【恒心】高考数学(理科)一轮复习突破课件007008-立体几何中的向量方法(2)——求空间角与距离

合集下载

高考数学一轮复习第7章立体几何第7节立体几何中的向量方法课件

高考数学一轮复习第7章立体几何第7节立体几何中的向量方法课件

利用向量证明平行与垂直问题
如图 7-7-2 所示,在底面是矩形的四棱锥 PABCD 中,PA⊥底面 ABCD,E,F 分别是 PC,PD 的中 点,PA=AB=1,BC=2.
(1)求证:EF∥平面 PAB; (2)求证:平面 PAD⊥平面 PDC.
图 7-7-2
[证明] 以 A 为原点,AB,AD,AP 所在直线分别为 x 轴,y 轴,z 轴,建立空间直角坐标系如图所示,则 A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,1),所以 E12,1,12,F0,1,12,E→F=-12,0,0,A→P= (0,0,1),A→D=(0,2,0),D→C=(1,0,0),A→B=(1,0,0).3 分
图 7-7-3
∵PB⊄平面 EFH,且 EH⊂平面 EFH, ∴PB∥平面 EFH.6 分 (2)P→D=(0,2,-2),A→H=(1,0,0),A→F=(0,1,1), ∴P→D·A→F=0×0+2×1+(-2)×1=0,10 分 P→D·A→H=0×1+2×0+(-2)×0=0, ∴PD⊥AF,PD⊥AH. 又∵AF∩AH=A,∴PD⊥平面 AHF.15 分
利用空间向量求二面角
如图 7-7-5,在以 A,B,C,D,E,F 为顶点 的五面体中,面 ABEF 为正方形,AF=2FD,∠AFD=90°, 且二面角 D-AF-E 与二面角 C-BE-F 都是 60°.
(1)证明:平面 ABEF⊥平面 EFDC; (2)求二面角 E-BC-A 的余弦值. [解] (1)证明:由已知可得 AF⊥DF,AF⊥FE, 所以 AF⊥平面 EFDC.2 分 又 AF⊂平面 ABEF,故平面 ABEF⊥平面 EFDC.6 分
[规律方法] 1.利用向量证明平行与垂直,充分利用已知的线面垂直关系构 建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运 算.其中灵活建系是解题的关键.

