气体的热力性质(精)

合集下载

热工基础 第三章.理想气体的性质与热力过程

热工基础 第三章.理想气体的性质与热力过程
CV ,m McV xi M i cV ,i xi CV ,m,i
i 1 i 1
29
k
i 1 k
i 1 k
3-4 理想气体的热力过程
1.热力过程的研究目的与方法
(1)目的: 了解外部条件对热能与机械 能之间相互转换的影响,以便合理地安排 热力过程,提高热能和机械能转换效率。
V V1 V2 Vk Vi
i 1
k
25
3. 理想混合气体的成分 成分:各组元在混合气体中所占的数量份额。 (1) 成分的分类 1)质量分数 :某组元的质量与混合气体总质量
的比值称为该组元的质量分数。
k k mi wi , m mi wi 1 m i 1 i 1 2)摩尔分数 : 某组元物质的量与混合气体总物
22
3-3
理想混合气体
1. 理想混合气体的定义 由相互不发生化学反应的理想气体组成混合 气体,其中每一组元的性质如同它们单独存在一 样,因此整个混合气体也具有理想气体的性质。 混合气体的性质取决于各组元的性质与份额。 2. 理想混合气体的基本定律 (1)分压力与道尔顿定律 分压力: 某组元i单独占有混合气体体积V并处于 混合气体温度T 时的压力称为该组元的 分压力。用 pi 表示。
10
由比定容热容定义式可得
qV u cV dT T V
(4)比定压热容
cp
q p dT
据热力学第一定律,对微元可逆过程,
q dh vdp
11
焓也是状态参数, h h(T ,
p)
h h dh dT dp T p p T 对定压过程,dp 0 ,由上两式可得 h q p dT T p

理想气体的定容比热和定压比热气体的热容性质

理想气体的定容比热和定压比热气体的热容性质

理想气体的定容比热和定压比热气体的热容性质热力学是研究物质热性质变化规律的学科,涉及到物质的能量转化、热力学定律和热力学过程等方面。

理想气体是热力学中研究较为简单的一类气体,在理想气体模型下,气体的热容性质对于研究气体的热力学过程和性质具有重要意义。

本文将探讨理想气体的定容比热和定压比热的热容性质。

一、定容比热的定义及特性定容比热(Cv)是指气体在恒定体积下的单位质量热容量。

在热力学中,定容比热用来描述气体在体积不发生变化的情况下吸收一定热量时的温度变化情况。

定容比热的计算公式为:Cv = (∂Q/ ∂T)v其中,Cv表示定容比热,∂Q表示吸收的热量,∂T表示温度的变化,v表示气体的体积。

对于理想气体而言,当在定容条件下吸收一定热量时,气体的温度变化只与吸收的热量有关,与气体的体积无关。

这是由于理想气体的特性决定的,其分子运动是自由的,不受任何限制,因此在定容条件下,理想气体的分子只能通过增加分子运动的速度来改变其温度,而无法改变其体积。

因此,理想气体的定容比热是一个常数。

二、定压比热的定义及特性定压比热(Cp)是指气体在恒定压力下的单位质量热容量。

在热力学中,定压比热用来描述气体在压力不变的情况下吸收一定热量时的温度变化情况。

定压比热的计算公式为:Cp = (∂Q / ∂T)p其中,Cp表示定压比热,∂Q表示吸收的热量,∂T表示温度的变化,p表示气体的压力。

定压比热与定容比热的区别在于,在定压条件下吸收一定热量时,气体的温度变化不仅与吸收的热量有关,还与气体的体积变化有关。

由于气体在定压条件下可以进行体积扩张和收缩,所以吸收的热量不仅用于提高气体的温度,还会用于做功,使气体膨胀或收缩。

因此,定压比热大于定容比热。

三、理想气体的热容性质理想气体的热容性质是指在不同温度下,理想气体的定容比热和定压比热的变化规律。

正常情况下,理想气体的定容比热和定压比热都会随着温度的升高而增加。

这是由于温度升高会导致理想气体的分子运动更加剧烈,分子的平均动能增加,因此吸收一定热量时,气体的温度变化会更大,所以定容比热和定压比热会增加。

机械热力学第03章 理想气体的性质

机械热力学第03章  理想气体的性质

注意: 不是标况时,1标准立方米的气体量不变,但体积变化。
三种比热的关系:
C m = Mc = 0.022414C'
比热与过程有关。常用的有:
定压热容(比定压热容)
cp

