 t→ tf、e(t)减小时,为保证控制系统性能,可 以将 Q(t)逐渐取大。 二次型性能指标中系数矩阵 F、Q、R 的选取在最优控制理论中是受人为因 素影响最大的步骤,对同样的二次型最优控制问题,选取不同的 F、Q、R 所得 到的最优控制规律也是完全不一样的。 (4) 线性二次型最优控制问题的三种类型 依照系统(4-1-1)~(4-1-3)的情况不同,线性二次型最优控制问题可以分为 如下三类: I. 状态调节器问题 此时有 C(t) = I 为单位矩阵,yr(t) = 0,即有 y(t) = x(t) = -e(t) II. 输出调节器问题 此时有 yr(t) = 0,即有 y(t) = -e(t)。 III. 跟踪问题
现代控制理论线性二次型最优控制

J = ∫ x T Qxdt
0
∞
J = ∫ uT Rudt 描述了控制能量
0
∞
性能指标:既考虑系统性能的要求,也考虑能量消耗
7.1 二次型最优控制
& = Ax + Bu ⎧x 系统状态空间模型: ⎨ ⎩ y = Cx
系统性能指标:J = ∫0 [ x T Qx + uT Ru]dt Q和R为加权矩阵,由设计者选定。 目的:要求设计一个控制器u,使得性能指标J尽可能小 9 二次型最优控制问题; 9 最优控制器。 特别的,考虑状态反馈形式的最优控制器:u = − Kx 9 如何来确定最优状态反馈控制器? 9 最优闭环系统的稳定性?
总结:只要黎卡提方程有对称正定解,就可以构造最优 状态反馈增益矩阵,并得到性能指标的最小值。 问题:什么时候可解呢? 定理:若 ( A, B) 能控,则状态反馈二次型最优控制问题 可解,即黎卡提方程存在对称正定解P,据此可以构 造最优状态反馈控制律和最小性能指标值。
& = ( A − BR −1B T P ) x 最优闭环系统: x
T J = ∫ x T [ PA + AT P − PBR −1 B T P + Q ] xdt + x0 P x0 0 ∞
依赖矩阵P。若选取正定矩阵P满足
PA + AT P − PBR −1 B T P + Q = 0 (Riccati 黎卡提方程)
T J = x 则性能指标的最小值 0 P x0 。
应该是负定的。
控制律对性能指标的影响:
J = ∫ ( x T Q x + u T R u)dt
0 ∞ ∞ d d ⎤ ⎡ T T ⎢ x Q x + u R u + dt V ( x )⎥dt − ∫0 dtV ( x )dt ⎦ ⎣
线性二次型最优控制问题
2023/12/21
9
对容许控制U(t)和终态X(tf)的说明
(1) 在线性二次型问题的定义中,并没有直接提出对控制 作用U(t)的不等式约束,但这并不等于在物理上不需要对 U(t)进行必要的限制。实际上,用适当选择Q(t)和R(t)数值 比例的方法,同样可以把U(t)的幅值限制在适当的范围之 内。这样,就可以在保持闭环系统线性性质的前提下,实 现对U(t)的限制。
2023/12/21
1
线性二次型最优控制问题是指线性系统具有二次型 性能指标的最优控制问题,它呈现如下重要特性:
性能指标具有鲜明的物理意义。最优解可以写成统一的解 析表达式。所得到的最优控制规律是状态变量的反馈形式, 便于计算和工程实现。
可以兼顾系统性能指标的多方面因素。例如快速性、能量 消耗、终端准确性、灵敏度和稳定性等。
dt
这时问题转化为:用不大的控制量,使系统输出Y(t)紧
紧跟随Yr(t)的变化,故称为跟踪问题。
2023/12/21
13
6.2 有限时间的状态调节器问题
问题6.2.1 给定线性定常系统的状态方程和初始条件
X (t) AX (t) BU (t)
X
(t0 )
X0
(6.2.1)
其 中 X(t) 是 n 维 状 态 变 量 , U(t) 是 m 维 控 制 变 量 , A 是 nn常数矩阵,B是nm常数矩阵。性能指标是
在理论上,线性二次型最优控制问题是其它许多控制问题 的基础,有许多控制问题都可作为线性二次型最优控制问 题来处理。
线性二次型最优控制问题,在实践上得到了广泛而 成功的应用。可以说,线性二次型最优控制问题是 现代控制理论及其应用领域中最富有成果的一部分。
2023/12/21
线性二次型问题的最优控制
若取 xT (t )(Q + K T RK ) x (t ) = −
J=
d T x (t ) Px (t ) 则有: dt
1 ∞ T 1 ∞ T x (t )(Q + K T RK ) x(t ) dt = − 2 ∫0 dx (t ) Px(t ) 2 ∫0 1 T = x (0) Px (0) − xT (∞) Px(∞) 2
x 因此,设计的控制律为 u = [−1 - 3] 1 x2