2020版高考数学大一轮复习-8.8立体几何中的向量方法二——求空间角和距离教案(理)(含解析)新人教A版

2020版高考数学大一轮复习-8.8立体几何中的向量方法二——求空间角和距离教案(理)(含解析)新人教A版

§8.8立体几何中的向量方法(二)——求空间角距离1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则2.斜线和平面所成的角(1)斜线和它在平面内的射影的所成的角叫做斜线和平面所成的角(或斜线和平面的夹角). (2)斜线和它在平面内的射影所成的角,是斜线和这个平面内所有直线所成角中最小的角. 3.二面角(1)从一条直线出发的两个半平面所组成的图形叫做二面角.(2)在二面角α—l —β的棱上任取一点O ,在两半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α—l —β的平面角. 4.空间向量与空间角的关系(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2所成的角θ满足cos θ=|cos 〈m 1,m 2〉|.(2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α所成角θ满足sin θ=|cos 〈m ,n 〉|. (3)求二面角的大小1°如图①,AB 、CD 是二面角α—l —β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.2°如图②③,n 1,n 2分别是二面角α—l —β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.概念方法微思考1.利用空间向量如何求线段长度?提示 利用|AB →|2=AB →·AB →可以求空间中有向线段的长度. 2.如何求空间点面之间的距离? 提示 点面距离的求法:已知AB 为平面α的一条斜线段,n 为平面α的法向量,则点B 到平面α的距离为 |BO →|=|AB →||cos 〈AB →,n 〉|.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)两直线的方向向量所成的角就是两条直线所成的角.( × )(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( × ) (3)两个平面的法向量所成的角是这两个平面所成的角.( × )(4)两异面直线夹角的范围是⎝ ⎛⎦⎥⎤0,π2,直线与平面所成角的范围是⎣⎢⎡⎦⎥⎤0,π2,二面角的范围是[0,π]. ( √ )(5)若二面角α-a -β的两个半平面α,β的法向量n 1,n 2所成角为θ,则二面角α-a-β的大小是π-θ.( ×)题组二 教材改编2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A.45° B.135° C.45°或135° D.90°答案 C解析 cos 〈m ,n 〉=m·n |m||n |=11·2=22,即〈m ,n 〉=45°.∴两平面所成二面角为45°或180°-45°=135°.3.如图,正三棱柱(底面是正三角形的直棱柱)ABC -A 1B 1C 1的底面边长为2,侧棱长为22,则AC 1与侧面ABB 1A 1所成的角为______.答案π6解析 如图,以A 为原点,以AB →,AE →(AE ⊥AB ),AA 1→所在直线分别为x 轴、y 轴、z 轴(如图)建立空间直角坐标系,设D 为A 1B 1的中点,则A (0,0,0),C 1(1,3,22),D (1,0,22),∴AC 1→=(1,3,22), AD →=(1,0,22).∠C 1AD 为AC 1与平面ABB 1A 1所成的角, cos∠C 1AD =AC 1→·AD→|AC 1→||AD →|=(1,3,22)·(1,0,22)12×9=32, 又∵∠C 1AD ∈⎣⎢⎡⎦⎥⎤0,π2,∴∠C 1AD =π6.题组三 易错自纠4.在直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( ) A.110B.25C.3010D.22 答案 C解析 以点C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.设BC =CA =CC 1=2,则可得A (2,0,0),B (0,2,0),M (1,1,2),N (1,0,2),∴BM →=(1,-1,2),AN →=(-1,0,2).∴cos〈BM →,AN →〉=BM →·AN →|BM →||AN →|=1×(-1)+(-1)×0+2×212+(-1)2+22×(-1)2+02+22=36×5=3010. 5.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l与α所成的角为________. 答案 30°解析 设l 与α所成角为θ,∵cos〈m ,n 〉=-12,∴sin θ=|cos 〈m ,n 〉|=12,∵0°≤θ≤90°,∴θ=30°.题型一求异面直线所成的角例1 如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(1)证明:平面AEC⊥平面AFC;(2)求直线AE与直线CF所成角的余弦值.(1)证明如图所示,连接BD,设BD∩AC=G,连接EG,FG,EF.在菱形ABCD中,不妨设GB=1.由∠ABC=120°,可得AG=GC= 3.由BE⊥平面ABCD,AB=BC=2,可知AE=EC.又AE⊥EC,所以EG=3,且EG⊥AC.在Rt△EBG中,可得BE=2,故DF=22.在Rt△FDG中,可得FG=62.在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322,从而EG 2+FG 2=EF 2,所以EG ⊥FG .又AC ∩FG =G ,AC ,FG ⊂平面AFC , 所以EG ⊥平面AFC .因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC .(2)解 如图,以G 为坐标原点,分别以GB ,GC 所在直线为x 轴、y 轴,|GB →|为单位长度,建立空间直角坐标系Gxyz ,由(1)可得A (0,-3,0),E (1,0,2),F ⎝ ⎛⎭⎪⎫-1,0,22,C (0,3,0), 所以AE →=(1,3,2),CF →=⎝ ⎛⎭⎪⎫-1,-3,22.故cos 〈AE →,CF →〉=AE →·CF →|AE →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33. 思维升华 用向量法求异面直线所成角的一般步骤 (1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.跟踪训练1 三棱柱ABC -A 1B 1C 1中,△ABC 为等边三角形,AA 1⊥平面ABC ,AA 1=AB ,N ,M 分别是A 1B 1,A 1C 1的中点,则AM 与BN 所成角的余弦值为( ) A.110B.35C.710D.45 答案 C解析 如图所示,取AC 的中点D ,以D 为原点,BD ,DC ,DM 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,不妨设AC =2,则A (0,-1,0),M (0,0,2),B (-3,0,0),N ⎝ ⎛⎭⎪⎫-32,-12,2, 所以AM →=(0,1,2), BN →=⎝⎛⎭⎪⎫32,-12,2,所以cos 〈AM →,BN →〉=AM →·BN →|AM →|·|BN →|=725×5=710,故选C.题型二求直线与平面所成的角例2 (2018·全国Ⅰ)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.(1)证明由已知可得BF⊥PF,BF⊥EF,PF∩EF=F,PF,EF⊂平面PEF,所以BF⊥平面PEF.又BF⊂平面ABFD,所以平面PEF⊥平面ABFD.(2)解如图,作PH⊥EF,垂足为H.由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|BF →|为单位长,建立如图所示的空间直角坐标系Hxyz .由(1)可得,DE ⊥PE . 又DP =2,DE =1, 所以PE = 3.又PF =1,EF =2,所以PE ⊥PF . 所以PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝⎛⎭⎪⎫-1,-32,0,DP →=⎝⎛⎭⎪⎫1,32,32,HP →=⎝⎛⎭⎪⎫0,0,32. 又HP →为平面ABFD 的法向量, 设DP 与平面ABFD 所成的角为θ,则sin θ=|cos 〈HP →,DP →〉|=|HP →·DP →||HP →||DP →|=343=34.所以DP 与平面ABFD 所成角的正弦值为34. 思维升华 若直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,则θ=π2-β或θ=β-π2,故有sin θ=|cos β|=|l ·n ||l ||n |.跟踪训练2 (2018·全国Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M -PA -C 为30°,求PC 与平面PAM 所成角的正弦值. (1)证明 因为PA =PC =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3. 