高考数学一轮复习第二章函数导数及其应用第10讲函数与方程实战演练理

合集下载

2019版数学(理)高分计划一轮高分讲义:第2章 函数、导数及其应用 2.10 导数的概念及运算

2019版数学(理)高分计划一轮高分讲义:第2章 函数、导数及其应用 2.10 导数的概念及运算

2.10导数的概念及运算[知识梳理]1.变化率与导数(1)平均变化率(2)导数2.导数的运算[诊断自测] 1.概念思辨(1)f ′(x 0)与(f (x 0))′表示的意义相同.( )(2)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (3)与曲线只有一个公共点的直线一定是曲线的切线.( ) (4)曲线y =f (x )在点P (x 0,y 0)处的切线与过点P (x 0,y 0)的切线相同.( )答案 (1)× (2)× (3)× (4)×2.教材衍化(1)(选修A2-2P 6例1)若函数f (x )=2x 2-1的图象上一点(1,1)及邻近一点(1+Δx,1+Δy ),则Δy Δx 等于( )A .4B .4xC .4+2ΔxD .4+2(Δx )2答案 C解析 Δy =(1+Δy )-1=f (1+Δx )-f (1)=2(1+Δx )2-1-1=2(Δx )2+4Δx ,∴错误!=2Δx +4,故选C.(2)(选修A2-2P 18T 7)f (x )=cos x 在错误!处的切线的倾斜角为________. 答案错误!解析 f ′(x )=(cos x )′=-sin x ,f ′错误!=-1, tan α=-1,所以α=3π4. 3.小题热身(1)(2014·全国卷Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0 B.1 C.2 D.3答案D解析y′=a-错误!,当x=0时,y′=a-1=2,∴a=3,故选D.(2)(2017·太原模拟)函数f(x)=x e x的图象在点(1,f(1))处的切线方程是________.答案y=2e x-e解析∵f(x)=x e x,∴f(1)=e,f′(x)=e x+x e x,∴f′(1)=2e,∴f(x)的图象在点(1,f(1))处的切线方程为y -e=2e(x-1),即y=2e x-e.题型1导数的定义及应用错误!已知函数f(x)=错误!+1,则错误!错误!的值为()A.-错误! B.错误! C.错误!D.0用定义法.答案A解析由导数定义,错误!错误!=-错误!错误!=-f′(1),而f′(1)=错误!,故选A。

【高考调研】2016届高考数学一轮复习 第二章 第10课时 函数与方程课件 理

【高考调研】2016届高考数学一轮复习 第二章 第10课时 函数与方程课件 理

f(a)·f(b)<0,如图所示.
所以 f(a)·f(b)<0 是 y = f(x) 在闭区间 [a , b] 上有零点的充分 不必要条件.
课前自助餐
授人以渔 自助餐
课外阅读
题组层级快练
课前自助餐
1.函数零点的概念
零点不是点!
(1)从“数”的角度看:即是使f(x)=0的实数x; (2) 从“形”的角度看:即是函数 f(x) 的图像与 x 轴交点的 横坐标. 2.函数零点与方程根的关系
似解(精确度0.001)时,若我们选取初始区间是[1.4,1.5],则要 达到精确度要求至少需要计算的次数是________.
【解析】
1.5-1.4 设至少需要计算 n 次,由题意知 2n
<0.001,即 2n>100.由 26=64,27=128,知 n=7.
【答案】 7
1.函数零点的性质: (1) 若函数f(x) 的图像在 x =x0 处与x 轴相切,则零点x0 通常 称为不变号零点; (2) 若函数f(x) 的图像在 x =x0 处与x 轴相交,则零点x0 通常
称为变号零点.
2.函数零点的求法: 求函数y=f(x)的零点: (1)( 代数法)求方程f(x)= 0 的实数根( 常用公式法、因式分
解、直接求解等);
(2)( 几何法 ) 对于不能用求根公式的方程,可以将它与函 数y=f(x)的图像联系起来,并利用函数的性质找出零点; (3)二分法(主要用于求函数零点的近似值,所求零点都是 指此类题的解法是将f(x) = 0 ,拆成 f(x) = g(x) - h(x)
= 0 ,画出 h(x) 与 g(x) 的图像,从而确定方程 g(x) = h(x) 的根所
思考题2 在的区间为( )