3 控制律验证 3.1 系统稳定性验证 加入状态反馈后系统的极点分布图如下。极点为 − 状态反馈控制后系统又不稳定变为稳定系统。
3 1 3 ± i ,阻尼比 ξ = 。因此引入 2 2 2
Pole-Zero Map 0.8 0.7 0.6 0.84 0.4 0.95 0.2 Imaginary Axis 0.9 0 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.56 0.42 0.3 0.2 0.09
2 控制律设计 由上述分析可知状态反馈的控制律为 u = Kx = [ k1 k2 ] x , 因此, 系统新的状态方程变为:
0 & = x 0 1 0 0 + [k1 k 2 ] x 其中 Ac = A + BK = 0 1 k1 1 。 k2
& = Ax + Bu x y = Cx + Du x (0) = x 0
性能指标
J= 1 ∞ T x (t )Qx(t ) + uT (t ) Ru (t ) dt 2 ∫0
若采用状态反馈,取控制输入 u = Kx 则有: & = ( A + BK ) x x
线性二次型最优控制问题.ppt
上式所示的性能指标中加权矩阵S,Q(t)和R(t)
(1)加权矩阵中的各个元素之间的数值比例关系,将直接影 响系统的工作品质。例如,提高S阵中某一元素的比重,说明 更加重视与该元素对应的状态分量的终端准确性;提高Q(t) 阵中某一元素的比重,说明希望与之对应的状态分量具有较 好的快速响应特性;而提高R(t)阵中某一元素的比重,意味着 需要更有效地抑制与之相应的控制分量的幅值及由它引起的 能量消耗。这只是大致趋势,实际情况十分复杂。因此,如 何安排各加权阵的各个元素之间的关系,乃是一件十分重要 而又十分困难的工作 。
J
1 2
eT
(t f
)Se(t f
)
1 2
tf t0
[eT (t)Q(t)e(t) U T (t)R(t)U (t)]dt
(6.1.2)
2019年8月3
3
为最小,这就是线性二次型最优控制问题。其中S是ll半正定
对称常数矩阵,Q(t)是ll半正定对称时变矩阵,R(t)是mm正 定对称时变矩阵,终端时间tf是固定的,终端状态X(tf)自由。
但是,由于协态变量在实际系统中是不存在的,自然也无法 检测到。因此式(6.2.3)的最优调节作用在工程上是难以实 现的。为了便于在工程上实现,需将调节作用U(t)表示成系 统状态变量X(t)的函数。令:
(t) P(t)X (t)
其中P(t)是nn待定的时变矩阵。对上式两边求导数,得
(t) P(t)X (t) P(t)X (t)
2019年8月3
5
(2)在这些不同目标之间,往往存在着一定矛盾。例如,为 能尽快消除误差并提高终端准确性,就需较强的控制作用及 较大的能量消耗;而抑制控制作用的幅值和降低能耗,必然 会影响系统的快速性和终端准确性。如何对这些相互冲突的 因素进行合理折衷,是系统设计者必须认真对待的课题。
线性二次型最优控制问题
线性二次型最优控制问题2. 线性二次型最优控制问题如果所研究系统为线性,所取性能指标为状态变量与控制变 量的二次型函数,称这种动态系统最优化问题为线性二次型最概念优控制问题.问题的提法 设线性时变系统的状态方程为:x ( t ) = A( t ) x ( t ) + B( t )u( t ) y( t ) = C ( t ) x ( t )假设控制向量u(t)不受约束 ,用yr(t)表示期望输出,则误差向量为e( t ) = yr ( t ) − y( t )求最优控制u*(t) ,使下列二次型性能指标极小。
1 T 1 tf e ( t f )Fe ( t f ) + ∫ [e T ( t )Q( t )e( t ) + u( t )T R( t )u( t )]dt 2 2 t0 F —半正定 q × q常数矩阵 , Q ( t ) —半正定 q × q时变矩阵 J ( u) =R ( t ) —正定 p × p时变矩阵 t 0 及 t f 固定NORTHWESTERN POLYTECHNICAL UNIVERSITYNWPU线性二次型最优控制问题2. 线性二次型最优控制问题各项指标物理意义1 T 1 tf T J ( u) = e ( t f )Fe ( t f ) + ∫ [e ( t )Q( t )e( t ) + u( t )T R( t )u( t )]dt 2 2 t0(1) 第一积分过程项 0.5∫ttf0[e T ( t )Q ( t )e( t )]dt 是对动态跟踪误差加权平方和的积分要求,是系统在运动过程中动态跟踪误差的总度量. t (2) 第二积分过程项 0.5∫t [u( t )T R( t )u( t )]dt 表示系统在控制过程中对系统加权f 0后的控制能量消耗的总度量. (3) 末值项 0.5eT (t f )Fe( t f ) 表示末态跟踪误差向量与希望的零向量之间的距 离加权平方和. 整个性能指标物理意义: 使系统在控制过程中的动态误差与能量消耗,以及控制结束时的系统 终端跟踪误差综合最优。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5 11)