如图,连接OB .因为AB =BC =22AC , 所以△ABC 为等腰直角三角形, 所以OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB .因为OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,OB ,AC ⊂平面ABC , 所以PO ⊥平面ABC .(2)解 由(1)知OP ,OB ,OC 两两垂直,则以O 为坐标原点,分别以OB ,OC ,OP 所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系Oxyz ,如图所示.由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0), P (0,0,23),AP →=(0,2,23).由(1)知平面PAC 的一个法向量为OB →=(2,0,0). 设M (a ,2-a ,0)(0≤a ≤2),则AM →=(a ,4-a ,0). 设平面PAM 的法向量为n =(x ,y ,z ). 由AP →·n =0,AM →·n =0,得⎩⎨⎧2y +23z =0,ax +(4-a )y =0,可取y =3a ,得平面PAM 的一个法向量为n =(3(a -4),3a ,-a ),所以cos 〈OB →,n 〉=OB →·n |OB →||n |=23(a -4)23(a -4)2+3a 2+a 2. 由已知可得|cos 〈OB →,n 〉|=cos30°=32,所以23|a -4|23(a -4)2+3a 2+a 2=32, 解得a =-4(舍去)或a =43.所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34. 题型三 求二面角例3 (2018·锦州模拟)如图,在梯形ABCD 中,AB ∥CD ,AD =DC =CB =2,∠ABC =60°,平面ACEF ⊥平面ABCD ,四边形ACEF 是菱形,∠CAF =60°.(1)求证:BF ⊥AE ;(2)求二面角B -EF -D 的平面角的正切值.(1)证明 依题意,在等腰梯形ABCD 中,AC =23,AB =4,∵BC=2,∴AC2+BC2=AB2,即BC⊥AC,又∵平面ACEF⊥平面ABCD,平面ACEF∩平面ABCD=AC,BC⊂平面ABCD,∴BC⊥平面ACEF,而AE⊂平面ACEF,∴AE⊥BC,连接CF,∵四边形ACEF为菱形,∴AE⊥FC,又∵BC∩CF=C,BC,CF⊂平面BCF,∴AE⊥平面BCF,∵BF⊂平面BCF,∴BF⊥AE.(2)解取EF的中点M,连接MC,∵四边形ACEF是菱形,且∠CAF=60°,∴由平面几何易知MC⊥AC,又∵平面ACEF⊥平面ABCD,平面ACEF∩平面ABCD=AC,CM⊂平面ACEF,∴MC⊥平面ABCD.以CA ,CB ,CM 所在直线分别为x ,y ,z 轴建立空间直角坐标系,各点的坐标依次为C (0,0,0),A (23,0,0),B (0,2,0),D (3,-1,0),E (-3,0,3),F (3,0,3),设平面BEF 和平面DEF 的一个法向量分别为n 1=(a 1,b 1,c 1),n 2=(a 2,b 2,c 2), ∵BF →=(3,-2,3),EF →=(23,0,0), ∴⎩⎪⎨⎪⎧BF →·n 1=0,EF →·n 1=0,即⎩⎨⎧3a 1-2b 1+3c 1=0,23a 1=0,即⎩⎪⎨⎪⎧a 1=0,2b 1=3c 1,不妨令b 1=3,则n 1=(0,3,2), 同理可求得n 2=(0,3,-1),设二面角B -EF -D 的大小为θ,由图易知θ为锐角, ∴cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=7130,故二面角B -EF -D 的平面角的正切值为97.思维升华 利用向量法求二面角的大小的关键是确定平面的法向量,求法向量的方法主要有两种:①求平面的垂线的方向向量;②利用法向量与平面内两个不共线向量的数量积为零,列方程组求解.跟踪训练3 (2018·全国Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧»CD 所在平面垂直,M 是»CD上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M -ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值.(1)证明 由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,又DM ⊂平面CMD ,故BC ⊥DM .因为M 为»CD上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM .又BC ∩CM =C ,BC ,CM ⊂平面BMC , 所以DM ⊥平面BMC .又DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系Dxyz .当三棱锥M -ABC 体积最大时,M 为»CD的中点.由题设得 D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM →=(-2,1,1),AB →=(0,2,0),DA →=(2,0,0),设n =(x ,y ,z )是平面MAB 的法向量,则 ⎩⎪⎨⎪⎧n ·AM →=0,n ·AB →=0,即⎩⎪⎨⎪⎧-2x +y +z =0,2y =0.可取n =(1,0,2), DA →是平面MCD 的一个法向量,因此cos 〈n ,DA →〉=n ·DA →|n ||DA →|=55,sin 〈n ,DA →〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.利用空间向量求空间角例(12分)如图,四棱锥S-ABCD中,△ABD为正三角形,∠BCD=120°,CB=CD=CS=2,∠BSD=90°.(1)求证:AC⊥平面SBD;(2)若SC⊥BD,求二面角A-SB-C的余弦值.(1)证明设AC∩BD=O,连接SO,如图①,因为AB=AD,CB=CD,所以AC 是BD 的垂直平分线, 即O 为BD 的中点,且AC ⊥BD .[1分]在△BCD 中,因为CB =CD =2,∠BCD =120°, 所以BD =23,CO =1.在Rt△SBD 中,因为∠BSD =90°,O 为BD 的中点, 所以SO =12BD = 3.在△SOC 中,因为CO =1,SO =3,CS =2, 所以SO 2+CO 2=CS 2, 所以SO ⊥AC .[4分]因为BD ∩SO =O ,BD ,SO ⊂平面SBD , 所以AC ⊥平面SBD .[5分](2)解 方法一 过点O 作OK ⊥SB 于点K ,连接AK ,CK ,如图②,由(1)知AC ⊥平面SBD ,所以AO ⊥SB . 因为OK ∩AO =O ,OK ,AO ⊂平面AOK , 所以SB ⊥平面AOK .[6分] 因为AK ⊂平面AOK ,所以AK ⊥SB . 同理可证CK ⊥SB .[7分]所以∠AKC 是二面角A -SB -C 的平面角. 因为SC ⊥BD ,由(1)知AC ⊥BD ,且AC ∩SC =C ,AC ,SC ⊂平面SAC , 所以BD ⊥平面SAC .而SO ⊂平面SAC ,所以SO ⊥BD . 在Rt△SOB 中,OK =SO ·OB SB =62. 在Rt△AOK 中,AK =AO 2+OK 2=422, 同理可求CK =102.[10分] 在△AKC 中,cos∠AKC =AK 2+CK 2-AC 22AK ·CK =-10535.所以二面角A -SB -C 的余弦值为-10535.[12分] 方法二 因为SC ⊥BD ,由(1)知,AC ⊥BD ,且AC ∩SC =C ,AC ,SC ⊂平面SAC , 所以BD ⊥平面SAC . 而SO ⊂平面SAC , 所以SO ⊥BD .[6分]由(1)知,AC ⊥平面SBD ,SO ⊂平面SBD , 所以SO ⊥AC .因为AC ∩BD =O ,AC ,BD ⊂平面ABCD , 所以SO ⊥平面ABCD .[7分]以O 为原点,OA →,OB →,OS →的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,如图③,则A (3,0,0),B (0,3,0),C (-1,0,0),S (0,0,3). 所以AB →=(-3,3,0),CB →=(1,3,0), SB →=(0,3,-3).[8分]设平面SAB 的法向量n =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧AB →·n =-3x 1+3y 1=0,SB →·n =3y 1-3z 1=0,令y 1=3,得平面SAB 的一个法向量为n =(1,3,3). 同理可得平面SCB 的一个法向量为m =(-3,1,1).[10分]所以cos 〈n ,m 〉=n ·m |n ||m |=-3+3+37×5=10535.因为二面角A -SB -C 是钝角,所以二面角A -SB -C 的余弦值为-10535.[12分]利用向量求空间角的步骤第一步:建立空间直角坐标系,确定点的坐标;第二步:求向量(直线的方向向量、平面的法向量)坐标;第三步:计算向量的夹角(或函数值),并转化为所求角.1.