【2022高考数学一轮复习(步步高)】目录

【2022高考数学一轮复习(步步高)】目录

第一章集合、常用逻辑用语、不等式§1.1集合§1.2 充分条件与必要条件§1.3 全称量词与存在量词§1.4 不等关系与不等式§1.5 一元二次不等式及其解法§1.6 基本不等式强化训练1不等式中的综合问题第二章函数概念与基本初等函数Ⅰ§2.1 函数的概念及其表示第1课时函数的概念及其表示第2课时函数的定义域与值域§2.2 函数的基本性质第1课时单调性与最大(小)值第2课时奇偶性、对称性与周期性第3课时函数性质的综合问题§2.3 幂函数与二次函数§2.4 指数与指数函数§2.5 对数与对数函数§2.6 函数的图象§2.7 函数与方程强化训练2函数与方程中的综合问题§2.8 函数模型及其应用第三章导数及其应用§3.1 导数的概念及运算§3.2 导数与函数的单调性§3.3 导数与函数的极值、最值强化训练3导数中的综合问题高考专题突破一高考中的导数综合问题第1课时利用导数研究恒(能)成立问题第2课时利用导函数研究函数的零点第3课时利用导数证明不等式第四章三角函数、解三角形§4.1任意角和弧度制、三角函数的概念§4.2 同角三角函数基本关系式及诱导公式§4.3 简单的三角恒等变换第1课时两角和与差的正弦、余弦和正切公式第2课时简单的三角恒等变换§4.4 三角函数的图象与性质§4.5 函数y=A sin(ωx+φ)的图象及应用强化训练4三角函数中的综合问题§4.6 解三角形高考专题突破二高考中的解三角形问题第五章平面向量、复数§5.1 平面向量的概念及线性运算§5.2 平面向量基本定理及坐标表示§5.3 平面向量的数量积强化训练5平面向量中的综合问题§5.4 复数第六章数列§6.1 数列的概念与简单表示法§6.2 等差数列及其前n项和§6.3 等比数列及其前n项和强化训练6数列中的综合问题高考专题突破三高考中的数列问题第七章立体几何与空间向量§7.1空间几何体及其表面积、体积强化训练7空间几何体中的综合问题§7.2 空间点、直线、平面之间的位置关系§7.3 直线、平面平行的判定与性质§7.4 直线、平面垂直的判定与性质强化训练8空间位置关系中的综合问题§7.5 空间向量及其应用高考专题突破四高考中的立体几何问题第八章解析几何§8.1直线的方程§8.2 两条直线的位置关系§8.3 圆的方程§8.4 直线与圆、圆与圆的位置关系强化训练9直线与圆中的综合问题§8.5 椭圆第1课时椭圆及其性质第2课时直线与椭圆§8.6 双曲线§8.7 抛物线强化训练10圆锥曲线中的综合问题高考专题突破五高考中的圆锥曲线问题第1课时范围与最值问题第2课时定点与定值问题第3课时证明与探索性问题第九章统计与统计案例§9.1 随机抽样、用样本估计总体§9.2 变量间的相关关系、统计案例强化训练11统计中的综合问题第十章计数原理、概率、随机变量及其分布§10.1 分类加法计数原理与分步乘法计数原理§10.2 排列、组合§10.3 二项式定理§10.4 随机事件的概率与古典概型§10.5 离散型随机变量的分布列、均值与方差§10.6 二项分布与正态分布高考专题突破六高考中的概率与统计问题。

【高考数学】最新新人教版2019届高考数学一轮复习:第二篇函数导数及其应用第10节导数的概念及计算训练理

【高考数学】最新新人教版2019届高考数学一轮复习:第二篇函数导数及其应用第10节导数的概念及计算训练理

第10节导数的概念及计算【选题明细表】知识点、方法题号导数的概念与运算1,2,3,13导数的几何意义4,5, 7,8,9,11导数运算及几何意义综合6,10,12,14,15基础巩固(时间:30分钟)1.(2017·黑龙江省伊春市期中)函数y=的导数为( D )(A) (B)(C)- (D)解析:因为y=,所以y′==.故选D.2.函数y=ln(2x2+1)的导数是( B )(A) (B)(C)(D)解析:因为y=ln(2x2+1),所以y′=·(2x2+1)′=.故选B.3.(2017·山西怀仁县期中)已知f(x)=x2+3xf′(1),则f′(2)等于( A )(A)1 (B)2 (C)4 (D)8解析:f′(x)=2x+3f′(1),令x=1,得f′(1)=2+3f′(1),f′(1)=-1,所以f′(x)=2x-3.所以f′(2)=1.故选A.4.(2017·湖南怀化一模)如图,函数y=f(x)的图象在点P处的切线方程是y=-x+8,则f(5)+f′(5)等于( A )(A)2 (B)1(C) (D)0解析:根据图象知,点P为切点,f(5)=-5+8=3,f′(5)为函数y=f(x)的图象在点P处的切线的斜率,所以f′(5)=-1,所以f(5)+f′(5)=2.故选A.5.函数f(x)=e x ln x在x=1处的切线方程是( C )(A)y=2e(x-1) (B)y=ex-1(C)y=e(x-1) (D)y=x-e解析:函数f(x)=e x ln x的导数为f′(x)=e x ln x+e x·,所以切线的斜率k=f′(1)=e,令f(x)=e x ln x中x=1,得f(1)=0,所以切点坐标为(1,0),所以切线方程为y-0=e(x-1),即y=e(x-1).故选C.6.(2017·湖南邵阳二模)已知a>0,曲线f(x)=2ax2-在点(1,f(1))处的切线的斜率为k,则当k取最小值时a的值为( A )(A) (B) (C)1 (D)2解析:f(x)=2ax2-的导数为f′(x)=4ax+,可得在点(1,f(1))处的切线的斜率为k=4a+,由a>0,可得4a+≥2=4,当且仅当4a=,即a=时,k取最小值.故选A.7.导学号 38486054(2017·河南许昌二模)已知函数y=x+1+ln x在点A(1,2)处的切线l,若l与二次函数y=ax+(a+2)x+1的图象也相切,则实数a的取值为( D )(A)12 (B)8 (C)0 (D)4解析:y=x+1+ln x的导数为y′=1+,曲线y=x+1+ln x在x=1处的切线斜率为k=2,则曲线y=x+1+ln x在x=1处的切线方程为y-2=2x-2,即y=2x.由于切线与曲线y=ax2+(a+2)x+1相切,y=ax2+(a+2)x+1可联立y=2x,得ax2+ax+1=0,又a≠0,两线相切有一切点,所以有Δ=a2-4a=0,解得a=4.故选D.8.(2017·天津卷)已知a∈R,设函数f(x)=ax-ln x的图象在点(1,f(1))处的切线为l,则l 在y轴上的截距为.解析:因为f′(x)=a-,所以f′(1)=a-1.又因为f(1)=a,所以切线l的斜率为a-1,且过点(1,a),所以切线l的方程为y-a=(a-1)(x-1).令x=0,得y=1,故l在y轴上的截距为1.答案:19.(2017·云南一模)已知函数f(x)=axln x+b(a,b∈R),若f(x)的图象在x=1处的切线方程为2x-y=0,则a+b= .解析:f(x)=axln x+b的导数为f′(x)=a(1+ln x),由f(x)的图象在x=1处的切线方程为2x-y=0,易知f(1)=2,即b=2,f′(1)=2,即a=2,则a+b=4.答案:4能力提升(时间:15分钟)10.导学号 38486055已知函数f(x)在R上可导,且f(x)=x2+2xf′(2),则函数f(x)的解析式为( B )(A)f(x)=x2+8x (B)f(x)=x2-8x(C)f(x)=x2+2x (D)f(x)=x2-2x解析:因为f(x)=x2+2xf′(2),所以f′(x)=2x+2f′(2),所以f′(2)=2×2+2f′(2),解得f′(2)=-4,所以f(x)=x2-8x,故选B.11.(2017·广州一模)设函数f(x)=x3+ax2,若曲线y=f(x)在点P(x0,f(x0))处的切线方程为x+y=0,则点P的坐标为( D )(A)(0,0) (B)(1,-1)(C)(-1,1) (D)(1,-1)或(-1,1)解析:因为f(x)=x3+ax2,所以f′(x)=3x2+2ax,因为函数在点(x0,f(x0))处的切线方程为x+y=0,所以3+2ax0=-1,因为x0++a=0,解得x0=±1.当x0=1时,f(x0)=-1,当x0=-1时,f(x0)=1.故选D.。

