22.1一元二次方程课件

合集下载

二次函数ppt课件

二次函数ppt课件
想一想 自变量的取值范围是 x>6 .
典 例3 如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形 例 菜园ABCD,设AB边长为x米,求菜园的面积y(单位:平方米)与x(单位:米) 精 的函数关系式.
析 解:∵AB边长为x米.
D
C
A
B
在根据实际问题列二次函数关系式时,要注意自变量的取值范围.
第二十二章 二次函数
22.1.1二次函数
视 频
观察都匀 绿博园音
引 乐喷泉视
入 频有时会
形成一条
条曲
线.这些
曲线能否
用函数关
系式表示?
复 1.什么是函数? 习 一般地,在一个变化的过程中,如果有两个变量x与y,并且对于x 巩 的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是 固 自变量,y是x的函数.
典 例4 某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产 例 品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但 精 一天产量减少5件.若生产第x档次的产品一天的总利润为y元(其中x为正整数, 析 且1≤x≤10),求出y关于x的函数关系式.
解:∵第一档次的产品一天能生产95件,每件利润6元,每提高一 个档次,每件利润加2元,但一天产量减少5件,
课 堂 小 结
作业设计
必做:课本41页1、2题
选做: 若函数
是二次函数,求:
(1)求a的值. (2)求函数关系式. (3)当x=-2时,y的值是多少?
共勉:
走进名家,乐享数学
一切问题都可以转化为数学问题,
一切数学问题都可以转化为代数问题,
而一切代数问题又可以转化为函数问题,
因此,一旦解决了函数问题,

22.1.1二次函数

22.1.1二次函数
解析
关闭 关闭
答案
1
2
3
4
5

5.一台机器原价 60 万元,如果每年的折旧率为 x,两年后这台机器的价格为 y
万元,则 y 与 x 之间的函数关系式为
.
y=60(1-x)2
关闭
答案
1
2
3
4
5
6
6.有一矩形的长是 4 cm、宽是 3 cm,如果将其长与宽都增加 x cm,对应的面
积增加 y cm2,那么 y 与 x 之间的函数关系式为
A.1
B.-1
C.2
D.-1 或 2
关闭
根据题意,得
������2-m = 2,解方程 ������-2 ≠ 0.
m2-m=2,得
m1=2,m2=-1.又因为
m-2≠0,
故 m=2 不合题意,舍去.所以 m=-1.
关闭
B
解析 答案
1
2
3
4
5
6
3.已知二次函数 y=1-3x+5x2,它的二次项系数为 a,一次项系数为 b,常数项为 c,那么 a,b,c 分别为( ) A.a=1,b=-3,c=5 B.a=5,b=-3,c=1 C.a=5,b=-3,c=1 D.a=1,b=3,c=5
C.y=(x+3)2-x2
D.y=���1���2-x
1
2
3
4
5
6
关闭
选项 B,D 中的函数都不是整式函数,选项 C 中的函数化简后为 y=6x+9, 它们都不是二次函数;根据二次函数的定义,选项 A 中的函数是二次函关闭 A数.
解析 答案
1
2
3
4
5

《二次函数的图像和性质》PPT课件 人教版九年级数学

《二次函数的图像和性质》PPT课件 人教版九年级数学
2
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标

第二十二章 一元二次方程全章讲学稿

第二十二章 一元二次方程全章讲学稿

22.1一元二次方程一、学习目标:1.进一步体会方程是刻画现实世界中数量关系的一个有效数学模型;2.正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。

理解方程的解的概念,二、学习重难点:重点:一元二次方程的概念及其一般形式。

难点:建立一元二次方程的数学模型。

三、学习过程:(一)课前预习根据题意列方程:(1)某公园要设计一座2米高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全身的高度比,求雕像下部的高度.(2)有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒底面积为3600cm2,那么铁皮各角应切去多大的正方形?(3)要组织一次排球邀请赛,参赛的每两队之间都要比赛一场,依据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,请问全校有多少个队参赛?(二)探究新知1:(1)问题:上述3个方程是不是一元一次方程?有何共同点?①;②;③。