已知两平面的法向量分别为m =(1,-1,0),n =(0,1,-1),则两平面所成的二面角为( )A.60°B.120°C.60°或120°D.90° 答案 C解析 cos 〈m ,n 〉=m·n |m||n |=-12·2=-12,即〈m ,n 〉=120°.∴两平面所成二面角为120°或180°-120°=60°.2.如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1所成角的余弦值为( )A.55B.53C.56D.54答案 A解析 设CA =2,则C (0,0,0),A (2,0,0),B (0,0,1),C 1(0,2,0),B 1(0,2,1),可得向量AB 1→=(-2,2,1),BC 1→=(0,2,-1),由向量的夹角公式得cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→||BC 1→|=0+4-14+4+1×0+4+1=15=55,故选A.3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12B.23C.33D.22 答案 B解析 以A 为原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,0,12,D (0,1,0),∴A 1D →=(0,1,-1),A 1E →=⎝ ⎛⎭⎪⎫1,0,-12.设平面A 1ED 的一个法向量为n 1=(1,y ,z ), 则有⎩⎪⎨⎪⎧A 1D →·n 1=0,A 1E →·n 1=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2,∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1), ∴cos〈n 1,n 2〉=23×1=23,即所成的锐二面角的余弦值为23.4.在正方体ABCD —A 1B 1C 1D 1中,AC 与B 1D 所成角的大小为( ) A.π6B.π4C.π3D.π2 答案 D解析 以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设正方体的边长为1,则A (0,0,0),C (1,1,0),B 1(1,0,1),D (0,1,0). ∴AC →=(1,1,0),B 1D →=(-1,1,-1), ∵AC →·B 1D →=1×(-1)+1×1+0×(-1)=0, ∴AC →⊥B 1D →,∴AC 与B 1D 所成的角为π2.5.(2018·包头模拟)已知正三棱柱ABC -A 1B 1C 1,AB =AA 1=2,则异面直线AB 1与CA 1所成角的余弦值为( ) A.0B.-14C.14D.12答案 C解析 以A 为原点,在平面ABC 内过A 作AC 的垂线为x 轴,以AC 所在直线为y 轴,以AA 1所在直线为z 轴,建立空间直角坐标系,则A (0,0,0),B 1(3,1,2),A 1(0,0,2),C (0,2,0),AB 1→=(3,1,2),A 1C →=(0,2,-2),设异面直线AB 1和A 1C 所成的角为θ, 则cos θ=|AB 1→·A 1C →||AB 1→|·|A 1C →|=|-2|8·8=14.∴异面直线AB 1和A 1C 所成的角的余弦值为14.6.如图,点A ,B ,C 分别在空间直角坐标系O -xyz 的三条坐标轴上,OC →=(0,0,2),平面ABC 的法向量为n =(2,1,2),设二面角C -AB -O 的大小为θ,则cos θ等于( )A.43B.53C.23D.-23答案 C解析 由题意可知,平面ABO 的一个法向量为OC →=(0,0,2), 由图可知,二面角C -AB -O 为锐角,由空间向量的结论可知,cos θ=|OC →·n ||OC →||n |=|4|2×3=23.7.在三棱锥P -ABC 中,PA ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,PA =2,则直线PA 与平面DEF 所成角的正弦值为________.答案55解析 以A 为原点,AB ,AC ,AP 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,由AB =AC =1,PA =2, 得A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝ ⎛⎭⎪⎫12,0,0,E ⎝ ⎛⎭⎪⎫12,12,0,F ⎝⎛⎭⎪⎫0,12,1.∴PA →=(0,0,-2),DE →=⎝ ⎛⎭⎪⎫0,12,0,DF →=⎝ ⎛⎭⎪⎫-12,12,1.设平面DEF 的法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧n ·DE →=0,n ·DF →=0,得⎩⎪⎨⎪⎧y =0,-x +y +2z =0.取z =1,则n =(2,0,1),设直线PA 与平面DEF 所成的角为θ,则sin θ=|cos 〈n ,PA →〉|=|PA →·n ||PA →||n |=55, ∴直线PA 与平面DEF 所成角的正弦值为55. 8.如图,在正方形ABCD 中,EF ∥AB ,若沿EF 将正方形折成一个二面角后,AE ∶ED ∶AD =1∶1∶2,则AF 与CE 所成角的余弦值为________.答案 45解析 ∵AE ∶ED ∶AD =1∶1∶2, ∴AE ⊥ED ,即AE ,DE ,EF 两两垂直, 所以建立如图所示的空间直角坐标系,设AB =EF =CD =2,则E (0,0,0),A (1,0,0),F (0,2,0),C (0,2,1), ∴AF →=(-1,2,0),EC →=(0,2,1), ∴cos〈AF →,EC →〉=AF →·EC →|AF →||EC →|=45,∴AF 与CE 所成角的余弦值为45.9.如图所示,在三棱柱ABC —A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是__________.答案 60°解析 以B 点为坐标原点,以BC 所在直线为x 轴,BA 所在直线为y 轴,BB 1所在直线为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1), 则EF →=(0,-1,1),BC 1→=(2,0,2), ∴EF →·BC 1→=2,∴cos〈EF →,BC 1→〉=EF →·BC 1→|EF →||BC 1→|=22×22=12,∵异面直线所成角的范围是(0°,90°], ∴EF 和BC 1所成的角为60°.10.(2019·福州质检)已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的锐二面角的正切值为________.答案23解析 方法一 延长FE ,CB 相交于点G ,连接AG ,如图所示.设正方体的棱长为3,则GB =BC =3,作BH ⊥AG 于点H ,连接EH ,则∠EHB 为所求锐二面角的平面角.∵BH =322,EB =1,∴tan∠EHB =EB BH =23. 方法二 如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系Dxyz ,设DA =1,由已知条件得A (1,0,0),E ⎝⎛⎭⎪⎫1,1,13,F ⎝⎛⎭⎪⎫0,1,23,AE →=⎝⎛⎭⎪⎫0,1,13,AF →=⎝⎛⎭⎪⎫-1,1,23,设平面AEF 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,得⎩⎪⎨⎪⎧y +13z =0,-x +y +23z =0.令y =1,z =-3,x =-1,则n =(-1,1,-3), 取平面ABC 的法向量为m =(0,0,-1), 设平面AEF 与平面ABC 所成的锐二面角为θ, 则cos θ=|cos 〈n ,m 〉|=31111,tan θ=23. 11.(2018·鄂尔多斯联考)如图,在几何体ABC -A 1B 1C 1中,平面A 1ACC 1⊥底面ABC ,四边形A 1ACC 1是正方形,B 1C 1∥BC ,Q 是A 1B 的中点,且AC =BC =2B 1C 1,∠ACB =2π3.(1)证明:B 1Q ⊥A 1C ;(2)求直线AC 与平面A 1BB 1所成角的正弦值.(1)证明 如图所示,连接AC 1与A 1C 交于M 点,连接MQ .∵四边形A 1ACC 1是正方形, ∴M 是AC 1的中点, 又Q 是A 1B 的中点, ∴MQ ∥BC ,MQ =12BC ,又∵B 1C 1∥BC 且BC =2B 1C 1, ∴MQ ∥B 1C 1,MQ =B 1C 1,∴四边形B 1C 1MQ 是平行四边形,∴B 1Q ∥C 1M , ∵C 1M ⊥A 1C ,∴B 1Q ⊥A 1C .(2)解 ∵平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC ,CC 1⊥AC ,CC 1⊂平面A 1ACC 1, ∴CC 1⊥平面ABC .