2020版高考数学一轮复习第2章函数、导数及其应用第10节导数的概念及运算教学案理(含解析)北师大

2020版高考数学一轮复习第2章函数、导数及其应用第10节导数的概念及运算教学案理(含解析)北师大

第十节导数的概念及运算[考纲传真] 1.了解导数概念的实际背景,理解导数的几何意义.2.能根据导数定义求函数y=C(C为常数),y=x,y=x2,y=x3,y=错误!,y=错误!的导数.3.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.能求简单的复合函数(仅限于形如f(ax +b)的复合函数)的导数.1.导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线斜率.相应地,切线方程为y-f(x0)=f′(x0)(x-x0).2.基本初等函数的导数公式基本初等函数导函数f(x)=C(C为常数)f′(x)=0f(x)=xα(α是实数)f′(x)=αxα-1y=sin x y′=cos xy=cos x y′=-sin xf(x)=e x f′(x)=e xf(x)=a x(a>0,a≠1)f′(x)=a x ln_af(x)=ln x f′(x)=错误!f(x)=log a xf′(x)=错误!(a>0,且a≠1)(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)错误!′=错误!(g(x)≠0).4.复合函数的导数复合函数y=f(φ(x))的导数和函数y=f(u),u=φ(x)的导数间的关系为y x′=[f(φ(x))]′=f′(u)·φ′(x).[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×")(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.( )(2)f′(x0)与[f(x0)]′表示的意义相同.()(3)与曲线只有一个公共点的直线一定是曲线的切线.()(4)函数f(x)=sin(-x)的导数是f′(x)=cos x.( )[答案](1)×(2)×(3)×(4)×2.已知f(x)=x ln x,若f′(x0)=2,则x0等于()A.e2B.eC。