(2)一元二次方程的概念:像这样的等号两边都是_____ ,只含有___个未知数,并且未知数的最高次数是___ 的方程叫做一元二次方程。

(3)任何一个关于x的一元二次方程都可以化为(a,b,c为常数,)的形式,我们把它称为一元二次方程的一般形式。

a为,b为,c为。

注意:⑴一元二次方程必须满足三个条件:①;②;③。

⑵任何一个一元二次方程都可以化为一般形式:. 二次项系数、一次项系数、常数项都要包含它前面的符号。

⑶二次项系数0a≠是一个重要条件,不能漏掉,为什么?(三)学以致用例1:下列列方程中,哪些是关于x的一元二次方程?(1)250x-=;(22x-;(3)21230x x+-=;(4)330x x-=;(5)230x xy+-=例2.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.例3.已知关于x的方程27(3)410mm x x m-+-++=是一元二次方程,则m的值为()A.任何实数 B.3m=± C.3m= D.3m=-练一练:1.下列方程中,是关于x的一元二次方程的是()3= B.2221x x x+=- C.20ax bx c++= D.23(1)2(1)x x+=+2.方程2(1)4(1)x x x-=-的一次项是()A. 2xB. 4xC. 6-D. 6x-3.当a_______时,关于x的方程(a-1)x2+3x-5=0是一元二次方程4.已知方程22(1)30kk x kx k+++=是关于x的一元二次方程,那么k的值是()A.±1 B.1 C.—1 D.任何实数5. 把下列方程化成一元二次方程的一般形式,并写出它的二次项系数一次项系数和常数项。

人教版数学九年级上册22 二次函数(第一课时)课件

人教版数学九年级上册22 二次函数(第一课时)课件

4
【典例】下列各式中,y 是 x 的二次函数的是( )
A.y=x12
B.y=2x+1
C.y=x2+x-2
D.y2=x2+3x
分析:y=x12中,x12为分式,不是二次函数,故 A 不符题意;y=2x+1 中,x 的
次数为 1,是一次函数,故 B 不符题意;y=x2+x-2 符合二次函数的定义,是二次
函数解析式是 y=3x+2 或 y=33+215
5x+5+23
5或 y=33-215
5x+5-23
5 .
(2) 若 函 数 y = (m2 - m - 2)xm2 - 5m - 4 + (m + 1)x + m 为 二 次 函 数 , 则
m2-5m-4=2, m2-m-2≠0.
解得 m=6.故当 m=6 时,函数 y=(m2-m-2)xm2-5m-4+(m
• (1)求直线AB的解析式; • (2)若设点P的横坐标为x,矩形PKDH的面积为S,求S关于x的函数解析
式.
17
解:(1)如图所示,∵OE=CD=80 m,OC=ED=100 m,AE=60 m,BC=70 m, ∴OA=20 m,OB=30 m,即 A(0,20)、B(30,0).设直线 AB 的解析式为 y=kx+b(k≠0),
►如果我们不曾相遇,你的梦里就不会有我的出现,我们都在不断地 和陌生人擦肩;如果人生不曾相遇,我的生命里就不会有你的片段,我 们都在细数着自己的日子。 ►当离别的脚步声越来越清晰,我们注定分散两地,继续彼此未完的 人生,如果我说放不下,短短一个月的光景,你是否愿意相信,我的 真诚,我的执着,只源于内心深处那一份沉沉的不舍。
►为你理想的人,否则,爱的只是你在他身上找到的你的影子。 ►有时候,我们愿意原谅一个人,并不是我们真的愿意原谅他,而是我们 不愿意失去他。不想失去他,惟有假装原谅他。不管你爱过多少人,不管 你爱得多么痛苦或快乐。最后,你不是学会了怎样恋爱,而是学会了,怎 样去爱自己。

陕西省山阳县城关镇第二初级中学人教版数学九年级上册22.1二次函数的图象和性质课件(共24张PPT)

陕西省山阳县城关镇第二初级中学人教版数学九年级上册22.1二次函数的图象和性质课件(共24张PPT)