如图所示,以C 为原点,CB ,CC 1所在直线分别为y 轴和z 轴建立空间直角坐标系,令AC =BC =2B 1C 1=2,则C (0,0,0),A (3,-1,0),A 1(3,-1,2),B (0,2,0),B 1(0,1,2), ∴CA →=(3,-1,0),B 1A 1—→=(3,-2,0),B 1B →=(0,1,-2),设平面A 1BB 1的法向量为n =(x ,y ,z ), 则由n ⊥B 1A 1—→,n ⊥B 1B →, 可得⎩⎨⎧3x -2y =0,y -2z =0,可令y =23,则x =4,z =3,∴平面A 1BB 1的一个法向量n =(4,23,3), 设直线AC 与平面A 1BB 1所成的角为α, 则sin α=|n ·CA →||n |·|CA →|=23231=9331.12.(2019·盘锦模拟)如图,在四棱锥P -ABCD 中,侧面PAD ⊥底面ABCD ,底面ABCD 为直角梯形,其中AB ∥CD ,∠CDA =90°,CD =2AB =2,AD =3,PA =5,PD =22,点E 在棱AD 上且AE =1,点F 为棱PD 的中点.(1)证明:平面BEF ⊥平面PEC ; (2)求二面角A -BF -C 的余弦值. (1)证明 在Rt△ABE 中,由AB =AE =1, 得∠AEB =45°,同理在Rt△CDE 中,由CD =DE =2,得∠DEC =45°,所以∠BEC =90°,即BE ⊥EC . 在△PAD 中,cos∠PAD =PA 2+AD 2-PD 22PA ·AD =5+9-82×3×5=55,在△PAE 中,PE 2=PA 2+AE 2-2PA ·AE ·cos∠PAE =5+1-2×5×1×55=4, 所以PE 2+AE 2=PA 2,即PE ⊥AD .又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PE ⊂平面PAD , 所以PE ⊥平面ABCD ,所以PE ⊥BE . 又因为CE ∩PE =E ,CE ,PE ⊂平面PEC , 所以BE ⊥平面PEC ,所以平面BEF ⊥平面PEC .(2)解 由(1)知EB ,EC ,EP 两两垂直,故以E 为坐标原点,以射线EB ,EC ,EP 分别为x 轴、y 轴、z 轴的正半轴建立如图所示的空间直角坐标系,则B (2,0,0),C (0,22,0),P (0,0,2),A ⎝⎛⎭⎪⎫22,-22,0,D (-2,2,0),F ⎝ ⎛⎭⎪⎫-22,22,1, AB →=⎝⎛⎭⎪⎫22,22,0,BF →=⎝ ⎛⎭⎪⎫-322,22,1, BC →=(-2,22,0),设平面ABF 的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·AB →=22x 1+22y 1=0,m ·BF →=-322x 1+22y 1+z 1=0,不妨设x 1=1,则m =(1,-1,22), 设平面BFC 的法向量为n =(x 2,y 2,z 2),则⎩⎨⎧n ·BC →=-2x 2+22y 2=0,n ·BF →=-322x 2+22y 2+z 2=0,不妨设y 2=2,则n =(4,2,52),记二面角A -BF -C 为θ(由图知应为钝角), 则cos θ=-|m ·n ||m |·|n |=-|4-2+20|10·70=-11735,故二面角A -BF -C 的余弦值为-11735.13.如图,在四棱锥S -ABCD 中,SA ⊥平面ABCD ,底面ABCD 为直角梯形,AD ∥BC ,∠BAD =90°,且AB =4,SA =3.E ,F 分别为线段BC ,SB 上的一点(端点除外),满足SF BF =CE BE=λ,当实数λ的值为________时,∠AFE 为直角.答案916解析 因为SA ⊥平面ABCD ,∠BAD =90°,以A 为坐标原点,AD ,AB ,AS 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Axyz .∵AB =4,SA =3, ∴B (0,4,0),S (0,0,3). 设BC =m ,则C (m ,4,0), ∵SF BF =CE BE=λ, ∴SF →=λFB →.∴AF →-AS →=λ(AB →-AF →).∴AF →=11+λ(AS →+λAB →)=11+λ(0,4λ,3), ∴F ⎝ ⎛⎭⎪⎫0,4λ1+λ,31+λ. 同理可得E ⎝ ⎛⎭⎪⎫m 1+λ,4,0, ∴FE →=⎝ ⎛⎭⎪⎫m 1+λ,41+λ,-31+λ. ∵FA →=⎝ ⎛⎭⎪⎫0,-4λ1+λ,-31+λ,要使∠AFE 为直角, 即FA →·FE →=0,则0·m1+λ+-4λ1+λ·41+λ+-31+λ·-31+λ=0, ∴16λ=9,解得λ=916. 14.(2018·满洲里模拟)如图,已知直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC =1,AB ⊥AC ,M ,N ,Q 分别是CC 1,BC ,AC 的中点,点P 在直线A 1B 1上运动,且A 1P →=λA 1B 1—→(λ∈[0,1]).(1)证明:无论λ取何值,总有AM ⊥平面PNQ ;(2)是否存在点P ,使得平面PMN 与平面ABC 的夹角为60°?若存在,试确定点P 的位置,若不存在,请说明理由.(1)证明 连接A 1Q .∵AA1=AC=1,M,Q分别是CC1,AC的中点,∴Rt△AA1Q≌Rt△CAM,∴∠MAC=∠QA1A,∴∠MAC+∠AQA1=∠QA1A+∠AQA1=90°,∴AM⊥A1Q.∵N,Q分别是BC,AC的中点,∴NQ∥AB.又AB⊥AC,∴NQ⊥AC.在直三棱柱ABC-A1B1C1中,AA1⊥底面ABC,∴NQ⊥AA1.又AC∩AA1=A,AC,AA1⊂平面ACC1A1,∴NQ⊥平面ACC1A1,∴NQ⊥AM.由NQ∥AB和AB∥A1B1可得NQ∥A1B1,∴N,Q,A1,P四点共面,∴A1Q⊂平面PNQ.∵NQ∩A1Q=Q,NQ,A1Q⊂平面PNQ,∴AM⊥平面PNQ,∴无论λ取何值,总有AM⊥平面PNQ.(2)解如图,以A为坐标原点,AB,AC,AA1所在的直线分别为x轴、y轴、z轴建立空间直角坐标系,则A 1(0,0,1),B 1(1,0,1),M ⎝ ⎛⎭⎪⎫0,1,12,N ⎝ ⎛⎭⎪⎫12,12,0,Q ⎝ ⎛⎭⎪⎫0,12,0,NM →=⎝ ⎛⎭⎪⎫-12,12,12,A 1B 1→=(1,0,0).由A 1P →=λA 1B 1→=λ(1,0,0)=(λ,0,0),可得点P (λ,0,1),∴PN →=⎝ ⎛⎭⎪⎫12-λ,12,-1.设n =(x ,y ,z )是平面PMN 的法向量,则⎩⎪⎨⎪⎧n ·NM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧ -12x +12y +12z =0,⎝ ⎛⎭⎪⎫12-λx +12y -z =0,得⎩⎪⎨⎪⎧y =1+2λ3x ,z =2-2λ3x ,令x =3,得y =1+2λ,z =2-2λ,∴n =(3,1+2λ,2-2λ)是平面PMN 的一个法向量.取平面ABC 的一个法向量为m =(0,0,1).假设存在符合条件的点P ,则|cos 〈m ,n 〉|=|2-2λ|9+(1+2λ)2+(2-2λ)2=12,化简得4λ2-14λ+1=0,解得λ=7-354或λ=7+354(舍去). 综上,存在点P ,且当A 1P =7-354时, 满足平面PMN 与平面ABC 的夹角为60°.15.在四棱锥P -ABCD 中,AB →=(4,-2,3),AD →=(-4,1,0),AP →=(-6,2,-8),则这个四棱锥的高h 等于( )A.1B.2C.13D.26 答案 B解析 设平面ABCD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ⊥AB →,n ⊥AD →,即⎩⎪⎨⎪⎧ 4x -2y +3z =0,-4x +y =0,令y =4,则n =⎝⎛⎭⎪⎫1,4,43, 则cos 〈n ,AP →〉=n ·AP →|n ||AP →|=-6+8-323133×226=-2626, ∴h =2626×226=2. 16.如图所示,在梯形ABCD 中,AB ∥CD ,∠BCD =120°,四边形ACFE 为矩形,且CF ⊥平面ABCD ,AD =CD =BC =CF .(1)求证:EF⊥平面BCF;(2)点M在线段EF上运动,当点M在什么位置时,平面MAB与平面FCB所成的锐二面角最大,并求此时二面角的余弦值.(1)证明设AD=CD=BC=1,∵AB∥CD,∠BCD=120°,∴AB=2,∴AC2=AB2+BC2-2AB·BC·cos60°=3,∴AB2=AC2+BC2,则BC⊥AC.∵CF⊥平面ABCD,AC⊂平面ABCD,∴AC⊥CF,而CF∩BC=C,CF,BC⊂平面BCF,∴AC⊥平面BCF.∵EF∥AC,∴EF⊥平面BCF.(2)解以C为坐标原点,分别以直线CA,CB,CF为x轴、y轴、z轴建立如图所示的空间直角坐标系,设FM =λ(0≤λ≤3),则C (0,0,0),A (3,0,0),B (0,1,0),M (λ,0,1),∴AB →=(-3,1,0),BM →=(λ,-1,1).设n =(x ,y ,z )为平面MAB 的法向量,由⎩⎪⎨⎪⎧ n ·AB →=0,n ·BM →=0,得⎩⎨⎧ -3x +y =0,λx -y +z =0,取x =1,则n =(1,3,3-λ).易知m =(1,0,0)是平面FCB 的一个法向量,∴cos〈n ,m 〉=n ·m |n ||m |=11+3+(3-λ)2×1=1(λ-3)2+4. ∵0≤λ≤3,∴当λ=0时,cos 〈n ,m 〉取得最小值77, ∴当点M 与点F 重合时,平面MAB 与平面FCB 所成的锐二面角最大,此时二面角的余弦值为77.。