(5-13)-(5-12)*F 可得
(t f ) Fx(t f ) (21 F11 ) x(t ) (22 F12 )(t ) 0
(5 14)
第5章 线性二次型的最优控制
(t f ) Fx(t f ) (21 F11 ) x(t ) (22 F12 )(t ) 0
第5章 线性二次型的最优控制
第5章 线性二次型的最优控制
本章主要内容:
5.1 线性二次型问题 5.2 状态调节器
5.3 输出调节器
5.4 跟踪器
1 tf T J (u ) ( x Qx u T Ru )dt 2 t0
线性二次型问题的特点
(0 14)
(1)最优解可写成统一的解析表达式,实现求解过程规范化 (2)可以兼顾系统的性能指标(快速性、准确性、稳定性、灵敏度)
(1)F,Q,R是衡量误差分量和控制分量的加权矩阵,可根据各分量 的重要性灵活选取。
(2)采用时变矩阵Q(t),R(t)更能适应各种特殊情况。 例如:t t0时刻e(t0 )很大,但误差在系统开 始前形成,
并不反映系统性能的好 坏。
Q(t)可开始取值小,而后取值大
第5章 线性二次型的最优控制
线性二次型问题的本质:
f=0; %initial value
sol = ode45(@dfun1,[1 0],f,options); x = linspace(1,0,100);
y = deval(sol,x);
plot(x,y); disp(y(100)); %p(t0)=y(100)
第5章 线性二次型的最优控制
利用matlab进行
第5章 线性二次型的最优控制
设a 1, f 0, x(0) 1, q 1, t f 1 r变化 ,
r越小,p(t )越平稳、x(t )衰减越快、 (t )幅值越大 u
第5章 线性二次型的最优控制
x(t0 ) x(t ) (t ) (t , t0 ) (t ) 0
横截条件给出了终端时刻二者的关系:
(5 9)
1 T [ x (t f ) Fx(t f )] (t f ) 2 Fx(t f ) x(t f )
u(t ) R1BT R1BT P(t ) x(t ) K (t ) x(t )
可实现最优 线性反馈控制
(5 18)
下面思路:
求解P(t),但直接 利用(5-16)求 解,涉及矩阵求 逆,运算量大
第5章 线性二次型的最优控制
2.应用其性质求解p(t)
(t ) P(t ) x(t ) (5 17) x Ax BR1 BT Ax S
第5章 线性二次型的最优控制
5.1 线性二次型问题
线性二次性问题的提法:
x(t ) A(t ) x(t ) B(t )u(t ) (5 1) y(t ) C(t ) x(t ) 假设控制向量 u(t ) 不受约束 ,用 yr (t )表示期望输出,则误差向量为 e(t ) yr (t ) y(t ) (5 2)
(3)求反馈增益矩阵K(t)及最优控制u*(t)
(5 21)
u(t )* K (t ) x(t ) R1BT P(t ) x(t )
(4)求解最优轨线x*(t) (5)计算性能指标最优值
(5 18)
J *[ x(t ), t ]
1 x(t )T P(t ) x(t )T 2
(5 23)
正定二次型 x 0
(5 3)
xT Ax 0
半正定二次型 x 0
xT Ax 0
实对称阵A为正定(半正定)的充要条件是全部特征值>0(>=0)。
加权矩阵总可化为对称形式。
第5章 线性二次型的最优控制
1 T 1 tf T J (u ) e (t f ) Fe (t f ) [e (t )Q(t )e(t ) u (t )T R(t )u (t )]dt (5 3) t0 2 2 性能指标的物理含义: 1 Le e(t )T Q(t )e(t ) 0 — 状态转移过程中衡量 e(t )大小的代价函数 2 1 Lu u (t )T R(t )u (t ) 0 — 状态转移过程中衡量 u (t )大小的代价函数 2 1 (t f ) e(t f )T Fe (t f ) 0 — 终端代价函数(衡量终 点误差) 2 加权矩阵的意义:
(5-17)对时间求导
H Qx AT Qx AT Px x
(5 19)
(5 20)
Px Px Px P[ Ax BR 1 B T Px ] [ P PA PBR 1 B T P]x
(5-20)与(5-19)相等,可得
1 J [ x(t ), t ] x(t )T P(t ) x(t )T 2
*
(5 23)
第5章 线性二次型的最优控制
3. 状态调节器的设计步骤 (1)根据系统要求和工程实际经验,选取加权矩阵F,Q,R (2)求解黎卡提微分方程,求得矩阵P(t)
P PA AT P PBR1 BT P Q P(t f ) F
(5 10)
为了与(5-10)建立联系,将(5-9)写成向终端转移形式:
即
x(t f ) x(t ) 11 12 x(t ) (t ) (t f , t ) (t ) 21 22 (t ) f x(t f ) 11 x(t ) 12 (t ) (5 12) (t f ) 21 x(t ) 22 (t ) (5 13)
最优控制系统仿真
x(t ) x(t ) u(t ) x(0) 1
u(t )* p(t ) x(t )
p (t ) 2 p (t ) p 2 (t ) 1 p (t0 ) 0.3858
第5章 线性二次型的最优控制
取a 1, f 0, x(0) 1, q 1, t f 1,r 1 计算得p(t0 ) 0.3858
(5 1)
y(t ) x(t ) e(t ) 输出调节器 跟踪问题
状态调节器
e(t ) yr (t ) y(t )
第5章 线性二次型的最优控制
5.2 状态调节器问题
终端时间t , 有限时间问题 终端时间t , 无限时间问题
5.2.1 有限时间状态调节器问题
设线性时变系统的状态方程为
物理意义:以较小的控制能量为代价,使状态保持在零值附近。
(5 4)
第5章 线性二次型的最优控制
解:1.应用最小值原理求解u(t)关系式
H L f T
1 T 1 x Qx u T Ru xT AT u T BT 2 2
(5 5)
因控制不受约束,故沿最优轨线有:
P PA AT P PBR1BT P Q
黎卡提方程(Riccati)
(5 21)
边界条件:
(t f ) Fx(t f ) (t ) P(t ) x(t )
(5 10)
(5 17)
P(t f ) F
(5 22)
第5章 线性二次型的最优控制
黎卡提方程求解问题: (1)可以证明,P(t)为对称矩阵,只需求解n(n+1)/2个一阶微分方程组。 (2)为非线性微分方程,大多数情况下只能通过计算机求出数值解。 还可进一步证明,最优性能指标为:
第5章 线性二次型的最优控制
例[5-1]
已知一阶系统的微分方程为 二次型性能指标为:
x(t ) ax(t ) u(t )
x(0) x0
1 2 1 tf J fx (t f ) [qx2 (t ) ru 2 (t )]dt 2 2 0 f 0 q0 r 0
求使性能指标为极小值时的最优控制。
解: u (t )* R 1 B T P(t ) x(t ) 1 p (t ) x(t )
r
其中p(t)为黎卡提方程的解
PA AT P PBR1BT P Q p(t ) 2ap(t ) 1 p 2 (t ) q P r P(t f ) F p(t f ) f
H Ru BT 0 u (t ) R 1 BT u
(R(t)正定,保证其逆阵的存在。)
(5 6)
x Ax BR1BT Ax S H 规范方程组: (5 7) Qx AT x S x 下面思路: x A 写成矩阵形式: (5 8) T 确定 x(t ) 与 (t ) Q A 的关系,带入 ( x(t0 ) x(t ) 5-6)形成状态反 (5 9) 其解为: (t ) (t , t0 ) (t ) 馈 0
dy = zeros(1,1); a=-1; % a column vector
q=1;
r=1; dy(1)= -2*a*y(1)+y(1)^2-q;
第5章 线性二次型的最优控制
利用matlab求解黎卡提方程的解(数值解) 文件名:cal_p.mat(主程序) options = odeset('RelTol',1e-4,'AbsTol',1e-4);
x(t ) A(t ) x(t ) B(t )u(t )
(5 1)
初始条件x(t0 ) x0 , 终端时间t
假设控制向量 u(t ) 不受约束 ,求最优控制 u * (t ) ,使系统的二次型 性能指标取极小值。
1 T 1 tf T J (u ) x (t f ) Fx (t f ) [ x (t )Q(t ) x(t ) u (t )T R(t )u (t )]dt 2 2 t0