高考数学一轮复习第二章函数、导数及其应用学案理

高考数学一轮复习第二章函数、导数及其应用学案理

第二章函数、导数及其应用第一节函数及其表示1.函数与映射的概念函数映射两集合A,B设A,B是非空的数集设A,B是非空的集合对应关系f:A→B如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应名称称f:A→B为从集合A到集合B的一个函数称对应f:A→B为从集合A到集合B的一个映射记法y=f(x),x∈A 对应f:A→B是一个映射(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然有几部分组成,但它表示的是一个函数.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)对于函数f:A→B,其值域是集合B.( )(2)若两个函数的定义域与值域相同,则这两个函数是相等函数.( ) (3)函数是一种特殊的映射.( )(4)若A =R ,B =(0,+∞),f :x →y =|x |,则对应f 可看作从A 到B 的映射.( ) (5)分段函数是由两个或几个函数组成的.( ) 答案:(1)× (2)× (3)√ (4)× (5)× 2.函数f (x )=2x-1+1x -2的定义域为( ) A .[0,2) B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x-1≥0,x -2≠0,解得x ≥0且x ≠2.3.下列函数中,与函数y =x +1是相等函数的是( ) A .y =(x +1)2B .y =3x 3+1 C .y =x 2x+1D .y =x 2+1解析:选B 对于A ,函数y =(x +1)2的定义域为{x |x ≥-1},与函数y =x +1的定义域不同,不是相等函数;对于B ,定义域和对应关系都相同,是相等函数;对于C ,函数y =x 2x+1的定义域为{x |x ≠0},与函数y =x +1的定义域不同,不是相等函数;对于D ,定义域相同,但对应关系不同,不是相等函数,故选B.4.下列图形中可以表示为以M ={x |0≤x ≤1}为定义域,以N ={y |0≤y ≤1}为值域的函数的是( )解析:选C A 选项,函数定义域为M ,但值域不是N ,B 选项,函数定义域不是M ,值域为N ,D 选项,集合M 中存在x 与集合N 中的两个y 对应,不能构成函数关系.故选C.5.设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =________.解析:若a ≥0,则a +1=2,得a =1; 若a <0,则-a +1=2,得a =-1. 故a =±1. 答案:±16.已知f ⎝ ⎛⎭⎪⎫1x =x 2+5x ,则f (x )=________.解析:令t =1x ,则x =1t (t ≠0),即f (t )=1t 2+5t,∴f (x )=5x +1x2(x ≠0).答案:5x +1x2(x ≠0)考点一 函数的定义域基础送分型考点——自主练透 [考什么·怎么考]求函数定义域主要有两种类型,一种是具体函数求定义域,即结合分式、根式及对数式等考查自变量的取值;另一种是抽象函数定义域的求解.常以选择题形式考查,属于基础题.1.(2018·石家庄模拟)函数y =x ln(2-x )的定义域为( ) A .(0,2) B .[0,2) C .(0,1]D .[0,2]解析:选B 由题意知,x ≥0且2-x >0,解得0≤x <2,故其定义域是[0,2). 2.(2018·济南模拟)函数f (x )=1log 2x2-1的定义域为________________.解析:要使函数f (x )有意义,则(log 2x )2-1>0,即log 2x >1或log 2x <-1,解得x >2或0<x <12,故所求函数的定义域是⎝ ⎛⎭⎪⎫0,12∪(2,+∞). 答案:⎝ ⎛⎭⎪⎫0,12∪(2,+∞)[题型技法] 已知函数的具体解析式求定义域的方法(1)若f (x )是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集.(2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可.考法(二) 抽象函数的定义域3.已知函数f (x )的定义域是[0,4],则f (x +1)+f (x -1)的定义域是________.解析:由题意知⎩⎪⎨⎪⎧0≤x +1≤4,0≤x -1≤4,解得1≤x ≤3.故f (x +1)+f (x -1)的定义域为[1,3].答案:[1,3]4.已知函数y =f (x 2-1)的定义域为[-3, 3 ],则函数y =f (x )的定义域为________.解析:因为y =f (x 2-1)的定义域为[-3,3],所以x ∈[-3, 3 ],x 2-1∈[-1,2],所以y =f (x )的定义域为[-1,2].答案:[-1,2][题型技法] 抽象函数的定义域的求法(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出.(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.[怎样快解·准解]1.如何避免失误(1)函数f (g (x ))的定义域指的还是x 的取值范围,而不是g (x )的取值范围.(如第4题)(2)求函数定义域时,对函数解析式先不要化简,求出定义域后,一定要将其写成集合或区间的形式.若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.(如第2题)2.重要的知识结论要熟记常见基本初等函数定义域的基本要求: (1)分式函数中分母不等于零;(2)偶次根式函数的被开方式大于或等于0; (3)一次函数、二次函数的定义域均为R ; (4)y =x 0的定义域是{x |x ≠0};(5)y =a x (a >0且a ≠1),y =sin x ,y =cos x 的定义域均为R ; (6)y =log a x (a >0且a ≠1)的定义域为(0,+∞);(7)y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+π2,k ∈Z .考点二 求函数的解析式 重点保分型考点——师生共研函数的解析式是函数的基础知识,高考中重视对待定系数法、换元法、利用函数性质求解析式的考查.题目难度不大,常以选择题、填空题的形式出现.(1)已知f ⎝⎛⎭⎪⎫x +1x =x 2+1x2,求函数f (x )的解析式.(2)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,求f (x )的解析式.(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x )的解析式. (4)已知函数f (x )满足f (-x )+2f (x )=2x,求f (x )的解析式.解:(1)由于f ⎝⎛⎭⎪⎫x +1x =x 2+1x2=⎝ ⎛⎭⎪⎫x +1x 2-2,所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ∈(-∞,-2]∪[2,+∞). (2)令2x +1=t ,得x =2t -1,代入得f (t )=lg2t -1, 又x >0,所以t >1, 故f (x )的解析式是f (x )=lg2x -1,x ∈(1,+∞). (3)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R.(4)由f (-x )+2f (x )=2x,① 得f (x )+2f (-x )=2-x,② ①×2-②,得3f (x )=2x +1-2-x.即f (x )=2x +1-2-x3. 故f (x )的解析式是f (x )=2x +1-2-x3. [解题师说]1.依题型准确选用4种方法速求函数解析式(1)在求函数解析式时,一定要注意自变量的范围,也就是定义域问题.求出解析式后要标注x 的取值范围.(如典题领悟第1题、第2题)(2)利用换元法求解析式时要注意新元的取值范围.如已知f (x )=x +1,求函数f (x )的解析式,可通过换元的方法得f (x )=x 2+1,函数f (x )的定义域是[0,+∞),而不是(-∞,+∞).