2021届高考新课标高三数学一轮复习精品课件:第7章 第6节 立体几何中的向量方法

2021届高考新课标高三数学一轮复习精品课件:第7章 第6节 立体几何中的向量方法

cos ∠C1AD=AC1·→A→D |AC1||AD|
=(1,
3,2
2)·(1,0,2 12× 9
2)= 23,
又∵∠C1AD∈0,π2, ∴∠C1AD=π6.]
课堂 考点探究
考点 1 求异面直线所成的角
用向量法求异面直线所成角的一般步骤 (1)选择三条两两垂直的直线建立空间直角坐标系. (2)确定异面直线上两个点的坐标,从而确定异面直线的方向向 量. (3)利用向量的夹角公式求出向量夹角的余弦值. (4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.
第七章 立体几何
第六节 立体几何中的向量方法
[考点要求] 能用向量方法解决直线与直线、直线与平面、平面 与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应 用.
课前自主回 顾
1.异面直线所成的角
设 a,b 分别是两异面直线 l1,l2 的方向向量,则
a 与 b 的夹角〈a,b〉
范围
0<〈a,b〉<π
|B1M|= 6,|D1N|= 5,
∴cos
〈B1M,D1N〉=
3= 30
1300>0,
∴B1M 与 D1N 所成角的余弦值为 1300.故选 A.]
4. 如 图 , 正 三 棱 柱 ( 底 面 是 正 三 角 形 的 直 棱 柱)ABC-A1B1C1 的底面边长为 2,侧棱长为 2 2,则 AC1 与侧面 ABB1A1 所成的角为________.
A.π4
B.34π
C.π4或34π
D.π2或34π
C [∵m=(0,1,0),n=(0,1,1), ∴m·n=1,|m|=1,|n|= 2, ∴cos 〈m,n〉=|mm|·|nn|= 22,∴〈m,n〉=π4. ∴两平面所成的二面角为π4或34π,故选 C.]

2020版高三数学(理)一轮复习课件:第45讲 立体几何中的向量方法

2020版高三数学(理)一轮复习课件:第45讲 立体几何中的向量方法

设 m=(x1,y1,z1)是平面 ABD'的法向量,则
������·������������ = 0, 即 ������·������������' = 0,
3������1-4������1 = 0, 3������1 + ������1 + 3������1
=
0,
所以可取 m=(4,3,-5).
设 m 是平面 A1B1C1 的法向量,则
������·������1������1 = 0, ������·������1������1 = 0, 同理可取 m=(1,- 3, 3). 则 cos<n,m>=|������������|·|������������|=17. 所以结合图形知二面角 A -A1B1 - C1 的余弦 值为17.
解:(1)证明:由已知得 AC⊥BD,AD=CD. 又由 AE=CF 得������������������������=������������������������,故 AC∥EF. 因此 EF⊥HD,从而 EF⊥D'H.
由 AB=5,AC=6 得 DO=BO= ������������2-������������2=4. 由 EF∥AC 得������������������������=������������������������=14,所以 OH=1,D'H=DH=3. 于是 D'H2+OH2=32+12=10=D'O2,故 D'H⊥OH. 又 D'H⊥EF,且 OH∩EF=H,所以 D'H⊥平面 ABCD.
������������ =λ������������ ,则
x=λ,y=1,z= 3- 3λ.②

高三数学,一轮复习人教A版, 第7章 第7节, 立体几何中的向量方法,课件

高三数学,一轮复习人教A版, 第7章 第7节, 立体几何中的向量方法,课件

2 2 → 2 ,0),E 0, , , AE = 2 2
2 2 - 2, , , 2 2
→ → | AE · SD| 2 3 → → → SD=(0,- 2,- 2),|cos〈AE,SD〉|= = = ,故AE,SD → → 2× 3 3 |AE|· |SD| 3 所成角的余弦值为 3 .
[知识梳理] 1.设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为u,ν,则 (1)线线平行: l∥m⇔a∥b⇔a=kb,k∈R ; ; . ;
u=0 线面平行: l∥α⇔a⊥u⇔a·
面面平行: α∥β⇔u∥ν⇔u=kν,k∈R
b=0 (2)线线垂直: l⊥m⇔a⊥b⇔a·
线面垂直:l⊥α⇔a∥u⇔a=ku,k∈R ;
目录
第七章 立体几何
CONTENTS
1 高考导航 考纲下载 2 3 4 5
主干知识 自主排查 核心考点 互动探究
真题演练 明确考向
第七节 立体几何中的向量
方法
课时作业
高考导航 考纲下载
1.能用向量方法解决直线与直线,直线与平面,平面与平面的夹角的计算问 题. 2.了解向量方法在研究立体几何问题中的应用.
4.在长方体ABCDA1B1C1D1中,AB=2,BC=AA1=1,则D1C1与平面A1BC1所 成角的正弦值为______.
解析:如图,建立空间直角坐标系Dxyz,则D1(0,0,1),C1(0,2,1),A1(1,0,1), B(1,2,0),
→ ∴D1C1=(0,2,0), 设平面A1BC1的一个法向量为n=(x,y,z),
3.已知正四棱锥SABCD的侧棱长与底面边长都相等,E是SB的中点,则AE, SD所成角的余弦值为( C ) 1 A.3 3 C. 3 2 B. 3 2 D.3