Cmp , c
' p
定容热容(比定容热容)
cV
' CmV , cV
1. c v
c= δq du + δw du pdv = = + dT dT dT dT ( A)
cv =
1 γ R g , cp = Rg γ 1 γ 1
理想气体可逆绝热过程的绝热指数k=γ
二、用比热计算热量
原理:
对c作不同的技术处理可得精度不同的热量计算方法: 1.定值比热容 工程计算,不用气体分子运动理论导出的结果,误差太大。 工程上,建议参照附表3提供的 常用气体在各种温度下的比热容值
u = u (T , v )
u u du = dT + dv T v v T
定容过程 dv=0
u cV = T v
若为理想气体
u = u(T)
du u du = cV = ( du = cVdT) dT T v dT
cV 是温度的函数
2.
cp
定压过程,dp = 0
第三章 理想气体的性质
基本概念和定律 热力学内容 工质热力性质 过程和循环 状态方程 理想气体 实际气体 比热 内能、焓和 内能、 熵的计算
§3-1 理想气体的概念
理想气体: 理想气体:满足 pv=RgT 理想气体是实际气体在低压高温时的抽象。 理想气体是实际气体在低压高温时的抽象。 实际气体可以近似看作理想气体的条件: 实际气体可以近似看作理想气体的条件: 通常压力下, T>(2.5-3)Tcr时 一般可看作理想气体。 通常压力下,当T>(2.5-3)Tcr时,一般可看作理想气体。 微观上讲,理想气体分子间没有力的作用,故U=U(T) 微观上讲,理想气体分子间没有力的作用,

工程热力学 第三章 理想气体的性质

工程热力学 第三章 理想气体的性质
11
比热容的概念
比热容是单位物量的物质升高1K或1℃所需 的热量。 根据物质的数量和经历的过程不同,可分为:
(1)比热容(质量热容) : 1kg物质的热容,c ,J/(kg·K)。 c q q dT dt
12
比热容的概念
(2)摩尔热容
1 mol物质的热容,Cm,J/(kmol· K)。 Cm Mc
s isi
❖1kg混合气体的比熵变为
d s
c i p,i
dT T
R i g,i
dip pi
❖1mol混合气体的熵变为
dmpp
49
课后思考题
❖理想气体的热力学能和焓是温度的单值函 数,理想气体的熵也是温度的单值函数吗?
❖气体的比热容cp、cv究竟是过程量还是状态 量
pp1p2 pK pi i1
41
道尔顿分压力定律
pi p
ni n
xi
pi xi p
即分压力与总压力之比等于摩尔分数(即气 体组分的摩尔数与总摩尔数之比)
42
亚美格分体积定律
❖混合气体中第 i 种组元处于与混合气体压力 和温度时所单独占据的体积称为该组元的 分体积,用 Vi 表示。
❖亚美格分体积定律:理想混合气体的总体 积等于各组元的分体积之和(仅适用于理 想气体)
的关系式
17
cv和cp的关系式
比热容比: c p cV
得 cp 1 Rg
联立式 cp cV Rg
cV
1
1
Rg
18
比热容和温度的关系
❖理想气体的 u 和 h 是温度的单值函数,所 以理想气体的 cV 和 cp 也是温度的单值函 数。
c ft a b t d t2 e t3

工程热力学理想气体性质

工程热力学理想气体性质

h dh , T p dT
理想气体的比热容
du cV dT
dh
c

p

dT
理想气体的cV 和cp仅仅是温度的函数
定压热容与定容热容的关系
迈耶公式
c p cV Rg
,C p,m CV ,m R
比热容比:比值cp/cV称为比热容比,或质量热 容比,用γ表示
Cm xiCm,i
C iCi
Cm M eqc 0.0224141 C

t2 cdt
t1
t2 t1
q
t2 cdt
00C
t1 00C
cdt

c
t2 00C
t2

c
t1 00C
t1
c
t2 t1

c
t t2
0oC 2
t2

c
t1 0oC
t1
t1
附表5列有几种常用气体的平均比定压热容,平均 比定容热容可由平均比定压热容按迈耶公式确定
平均比热容直线关系式
气体
混合气体的比定压热容和比定容热容之间也满足 迈耶公式
混合气体的折合摩尔质量和折合气体常数
混合气体的成分是指各组成的含量占总量的百分
数,有质量分数、摩尔分数和体积分数三种表示
方法
wi

mi m
,xi

ni n
,i

Vi V
假拟单一气体分子数和总质量恰与混合气体相同,
其摩尔质量和气体常数就是混合气体的折合摩尔
第三章 理想气体的性质
3-1 理想气体的概念
理想气体
理想气体是一种实际上不存在的假想气体,其分子 是弹性的、不具体积的质点,分子间相互没有作用 力