[冲关演练]1.(尝试用换元法解题)如果f ⎝ ⎛⎭⎪⎫1x =x 1-x,则当x ≠0且x ≠1时,f (x )等于( )A.1xB.1x -1C.11-xD.1x-1解析:选B 令1x =t ,得x =1t(t ≠0且t ≠1),∴f (t )=1t1-1t=1t -1(t ≠0且t ≠1),∴f (x )=1x -1(x ≠0且x ≠1).2.(尝试用待定系数法解题)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为()A .y =12x 3-12x 2-xB .y =12x 3+12x 2-3xC .y =14x 3-xD .y =14x 3+12x 2-2x解析:选A 设所求函数解析式为f (x )=ax 3+bx 2+cx +d (a ≠0), 则f ′(x )=3ax 2+2bx +c (a ≠0),由题意知⎩⎪⎨⎪⎧f 0=d =0,f 2=8a +4b +2c +d =0,f ′0=c =-1,f ′2=12a +4b +c =3,解得⎩⎪⎨⎪⎧a =12,b =-12,c =-1,d =0,∴f (x )=12x 3-12x 2-x .3.(尝试用配凑法解题)已知f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x ,则f (x )=( )A .(x +1)2B .(x -1)2C .x 2-x +1D .x 2+x +1解析:选C f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x =⎝ ⎛⎭⎪⎫x +1x 2-x +1x +1, 所以f (x )=x 2-x +1. 4.(尝试用解方程组法解题)已知f (x )满足2f (x )+f ⎝ ⎛⎭⎪⎫1x=3x ,则f (x )=________.解析:∵2f (x )+f ⎝ ⎛⎭⎪⎫1x=3x ,① 把①中的x 换成1x,得2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x.②联立①②可得⎩⎪⎨⎪⎧2f x +f ⎝ ⎛⎭⎪⎫1x =3x ,2f ⎝ ⎛⎭⎪⎫1x +f x =3x ,解此方程组可得f (x )=2x -1x(x ≠0). 答案:2x -1x(x ≠0)考点三 分段函数 题点多变型考点——追根溯源分段函数作为考查函数知识的最佳载体,一直是高考命题的热点,解题过程中常渗透分类讨论的数学思想,试题常以选择题、填空题的形式出现,难度一般.,常见的命题角度有:,1求值问题;,2求参数或自变量的值或范围.角度(一) 求值问题1.已知函数f (x )=⎩⎪⎨⎪⎧2cos πx ,x ≤0,f x -1+1,x >0,则f ⎝ ⎛⎭⎪⎫43的值为( )A .-1B .1 C.32D.52解析:选B 依题意得f ⎝ ⎛⎭⎪⎫43=f ⎝ ⎛⎭⎪⎫13+1=f ⎝ ⎛⎭⎪⎫-23+1+1=2cos ⎝ ⎛⎭⎪⎫-2π3+2=2×⎝ ⎛⎭⎪⎫-12+2=1.[题型技法] 求分段函数的函数值的方法求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;当出现f (f (a ))的形式时,应从内到外依次求值;当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.角度(二) 求参数或自变量的值(或范围)2.(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝ ⎛⎭⎪⎫-14,+∞.答案:⎝ ⎛⎭⎪⎫-14,+∞[题型技法]求分段函数的参数或自变量的值(或范围)的方法求某条件下参数或自变量的值(或范围),先假设所求的值或范围在分段函数定义区间的各段上,然后求出相应自变量的值或范围,切记代入检验,看所求的自变量的值或范围是否满足相应各段自变量的取值范围.[题“根”探求]看个性角度(一)是求分段函数的函数值;角度(二)是在角度(一)的基础上迁移考查分段函数已知函数值或范围求参数或自变量的值或范围找共性(1)无论角度(一)还是角度(二)都要根据自变量或参数所在区间来解决问题,搞清参数或自变量所在区间是解决问题的先决条件; (2)解决分段函数有关问题的关键是“分段归类”,即自变量的取值属于哪一段范围,就用这一段的解析式来解决问题[冲关演练]1.已知f (x )={ log 3x ,x >0,a x+b ,x ≤0,且f (0)=2,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3解析:选B 由题意得f (0)=a 0+b =1+b =2,解得b =1;f (-1)=a -1+b =a -1+1=3,解得a =12.故f (-3)=⎝ ⎛⎭⎪⎫12-3+1=9,从而f (f (-3))=f (9)=log 39=2.2.设函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫12x-7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A.()-∞,-3B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)解析:选C 若a <0,则f (a )<1⇔⎝ ⎛⎭⎪⎫12a -7<1⇔⎝ ⎛⎭⎪⎫12a<8,解得a >-3,故-3<a <0;若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综合可得-3<a <1.故选C.3.(2018·铜陵模拟)设函数f (x )={ x 2-4x +6,x ≥0,x +6,x <0,则不等式f (x )>f (1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3)解析:选A 由已知得f (1)=3,当x ≥0时,由f (x )>f (1)得x 2-4x +6>3, 解得0≤x <1或x >3.当x <0时,由f (x )>f (1)得x +6>3, 解得-3<x <0.综上所述,不等式f (x )>f (1)的解集是(-3,1)∪(3,+∞).(一)普通高中适用作业A 级——基础小题练熟练快1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象,②中当x =x 0时,y 的值有两个,因此不是函数图象,③④中每一个x 的值对应唯一的y 值,因此是函数图象.2.(2018·濮阳检测)函数f (x )=log 2(1-2x )+1x +1的定义域为( ) A.⎝ ⎛⎭⎪⎫0,12 B.⎝⎛⎭⎪⎫-∞,12 C .(-1,0)∪⎝ ⎛⎭⎪⎫0,12 D .(-∞,-1)∪⎝⎛⎭⎪⎫-1,12解析:选D 由1-2x >0,且x +1≠0,得x <12且x ≠-1,所以函数f (x )=log 2(1-2x )+1x +1的定义域为(-∞,-1)∪⎝⎛⎭⎪⎫-1,12. 3.已知f ⎝ ⎛⎭⎪⎫12x -1=2x -5,且f (a )=6,则a 等于( )A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.已知f (x )={ 2x ,x >0,f x +1,x ≤0,则f ⎝ ⎛⎭⎪⎫43+ f ⎝ ⎛⎭⎪⎫-43的值等于( ) A .-2 B .4 C .2D .-4解析:选B 由题意得f ⎝ ⎛⎭⎪⎫43=2×43=83,f ⎝ ⎛⎭⎪⎫-43=f ⎝ ⎛⎭⎪⎫-13=f ⎝ ⎛⎭⎪⎫23=2×23=43, 所以f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=4.5.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2xD .g (x )=-3x 2-2x解析:选B 设g (x )=ax 2+bx +c (a ≠0), ∵g (1)=1,g (-1)=5,且图象过原点, ∴{ a +b +c =1,a -b +c =5,c =0,解得{ a =3,b =-2,c =0,∴g (x )=3x 2-2x .6.