课件3:立体几何中的向量方法

课件3:立体几何中的向量方法

(3)已知向量 m,n 分别是直线 l 和平面 α 的方向向量、法向
量,若 cos〈m,n〉=-12,则 l 与 α 所成的角为 30° .
第七章 第7讲
第18页
高三一轮总复习 ·新课标 ·数学
抓住3个必备考点 突破4个热点考向
破译5类高考密码
迎战2年高考模拟
限时规范特训
提示:(1)∵cos〈a,b〉=
抓住3个必备考点 突破4个热点考向
破译5类高考密码
迎战2年高考模拟
限时规范特训
异面直线所成角及点面距离的向量求法:
第七章 第7讲
第28页
高三一轮总复习 ·新课标 ·数学
第7页
高三一轮总复习 ·新课标 ·数学
抓住3个必备考点 突破4个热点考向
破译5类高考密码
迎战2年高考模拟
限时规范特训
考点 1 直线的方向向量和平面的法向量
1.直线的方向向量 直线 l 上的向量 e 或与 e 共线 的向量叫做直线 l 的方向向 量,显然一条直线的方向向量有 无数 个.
第七章 第7讲
直线 l 与平面 α 所成的角为 φ,两向量 e 与 n 的夹角为 θ,则有
|e·n|
sinφ=|cosθ|= |e||n|
.取值范围是[0,π2].
第七章 第7讲
第15页
高三一轮总复习 ·新课标 ·数学
抓住3个必备考点 突破4个热点考向
破译5类高考密码
迎战2年高考模拟
限时规范特训
3.求二面角的大小
y,z 轴建立空间直角坐标系 O-xyz,由条件得 P(0,0,1),A(2 2,
0,0),Q(0,0,-2),B(0,2 2,0),
第七章 第7讲
第25页

高三数学一轮复习精品课件5:立体几何中的向量方法


∵EF=3 2 2,AF=A′E=3 2 5,A′F=92,
∴|cos∠A′FE|= 22,即异面直线 A′F 与 AC 所成角的余
弦值为
2 2.
拓展提高 本题可从两个不同角度求异面直线所成的角, 一是几何法:作—证—算;二是向量法:把角的求解转化为向 量运算,应注意体会两种方法的特点,“转化”是求异面直线 所成角的关键,一般地,异面直线 AC,BD 的夹角 β 的余弦值
(2)[解] 连接 EF,B′E,B′F,A′E,AF,设 AE=BF =m,则三棱锥 B-EB′F 的体积为 V=12m(3-m)≤m+38-m2
=98,当 m=32时取等号. 故当 m=32,即点 E,F 分别是棱 AB,BC 的中点时,三棱
锥 B-EB′F 的体积最大,则|cos∠A′FE|为所求.
(3)求二面角的大小 a.如图①,AB、CD 是二面角 α-l-β 的两个面内与棱 l 垂 直的直线,则二面角的大小 θ=〈A→B,C→D〉.
b.如图②③,n1,n2分别是二面角αlβ的两个半平面α,β的 法向量,则二面角的大小θ满足cos θ=cos〈n1,n2〉或π- cos〈n1,n2〉.
(3)用向量证明空间中的平行关系 ①设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重
合)⇔v1∥v2. ②设直线l的方向向量为v,与平面α共面的两个不共线向量v1
和v2,则l∥α或l⊂α⇔存在两个实数x,y使v=xv1+yv2. ③设直线l的方向向量为v,平面α的法向量为u,则l∥α或l⊂
图(1) OP=14AD.
从而 OP∥FQ,且 OP=FQ,
所以四边形 OPQF 为平行四边形,故 PQ∥OF.
又 PQ⊄平面 BCD,OF 平面 BCD,所以 PQ∥平面 BCD.

高考数学一轮复习 立体几何与空间向量 立体几何中的向量方法课件 理 新人教A


请注意! 1. 用直线的方向向量和平面的法向量证明线线、线 面的垂直关系以及求空间角是高考的热点,尤其是用向量 法求线面角和二面角. 2. 多以解答题的形式出现,综合考查空间想象能力、 运算能力及数形结合思想.
高考考点预览
■ ·考点梳理· ■ 1. 直线的方向向量与平面的法向量的确定 (1)直线的方向向量:在直线上任取一非零零向量作为它 的方向向量. (2)平面的法向量可利用方程组求出:设 a,b 是平面 α 内两不共线向量,n 为平面 α 的法向量,则求法向量的 方程组为nnnn····abab=== =0000.
A. 1
B. 2
C. 3
D. 4
答案:D
解析:由平面的法向量与平面间的位置关系可知四个 命题均正确.故选 D.
2. [2012·江苏模拟]在直三棱柱 A1B1C1-ABC 中, ∠BCA=90°,点 D1、F1 分别是 A1B1、A1C1 的中点,BC =CA=CC1,则 BD1 与 AF1 所成的角的余弦值是( )
(1)DE∥平面ABC; (2)B1F⊥平面AEF.
[思路点拨] AB、AC、AA1两两垂直,可用此建立 直角坐标系,用向量的坐标运算证线面平行,线线垂 直,面面垂直.
[证明] 如图建立空间直角坐标 系A-xyz,令AB=AA1=4,
则A(0,0,0),E(0,4,2), F(2,2,0),B(4,0,0),B1(4, 0,4).
5. [2011·新课标全国](理)如 图,四棱锥 P-ABCD 中,底面 ABCD 为平行四边形,∠DAB= 60°,AB=2AD,PD⊥底面 ABCD.
(1)证明:PA⊥BD; (2)若 PD=AD,求二面角 A-PB-C 的余弦值.
解:(1)因为∠DAB=60°,AB=2AD,由余弦定理得 BD= 3AD.

最新-2021届高考数学理科1轮复习课件:第八章 立体几何 第7讲 立体几何中的向量方法 精品


A.π6
B.π4
π
π
C.3
D.2
【解析】 以 O 为坐标原点建系如图,

A(0,1,0),A1(0,1,1),B1
23,12,1,
C
23,-12,0.
所以A→A1=(0,0,1),B→1C=(0,-1,
-1),
所以 cos〈A→A1,B→1C〉=A|A→→AA11·||BB→→11CC| =0×1×0+002×+((--11))+2+1×((--1)1)2 =- 22, 所以〈A→A1,B→1C〉=34π, 所以异面直线 B1C 与 AA1 所成的角为π4.故选 B.
m·A→C=0, 设平面 ACC1A1 的一个法向量为 m=(x,y,z),则由m·C→C1=0
得x-+xy+=03,z=0,取 m=( 3,- 3,1).
所以 cos〈B→1D,m〉=B|B→→ 11DD·||mm|

0× 3+1×(- 02+12+(- 3)2×
3()+3)(2-+(3-)×31)2+12=
A→O=V→O-V→A=12V→D-V→A=16(b+c-5a), 所以|D→M|= 16(-2a-2b+c)2=12, |A→O|= 16(b+c-5a)2= 22, D→M·A→O=16(-2a-2b+c)·16(b+c-5a)=14. 设 DM 与 AO 所成的角是 θ,
所以 cos θ=||DD→→MM|··A|→A→OO||= 22,所以 θ=45°.
取 x=1,则 m=(1,-1,0).设直线 PD 与平面 PAC 所成
的角为 α,所以 sin
α=|cos〈P→D,m〉|=||PP→→DD·|·|mm||=
2 5×
2