第4章-理想气体的热力性质和热力过程

第4章-理想气体的热力性质和热力过程
由理想气体状态方 pV程mRgT 得冬夏两季室内空 量气 平质 均值之差:
m
pRgVT1w
1
Ts
0.098MPa36m3 0.28[7kJ/(kgK)]
2
1 73K
1 308K
5.117kg
9
第二节 理想气体的比热容
10
• 热容:指工质温度升高1K所需的热量。
C Q dT
• 比热容:1kg(单位质量)工质温度升高1K所
k
nn1n2n3 ni nk ni i 1
• 第 i 种组元气体的摩尔分数 (mole fraction of a mixture):
xi
ni n
(433)
xi nni nni 1
各组元摩 尔分数之
和为1
37
换算关系
mnM
mi niMi
• 根据热力学第一定律,任意准静态过程:
q d u p d v d h v d p
u是状态参数: uf(T,v)
du(T u)vdT(uv)Tdv
q( T u)vdT[p( u v)T]dv
单位物量的物质 在定容过程中温 度变化1K时热 力学能的变化值
q u
• 定容: dv0 cv (dT)v (T)v 12
3
第一节 理想气体及其状态方程
4
• 理想气体 ideal gas定义:
– 遵循克拉贝龙(Clapeyron)状态方程的气体,
即基本状态参数 p、v、T 满足方程
pv 常数 T 的气体称为理想气体。
理想气体的基本假设:
• 分子为不占体积的弹性质点 uu(T)
• 除碰撞外分子间无作用力
理想气体是实际气体在低压高温时的抽象

1热力学第一定律3


14
4. 摩尔热容与温度关系的经验式 等压过程 nCp ,m T2 T1 Cp,m是常数 T2 Qp nCp ,m dT
T1

Cp,m是 T的函数
Cp,m=a+bT+cT 2+d T 3+… 或 Cp,m=a+bT+c’T -2 +…
式中a,b,c,c’, d 对一定物质均为常数,可由数据
所以: p3<p2
30
+ +
31
练习题
1. 是非题 1)液体在等温蒸发过程中的内能变化为零。 F 2)dH = CpdT 及dHm = Cp,mdT 的适用条件是无化学反应 和相变,且不做非体积功的任何等压过程及无化学反应和 相变而且系统的焓值只与温度有关的非等压过程。 T 2. 在体系温度恒定的变化中,体系与环境之间: (A) 一定产生热交换 (B) 一定不产生热交换 (C) 不一定产生热交换 (D) 温度恒定与热交换无关 ( C )
(b)
H nCp,m (T )dT
式 (a) 及 (b) 对气体分别在等容、等压条件下单纯发 生温度改变时计算 U, H均适用。而对液体、固体 不分定容、定压,单纯发生温度变化时均可近似应用。
9
3. Cp与Cv的关系
U= f(T,V),H=f(T,P) ∂U U U )T dV dU dT dV = CvdT + ( ∂V T V V T ∂H H H )T dp dH dp = CpdT + ( dT ∂p T p p T
定容
(dU)v=CV dT
7
等压热容和等压摩尔热容 Qp ∂H )p 封闭体系,等压,W′=0 Cp = =( dT ∂T Qp 1 ( ∂H ) Cp,m = = n Qp = dH p ∂T ndT

理想气体的热力性质及基本热力过程

03-理想气体的热力性质及基本热力过 程--SCH 16
在p-v图中,绝热过程线比定温 过程陡,均为双曲线; 在T-s图中,定容过程线比定压 过程陡,均为指数曲线。
①n顺时针方向增大。两图的过 程线和区间一一对应。 ②dv>0, 功量为正。 ③ds>0, 热量为正。 ④dT>0→du>0,dh>0。
9
概念:定温过程是工质在变化过程中温度保持不 变的热力过程。对理想气体,定温过程也是定热 力学能过程和定焓过程。 u 0 1、过程方程式: T = 定值 h 0 2、基本状态参数间的关系式:
p1v1 p 2 v2 T1 T2
p1v1 p2v2
•定温过程中,压力与比容成反比
03-理想气体的热力性质及基本热力过 程--SCH
03-理想气体的热力性质及基本热力过 程--SCH
19
17
03-理想气体的热力性质及基本热力过 程--SCH
03-理想气体的热力性质及基本热力过 程--SCH
18