一农民用40m长的篱笆围成一个一边靠墙的长方形 菜园,和墙垂直的一边长为Xm,菜园的面积为Ym2, 求y与x之间的函数关系式,并说出自变量的取值范围。 当x=12m时,计算菜园的面积。 解:由题意得: Y=x(40-2x)
即:Y=-2x2+40x(0<x<20) 当x=12m时,菜园的面积为:(40-2x )m Y=-2x2+40x=-2×122+40×12 =192(m2)
2
+(m-3)x+m 是二次函数?
解:由题意得
m2—2m-1=2 m+1我们学习过的函数有: 一次函数y=kx+b (k ≠0),其中包括正比例函数 y=kx(k≠0), 二次函数y=ax2+bx+c(a≠0)。 可以发现,这些函数的名称都形象地反映了函 数表达式与自变量的关系。
想一想
函数y ax bx c(其中a, b, c是常数),
2
当a, b,c满足什么条件时 (1)它是二次函数? (2)它是一次函数? (3)它是正比例函数 ?
解:(1)a 0
(2)a 0, b0
(3)a 0, b 0,c 0
m2-7 例2、y=(m+3)x
(1)m取什么值时,此函数是正比例函数?
– 当b=0时, y=ax2+c – 当c=0时, y=ax2+bx – 当b=0,c=0时, y=ax2
1、 说出下列二次函数的二次项系数、一次项系 数、常数项 (1) y=-x2+58x-112 (2)y=πx2 2、指出下列函数y=ax² +bx+c中的a、b、c (1) y=-3x2-x-1 (2) y=5x2-6
思考:2. 二次函数的一般式y= ax2+bx+c(a≠0)与一元二次方 程ax2+bx+c=0(a≠0)有什么 联系和区别?

二次函数 概念


2、若函数 y(m21)m x2m为二次函数,求 m的值。
解:因为该函数为二次函数,

m2 m 2(1) m2 1 0(2)
解(1)得:m=2或-1
解(2)得: m1且 m1
所以m=2
典例分析
函数 yax 2bx c其 ( 中 ab , c,是常 ),数 当 ab , c,满足什么条件时
(1)它是二次函数? (2)它是一次函数? (3)它是正比例函数?
变 量 之 间函 的数 关 系
一次函数 反比例函数
y=kx+b (k≠0)
正比例函数
y=kx (k≠0)
二次函数
二次函数
问题1: 正方体的六个面是全等的正方形,设正
方形的棱长为x,表面积为y,显然对于x的每一个 值,y都有一个对应值,即y是x的函数,它们的具体关 系可以表示为
y=6x2
x
此式表示了正方体的表面积y与棱长x之间的 关系,对于x的每一个值,y都有一个对应值,即y是 x的函数.
2
;是二次函数
(3)如图所示,在直径为20 cm的圆
形铁片中,挖去了四个半径都为x cm
的圆,剩余部分的面积为y cm2,则y与x
间的函数关系式 y1004x20x1( 0 2-1.) 是二次函数
比一比
下列函数中,哪些是二次函数?是二次函数 的请说出它的a,b,c的值。
(1)y=3x-1
(2)y=3x2
(1) y x 2

(2) y
Байду номын сангаас
1 x2
(3 ) y x (1 x )
不是 是
(4) y (x 1)2 x 2
不是
先化简后判断
观察与发现

人教版九年级上册22.1二次函数y=ax2+bx+c的图像和性质课件


例题详解
2.函数y=-3x2+12x-16的图象能否由函数y=-3x2的图象通过平移变换得 到?若能,请说出平移过程,并画示意图; 说出函数图象的对称轴和顶点坐标。
例题详解 y 2.
-6. - - 0 2 4 6
x
4. 2 -.
...
-24.
-6. -8.
-
-10. 12
y=-3(x-
y=-3(xy3=x2-2)2
=2(x-2)2-7≥-7 所以当x=2时,y最小值=-7 。
例题详解
解法二(公式法):
因为a=2>0,抛物线y=2x2-8x+1有最低点,所以y有最小值,
因为 - b 8 2, 4ac b2 4 21 82 7
2a 2 2
4a
42
所以当x=2时,y最小值=-7。
总结:求二次函数最值,有两个方法。 (1)用配方法;(2)用公式法。
b 2a
时,y随x的增大而减小;
当x<
b 2a
时,y随x的增大而增大。
知识点详解
(6)抛物线y=ax²+bx+c与坐标轴的交点。 ①抛物线y=ax²+bx+c与y轴的交点坐标为(0,c)。 ②抛物线y=ax²+bx+c与x轴的交点坐标为(x1,0),(x2,0),其中为x1,x2方程 y=ax²+bx+c的两实数根。
第二十二章 ·二次函数
二次函数y=ax2+bx+c的图像和性质
温故知新
二次函数y=a(x+m)2+k的图象和y=ax2的图象之间的关系。
y=ax2(a≠0)图像 当m>0时
当m<0时