510,因为 α∈0,π2 ,所以 cos
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

z
则 B(2,0,0),C(2,2 2,0),E(1, 2,1), → AE=(1,
→ → 设AE与BC的夹角为 θ,则 → → AE· BC 4 2 cosθ= = = , 2 → → |AE||BC| 2×2 2 π 所以 θ= . 4
y x
π 由此可知,异面直线 BC 与 AE 所成的角的大小是 . 4
知识与方法回顾
知识梳理 探究 一
辨析感悟
例1 训练1 例2 训练2 例3
求异面直线所成 的角
技能与规律探究
探究二
利用空间向量求直 线与平面所成的角
利用向量求二面角
探究三
Байду номын сангаас
训练3
经典题目再现
1.两条异面直线所成角的求法
设 a,b 分别是两异面直线 l1,l2 的方向向量,则 l1 与 l2 所成的角 θ a 与 b 的夹角 β 0,π 范围 [0,π] 2 |a· b| a· b 求法 cosθ= cosβ= |a||b| |a||b|
F
求异面直线所成的角
【例 1】 如图,在四棱锥 PABCD 中,底面 ABCD 是矩形,PA⊥底面 ABCD,E 是 PC 的中点.已知 AB=2,AD=2 2,PA=2.求: (1)三角形 PCD 的面积. (2)异面直线 BC 与 AE 所成的角的大小.
法二 如图 2,建立空间直角坐标系, → 2,1),BC=(0,2 2,0).
求异面直线所成的角
【例 1】 如图,在四棱锥 PABCD 中,底面 ABCD 是矩形,PA⊥底面 ABCD,E 是 PC 的中点.已知 AB=2,AD=2 2,PA=2.求: (1)三角形 PCD 的面积. (2)异面直线 BC 与 AE 所成的角的大小.
规律方法
本题可从两个不同角度求异面直线所成的 角, 一是几何法: 作—证—算; 二是向量法: 把角的求解转化为向量运算, 应注意体会两 种方法的特点, “转化”是求异面直线所成 角的关键,一般地,异面直线 AC,BD 的夹 → → |AC· BD| 角 β 的余弦值为 cosβ= . → → |AC||BD|
求异面直线所成的角
【例 1】 如图,在四棱锥 PABCD 中,底面 ABCD 是矩形,PA⊥底面 ABCD,E 是 PC 的中点.已知 AB=2,AD=2 2,PA=2.求: (1)三角形 PCD 的面积. (2)异面直线 BC 与 AE 所成的角的大小.
解 (1)因为 PA⊥底面 ABCD,
所以 PA⊥CD. 又 AD⊥CD, 所以 CD⊥平面 PAD, 从而 CD⊥PD. 因为 PD= 22+2 22=2 3,CD=2, 1 所以三角形 PCD 的面积为 ×2×2 3=2 3. 2
2.直线与平面所成角的求法
设直线 l 的方向向量为 a,平面 α 的法向量为 n,直线 l 与平面 α 所成 |a· n| 的角为 θ,a 与 n 的夹角为 β. 则 sinθ=|cosβ|= . |a||n|
3.求二面角的大小
(1)如图①,AB,CD 是二面角 α-l-β 的两个面内与棱 l 垂直的直线,则 → → 二面角的大小 θ=〈AB,CD〉 . (2)如图②③,n1,n2 分别是二面角 α-l-β 的两个半平面 α,β 的法向量, 则二面角的大小 θ 满足|cosθ|=|cos〈n1,n2〉|,二面角的平面角大小是 向量 n1 与 n2 的夹角(或其补角).




二面角的范围是[0,π].( ) (5)(2014· 济南调研改编)已知向量 m, n 分别是直线 l 和平面 α 的方向向量、 1 法向量,若 cos〈m,n〉=- ,则 l 与 α 所成的角为 150° .( ) 2 (6)已知两平面的法向量分别为 m=(0,1,0),n=(0,1,1), 则两平面所成的二面角的大小为 45° .( ) (7)(2013· 上海卷改编)在如图所示的正方体 ABCDA1B1C1D1 中,异面直线 A1B 与 B1C 所成角的大小为 60° .( )
1
利用空间向量求空间 角,避免了寻找平面 角和垂线段等诸多麻 烦,使空间点线面的 位置关系的判定和计 算程序化、简单 化.主要是建系、设 点、计算向量的坐标、 利用数量积的夹角公 式计算.
两种关系
一是异面直线所成的角与其方向向量的 夹角:当异面直线的方向向量的夹角为 锐角或直角时,就是该异面直线的夹角; 否则向量夹角的补角是异面直线所成的 角,如(2). 二是二面角与法向量的夹角:利用平面 的法向量求二面角的大小时,当求出两 半平面α,β的向量n1,n2时,要根据向 量坐标在图形中观察法向量的方向,从 而确定二面角与向量n1,n2的夹角是相 等,还是互补,如(6).
求异面直线所成的角
【例 1】 如图,在四棱锥 PABCD 中,底面 ABCD 是矩形,PA⊥底面 ABCD,E 是 PC 的中点.已知 AB=2,AD=2 2,PA=2.求: (1)三角形 PCD 的面积. (2)异面直线 BC 与 AE 所成的角的大小.
(2)法一 如图 1,取 PB 中点 F,连接 EF,AF, 则 EF∥BC,从而∠AEF(或其补角)是异面直线 BC 与 AE 所成的角. 在△AEF 中,由于 EF= 2,AF= 2, 1 AE= PC=2. 2 则△AEF 是等腰直角三角形, π 所以∠AEF= . 4 π 因此,异面直线 BC 与 AE 所成的角的大小是 . 4
1.直线的方向向量与平面的法向量
(1)若 n1,n2 分别是平面 α,β 的法向量,则 n1∥n2⇔α∥β.( ) (2)两直线的方向向量的夹角就是两条直线所成的角.( ) (3)已知 a=(-2,-3,1),b=(2,0,4),c=(-4,-6,2),则 a∥c,a⊥b.( )
2.空间角
π π (4)两异面直线夹角的范围是0,2 ,直线与平面所成角的范围是0,2,
2.利用空间向量求 距离(供选用)
(1)两点间的距离 设点 A(x1,y1,z1),点 B(x2,y2,z2), → 则|AB|=|AB|= x1-x22+y1-y22+z1-z22. (2)点到平面的距离 如图所示,已知 AB 为平面 α 的一条斜线段,n 为平 → | AB · n| → 面 α 的法向量,则 B 到平面 α 的距离为|BO|= . |n|
相关文档
最新文档