已知函数f (x )={ 2x,x ≤1,log 3x -1,x >1,且f (x 0)=1,则x 0=( )A .0B .4C .0或4D .1或3解析:选C 当x 0≤1时,由f (x 0)=2x 0=1,得x 0=0(满足x 0≤1);当x 0>1时,由f (x 0)=log 3(x 0-1)=1,得x 0-1=3,则x 0=4 (满足x 0>1),故选C.7.函数f (x )=ln(x +1)+(x -2)0的定义域为________.解析:要使函数有意义,需满足{ x +1>0,x -2≠0,解得x >-1且x ≠2,所以该函数的定义域为(-1,2)∪(2,+∞).答案:(-1,2)∪(2,+∞)8.设函数f (x )=⎩⎨⎧1x,x >1,-x -2,x ≤1,则f (f (2))=________,函数f (x )的值域是________.解析:∵f (2)=12,∴f (f (2))=f ⎝ ⎛⎭⎪⎫12=-12-2=-52. 当x >1时,f (x )∈(0,1),当x ≤1时,f (x )∈[-3,+∞), ∴f (x )∈[-3,+∞). 答案:-52[-3,+∞)9.(2018·张掖一诊)已知函数f (x )={ 2x,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2>0,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0.依题知a +1=-2,解得a =-3.答案:-310.已知函数f (x )={ x 2+2ax ,x ≥2,2x+1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=9+6a , 若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0, 解得-1<a <3. 答案:(-1,3)B 级——中档题目练通抓牢1.(2018·石家庄质检)设函数f (x )={ 2x +n ,x <1,log 2x ,x ≥1,若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫34=2,则实数n 的值为( )A .-54B .-13C.14D.52解析:选D 因为f ⎝ ⎛⎭⎪⎫34=2×34+n =32+n , 当32+n <1,即n <-12时,f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫34=2⎝⎛⎭⎪⎫32+n +n =2,解得n =-13,不符合题意;当32+n ≥1,即n ≥-12时, f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫34=log 2⎝⎛⎭⎪⎫32+n =2,即32+n =4,解得n =52,符合题意,故选D.2.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y =x 2+1,值域为{1,3}的同族函数有( )A .1个B .2个C .3个D .4个解析:选C 由x 2+1=1,得x =0,由x 2+1=3,得x =±2,所以函数的定义域可以是{0,2},{0,-2},{0,2,-2},故值域为{1,3}的同族函数共有3个.3.已知具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①f (x )=x -1x ;②f (x )=x +1x;③f (x )=⎩⎨⎧x ,0<x <1,0,x =1,-1x,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x,f ⎝ ⎛⎭⎪⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝ ⎛⎭⎪⎫1x =1x +x =f (x ),不满足题意;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎨⎧1x,0<1x <1,0,1x =1,-x ,1x>1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎨⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③.4.已知f (x )=⎩⎨⎧12x +1,x ≤0,-x -12,x >0,使f (x )≥-1成立的x 的取值范围是________.解析:由题意知⎩⎨⎧x ≤0,12x +1≥-1或{ x >0,-x -12≥-1,解得-4≤x ≤0或0<x ≤2, 故所求x 的取值范围是[-4,2]. 答案:[-4,2]5.(2018·锦州模拟)已知函数f (x 2-3)=lgx 2x 2-4,则f (x )的定义域为________.解析:设t =x 2-3(t ≥-3),则x 2=t +3,所以f (t )=lg t +3t +3-4=lg t +3t -1,由t +3t -1>0,得t >1或t <-3,因为t ≥-3,所以t >1,即f (t )=lgt +3t -1的定义域为(1,+∞),故函数f (x )的定义域为(1,+∞).答案:(1,+∞)6.设函数f (x )={ ax +b ,x <0,2x,x ≥0,且f (-2)=3,f (-1)=f (1).(1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得{ -2a +b =3,-a +b =2, 解得{ a =-1,b =1,所以f (x )={ -x +1,x <0,2x,x ≥0.(2)函数f (x )的图象如图所示.7.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (m)与汽车的车速x (km/h)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (m)与汽车的车速x (km/h)的关系图.(1)求出y 关于x 的函数解析式;(2)如果要求刹车距离不超过25.2 m ,求行驶的最大速度.解:(1)由题意及函数图象,得⎩⎨⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70. ∵x ≥0,∴0≤x ≤70.故行驶的最大速度是70 km/h. C 级——重难题目自主选做1.(2017·山东高考)设f (x )={ x ,0<x <1,2x -1,x ≥1.若f (a )=f (a +1),则f ⎝ ⎛⎭⎪⎫1a =( )A .2B .4C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝ ⎛⎭⎪⎫1a =f (4)=2×(4-1)=6. 当a ≥1时,a +1≥2,∴f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∴2(a -1)=2a ,无解.综上,f ⎝ ⎛⎭⎪⎫1a =6.2.已知f 是有序数对集合M ={(x ,y )|x ∈N *,y ∈N *}上的一个映射,正整数数对(x ,y )在映射f 下的象为实数z ,记作f (x ,y )=z .对于任意的正整数m ,n (m >n ),映射f 由下表给出:(x ,y )(n ,n )(m ,n )(n ,m )f (x ,y ) nm -n m +n则f (3,5)=x.解析:由题表得f (x ,y )={ x ,x =y ,x -y ,x >y ,x +y ,x <y .可知f (3,5)=5+3=8.∵∀x ∈N *,都有2x >x ,∴f (2x ,x )=2x-x , 则f (2x,x )≤4⇔2x-x ≤4(x ∈N *)⇔2x ≤x +4(x ∈N *), 当x =1时,2x=2,x +4=5,2x≤x +4成立;当x =2时,2x =4,x +4=6,2x≤x +4成立; 当x ≥3(x ∈N *)时,2x>x +4. 故满足条件的x 的集合是{1,2}. 答案:8 {1,2}(二)重点高中适用作业A 级——保分题目巧做快做1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象,②中当x =x 0时,y 的值有两个,因此不是函数图象,③④中每一个x 的值对应唯一的y 值,因此是函数图象.2.(2018·濮阳一高第二次检测)函数f (x )=log 2(1-2x )+1x +1的定义域为( ) A.