2020秋七彩课堂初中数学人教版九年级上册教学课件22.1.1 二次函数


素养目标
22.1 二次函数的图像和性质/
2. 能根据实际问题中的数量关系列出二次函数 解析式,并能指出二次函数的项及各项系数.
1.掌握二次函数的定义,并能判断所给函 数是否是二次函数.
探究新知
22.1 二次函数的图像和性质/
知识点 1 二次函数的概念
问题1 正方体的六个面是全等的正方形(如下图),设
注意 二次函数的二次项系数不能为零.
巩固练习
22.1 二次函数的图像和性质/
2. y (a 1)x a 1是二次函数,求常数a的值.
解:根据二次函数的定义,得
a 1 2 a 1 0
解得a=-1.
探究新知
22.1 二次函数的图像和性质/
知识点 2 根据实际问题确定二次函数解析式
根据实际问题建立二次函数模型的一般步骤: ①审题:仔细审题,分析数量之间的关系,将 文字语言转化为符号语言; ②列式:根据实际问题中的等量关系,列二次 函数关系式,并化成一般形式; ③取值:联系实际,确定自变量的取值范围.
(7) y=x²+x³+25 (否) (8) y =2²+2x
自变量的最高次数是3
(否) 自变量的最
高次数是1
探究新知 素养考点 2
22.1 二次函数的图像和性质/
利用二次函数的定义求字母的值
例2 关于x的函数 y (m 1)xm2m 是二次函数, 求
m的值.
解: 由二次函数的定义得m2-m=2,m+1≠0 解得 m=2. 因此当m=2时,函数为二次函数.
定,y与x之间的关系应怎样表示? 这种产品的原产量是20件, 一年后的产量是 20(1+x) 件,再 经过一年后的产量是 20(1+x)2 件,即两年后的产量为

人教版九年级上册22.二次函数的图像与性质课件(共129张)

二次函数的图象都是抛物线。
一般地,二次函数 y = ax2 + bx + c(a≠0)的图象叫做抛物线y = ax2 + bx + c
思考:这个二次函数图象有什么特征?
(1)形状是开口向上的抛物线
9
6
(2)图象关于y轴对称
3
(3)有最低点,没有最高点
-3
3
y轴是抛物线y = x 2 的对称轴,抛物线y = x 2 与它的对称 轴的交点(0,0)叫做抛物线y = x2 的顶点,它是抛物线y = x 2 的最低点.
联系(1)等式一边都是ax2+bx+c且 a ≠0 (2)方程ax2+bx+c=0可以看成是 函数y= ax2+bx+c中y=0时得到的. 区分:前者是函数.后者是方程.等式另一 边前者是y,后者是0
知识运用
例1:下列函数中,哪些是二次函数?
(1)y=3x-1 (不是 )
(2)y=3x2 ( 是 )
画形如y=ax2的函数图像: 1、函数y=x2的图像;视察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
描点,连线 y 10
y=x2
8
6
4
2
?
-4 -3 -2 -1 0 1 2 3 4 x -2
…二次函数的图像和性质…
• y=ax2的函数图像 • y=ax2 +k 的函数图像 • y=a(x-h)2的函数图像 • y=a(x-h)2 +k 的函数图像 • y=ax2+bx+c 的函数图像
…二次函数的图像和性质…
• y=ax2的函数图像 • y=ax2 +k 的函数图像 • y=a(x-h)2的函数图像 • y=a(x-h)2 +k 的函数图像 • y=ax2+bx+c 的函数图像
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档