理想气体概念与特点; 理想气体状态方程及应用,通用气体常数; 理想气体热力学能、焓、熵变化计算; 理想气体比热及类型,利用比热计算热量; 理想气体混合物的成分表示,分压力和分容积 定律; 四种典型热力过程的状态参数变化规律、在参 数坐标图的表示及特点; 四种典型热力过程的能量交换计算及特点。
03理想气体的热力性质及基本热力过程sch41理想气体的基本热力过程一研究热力过程的目的和方法一研究热力过程的目的和方法1研究目的过程中能量转换关系过程热量功量系统热力学能s图上的表示
4-1 理想气体的基本热力过程
一、研究热力过程的目的和方法
1、研究目的 ① 过程中能量转换关系(过程热量、功量,系统热力学能 和焓的变化); Δu、Δh 和Δs 按前述的方法计算。 ② 状态参数的变化关系(p 、v 、T 、s); ③ 过程曲线在p -v 图及T- s图上的表示。

热工基础-3-(1)-第三章 理想气体


∆T
若比热容取定值或平均值,有: ∆ h = c p ∆ T
∆h = c p
T2 T1
∆T
3. 理想气体熵变化量的计算:
δ q du + pdv cv dT p ds = = = + dv T T T T cv dT p v cv dT dv = + dv = + Rg T T v T v
同理:
δ q dh − vdp c p dT v ds = = = − dp T T T T c p dT p v c p dT dp = − dp = − Rg T T p T p
Rg ,eq = ∑ wi Rg ,i
i
作业:P103-104
3-10 3-15
思考题: P102
10
五. 理想气体的基本热力过程 热力过程被关注的对象:
1) 参数 ( p, T, v, u, h, s ) 变化 2) 能量转换关系, q , w, wt 。
思路:
1) 抽象分类:
p
v T
s
n
基本过程 2) 简化为可逆过程 (不可逆再修正)
R = 8.314 J/(mol ⋅ K)
R 是一个与气体的种类
无关,与气体的状态也 无关的常数,称为通用 (摩尔)气体常数。
R = M ⋅ Rg
例题3.1: 已知体积为0.03m3的钢瓶内装有氧气,初 始压力p1=7×105Pa,温度t1=20℃。因泄漏,后 压力降至p2=4.9×105Pa ,温度未变。问漏去多少 氧气? 解:取钢瓶的容积为系统(控制容积),泄漏过 程看成是一个缓慢的过程。初终态均已知。假定 瓶内氧气为理想气体。根据状态方程:
V
0 m
= 22 . 414 m

理想气体的热力性质及其热力过程

第七章 理想气体的热力性质及其热力过程
第三节 理想气体的热力学能与焓 理想气体的状态方程及比热容确定后,利用热力学第一定律就可方便地求得理想气体的热力学能和焓的计算式。
第七章 理想气体的热力性质及其热力过程
第七章 理想气体的热力性质及其热力过程
图7-3 例7-3图
第七章 理想气体的热力性质及其热力过程
第七章 理想气体的热力性质及其热力过程
第七章 理想气体的热力性质及其热力过程
第七章 理想气体的热力性质及其热力过程
图7-7 绝热过程在p-v、T-s图上的表示
Cycle Diagram
Text
Text
Text
Text
Text
Cycle name
Add Your Text
Diagram
Your Slogan here
第七章 理想气体的热力性质及其热力过程
二、四个基本热力过程分析 1.定容过程
第七章 理想气体的热力性质及其热力过程
第七章 理想气体的热力性质及其热力过程
图7-4 定容过程在p-v、T-s图上的表示
第七章 理想气体的热力性质及其热力过程
第七章 理想气体的热力性质及其热力过程
2.定压过程
第七章 理想气体的热力性质及其热力过程
第七章 理想气体的热力性质及其热力过程
热工设备中实际进行的热力过程均是多变过程,且通常要比理论的多变过程更为复杂。例如,制冷压缩机气缸中制冷剂蒸汽的压缩过程,在整个过程中指数n是变化的。压缩开始时,工质温度低于缸壁温度,工质是吸热的,随着对工质不断地压缩,温度升高,高于缸壁温度后开始放热,瞬时多变指数约从1.4左右变化到1.0左右。制冷压缩机压缩过程的多变指数大小还与制冷剂的种类、制冷剂蒸汽与气缸壁的热交换情况、活塞与气缸壁的密封情况等因素有关。通常,制冷压缩机压缩多变指数要小于活塞式空气压缩机压缩多变指数。对多变指数n是变化的实际过程,热工计算中为简便起见常常这样处理:若n的变化范围不大,则用一个不变的平均多变指数近似地代替实际变化的n;如果n的变化较大,可将实际过程分段,每段近似为n值不变,各力性质及其热力过程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档