⎝ ⎛⎭⎪⎫0,12 B.⎝⎛⎭⎪⎫-∞,12 C .(-1,0)∪⎝ ⎛⎭⎪⎫0,12 D .(-∞,-1)∪⎝⎛⎭⎪⎫-1,12解析:选D 由1-2x >0,且x +1≠0,得x <12且x ≠-1,所以函数f (x )=log 2(1-2x )+1x +1的定义域为(-∞,-1)∪⎝⎛⎭⎪⎫-1,12. 3.已知f ⎝ ⎛⎭⎪⎫12x -1=2x -5,且f (a )=6,则a 等于( )A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2018·石家庄质检)设函数f (x )={ 2x +n ,x <1,log 2x ,x ≥1,若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫34=2,则实数n 的值为( )A .-54B .-13C.14D.52解析:选D 因为f ⎝ ⎛⎭⎪⎫34=2×34+n =32+n , 当32+n <1,即n <-12时, f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫34=2⎝⎛⎭⎪⎫32+n +n =2, 解得n =-13,不符合题意;当32+n ≥1,即n ≥-12时,f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫34=log 2⎝⎛⎭⎪⎫32+n =2,即32+n =4,解得n =52,符合题意,故选D.5.(2017·山东高考)设f (x )={ x ,0<x <1,2x -1,x ≥1.若f (a )=f (a +1),则f ⎝ ⎛⎭⎪⎫1a =( )A .2B .4C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a ,∵f (a )=f (a +1),∴a =2a ,解得a =14或a =0(舍去).∴f ⎝ ⎛⎭⎪⎫1a =f (4)=2×(4-1)=6. 当a ≥1时,a +1≥2,∴f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∴2(a -1)=2a ,无解.综上,f ⎝ ⎛⎭⎪⎫1a =6.6.(2018·西安八校联考)已知函数f (x )=⎩⎨⎧2x ,x ≤1,log 12x ,x >1,则f (f (4))=________.解析:依题意得f (4)=log 124=-2,所以f (f (4))=f (-2)=2-2=14.答案:147.函数f (x )=ln2x -x 2x -1的定义域为________.解析:要使原函数有意义,则{ 2x -x 2>0,x -1≠0,解得0<x <2,且x ≠1. 所以函数f (x )=ln2x -x 2x -1的定义域为(0,1)∪(1,2).答案:(0,1)∪(1,2)8.已知函数f (x )={ x 2+2ax ,x ≥2,2x+1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=9+6a , 若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0, 解得-1<a <3. 答案:(-1,3)9.如图,已知点A (n ,-2),B (1,4)是一次函数y =kx +b 的图象和反比例函数y =m x的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的解析式; (2)求△AOC 的面积.解:(1)因为点B (1,4)在反比例函数y =m x上,所以m =4.又因为点A (n ,-2)在反比例函数y =m x =4x上,所以n =-2.又因为A (-2,-2),B (1,4)是一次函数y =kx +b 上的点,则{ -2k +b =-2,k +b =4,解得{ k =2,b =2,即y =2x +2,所以反比例函数的解析式为y =4x,一次函数的解析式为y =2x +2.(2)因为y =2x +2,令x =0,得y =2,所以C (0,2), 所以△AOC 的面积S =12×2×2=2.10.设函数f (x )={ ax +b ,x <0,2x,x ≥0,且f (-2)=3,f (-1)=f (1).(1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得{ -2a +b =3,-a +b =2, 解得{ a =-1,b =1,所以f (x )={ -x +1,x <0,2x,x ≥0.(2)函数f (x )的图象如图所示.B 级——拔高题目稳做准做1.(2018·山西名校联考)设函数f (x )=lg(1-x ),则函数f (f (x ))的定义域为( ) A .(-9,+∞) B .(-9,1) C .[-9,+∞) D .[-9,1)解析:选Bf (f (x ))=f (lg(1-x ))=lg[1-lg(1-x )],则{ 1-x >0,1-lg 1-x >0⇒-9<x <1.2.已知具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x ),满足题意;对于②,f ⎝ ⎛⎭⎪⎫1x =1x+x =f (x ),不满足题意;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎨⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③.3.设函数f (x )={ 3x -1,x <1,2x,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围为________.解析:由f (f (a ))=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1, 所以a ≥23,所以23≤a <1.当a ≥1时,有2a≥1, 所以a ≥0,所以a ≥1.综上,a 的取值范围为⎣⎢⎡⎭⎪⎫23,+∞.答案:⎣⎢⎡⎭⎪⎫23,+∞4.已知f 是有序数对集合M ={(x ,y )|x ∈N *,y ∈N *}上的一个映射,正整数数对(x ,y )在映射f 下的象为实数z ,记作f (x ,y )=z .对于任意的正整数m ,n (m >n ),映射f 由下表给出:(x ,y )(n ,n )(m ,n )(n ,m )f (x ,y ) nm -n m +n则f (3,5)=x.解析:由题表得f (x ,y )={ x ,x =y ,x -y ,x >y ,x +y ,x <y .可知f (3,5)=5+3=8.∵∀x ∈N *,都有2x >x ,∴f (2x ,x )=2x-x , 则f (2x ,x )≤4⇔2x -x ≤4(x ∈N *)⇔2x ≤x +4(x ∈N *), 当x =1时,2x =2,x +4=5,2x≤x +4成立; 当x =2时,2x =4,x +4=6,2x≤x +4成立; 当x ≥3(x ∈N *)时,2x>x +4. 故满足条件的x 的集合是{1,2}.答案:8 {1,2}5.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨为3.00元.某月甲、乙两用户共交水费y 元,已知甲、乙两用户该月用水量分别为5x (吨),3x (吨).(1)求y 关于x 的函数;(2)若甲、乙两用户该月共交水费26.40元,分别求出甲、乙两户该月的用水量和水费. 解:(1)当甲的用水量不超过4吨时,即5x ≤4,x ≤45时,乙的用水量也不超过4吨,y =(5x +3x )×1.8=14.4x ;当甲的用水量超过4吨,乙的用水量不超过4吨,即3x ≤4且5x >4,45<x ≤43时,y =4×1.8+3x ×1.8+3(5x -4)=20.4x -4.8;当乙的用水量超过4吨时,即3x >4,x >43时,y =2×4×1.8+3(5x -4)+3(3x -4)=24x -9.6,所以y =⎩⎨⎧14.4x ,0≤x ≤45,20.4x -4.8,45<x ≤43,24x -9.6,x >43.(2)由于y =f (x )在各段区间上均单调递增,当x ∈⎣⎢⎡⎦⎥⎤0,45时,y ≤f ⎝ ⎛⎭⎪⎫45<26.4;当x ∈⎝ ⎛⎦⎥⎤45,43时,y ≤f ⎝ ⎛⎭⎪⎫43<26.4; 当x ∈⎝ ⎛⎭⎪⎫43,+∞时,令24x -9.6=26.4, 解得x =1.5.所以甲户用水量为5x =7.5吨,所交水费为y 甲=4×1.80+3.5×3.00=17.70(元); 乙户用水量为3x =4.5吨,所交水费y 乙=4×1.80+0.5×3.00=8.70(元).6.已知x 为实数,用[x ]表示不超过x 的最大整数,例如[1.2]=1,[-1.2]=-2,[1]=1.对于函数f (x ),若存在m ∈R 且m ∉Z ,使得f (m )=f ([m ]),则称函数f (x )是Ω函数.(1)判断函数f (x )=x 2-13x ,g (x )=sin πx 是否是Ω函数(只需写出结论);(2)已知f (x )=x +a x,请写出a 的一个值,使得f (x )为Ω函数,并给出证明. 解:(1)f (x )=x 2-13x 是Ω函数,g (x )=sin πx 不是Ω函数.(2)法一:取k =1,a=32∈(1,2),则令[m ]=1,m =a 1=32,此时f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫⎣⎢⎡⎦⎥⎤32=f (1), 所以f (x )是Ω函数.证明:设k ∈N *,取a ∈(k 2,k 2+k ),令[m ]=k ,m =a k ,则一定有m -[m ]=a k -k =a -k 2k∈(0,1),且f (m )=f ([m ]),所以f (x )是Ω函数.法二:取k =1,a =12∈(0,1),则令[m ]=-1,m =-12,此时f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫⎣⎢⎡⎦⎥⎤-12=f (-1),所以f (x )是Ω函数.证明:设k ∈N *,取a ∈(k 2-k ,k 2),令[m ]=-k ,m =-ak ,则一定有m -[m ]=-a k-(-k )=k 2-a k∈(0,1),且f (m )=f ([m ]),所以f (x )是Ω函数.第二节函数的单调性与最值1.函数的单调性 (1)增函数、减函数增函数 减函数定义一般地,设函数f (x )的定义域为I :如果对于定义域I 内某个区间D上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数图象 描述自左向右看图象是上升的自左向右看图象是下降的如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.2.函数的最值前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足条件 ①对于任意的x ∈I ,都有f (x )≤M ;②存在x 0∈I ,使得f (x 0)=M①对于任意x ∈I ,都有f (x )≥M ; ②存在x 0∈I ,使得f (x 0)=M结论M 为函数y =f (x )的最大值 M 为函数y =f (x )的最小值1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).( )(2)具有相同单调性的函数的和、差、积、商函数还具有相同的单调性.( ) (3)若定义在R 上的函数f (x )有f (-1)<f (3),则函数f (x )在R 上为增函数.( ) (4)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ) (5)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.( )(6)所有的单调函数都有最值.( )答案:(1)× (2)× (3)× (4)× (5)× (6)× 2.下列四个函数中,在(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C 当x >0时,f (x )=3-x 为减函数;当x ∈⎝ ⎛⎭⎪⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝ ⎛⎭⎪⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数. 3.函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2]D .[2,+∞)解析:选A 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象(图略)可知函数的单调减区间是[1,2].4.若函数y =x 2-2ax +1在(-∞,2]上是减函数,则实数a 的取值范围是( ) A .(-∞,-2]B .[-2,+∞)C .[2,+∞)D .(-∞,2]解析:选C 函数y =x 2-2ax +1图象的对称轴方程为x =a ,要使该函数在(-∞,2]上是减函数,则需满足a ≥2.5.设定义在[-1,7]上的函数y =f (x )的图象如图所示,则函数y =f (x )的增区间为________.解析:由图可知函数的增区间为[-1,1]和[5,7]. 答案:[-1,1]和[5,7] 6.函数f (x )=2x -1在[-2,0]上的最大值与最小值之差为________. 解析:易知f (x )在[-2,0]上是减函数,∴f (x )max -f (x )min =f (-2)-f (0)=-23-(-2)=43.答案:43考点一 确定函数的单调性区间重点保分型考点——师生共研确定函数的单调性是函数单调性问题的基础,是高考的必考内容,多以选择题、填空题的形式出现,但有时也出现在解答题的某一问中,属于低档题目.1.试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.解:法一:设-1<x 1<x 2<1,f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1,则f (x 1)-f (x 2)=a ⎝⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1 =a x 2-x 1x 1-1x 2-1.由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0,故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上单调递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),函数f (x )在(-1,1)上单调递增. 法二:f ′(x )=ax ′x -1-ax x -1′x -12=a x -1-ax x -12=-ax -12.当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增. 2.求函数f (x )=-x 2+2|x |+1的单调区间.解:易知f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0=⎩⎪⎨⎪⎧-x -12+2,x ≥0,-x +12+2,x <0.画出函数图象如图所示,可知单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).[解题师说]1.掌握确定函数单调性(区间)的3种常用方法(1)定义法:一般步骤为设元→作差→变形→判断符号→得出结论.其关键是作差变形,为了便于判断差的符号,通常将差变成因式连乘(除)或平方和的形式,再结合变量的范围、假定的两个自变量的大小关系及不等式的性质进行判断.(如典题领悟第1题)(2)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的直观性确定它的单调性.(如典题领悟第2题)(3)导数法:利用导数取值的正负确定函数的单调性.(如典题领悟第1题) 2.熟记函数单调性的4个常用结论(1)若f (x ),g (x )均是区间A 上的增(减)函数,则f (x )+g (x )也是区间A 上的增(减)函数;(2)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (3)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f x的单调性相反;(4)函数y =f (x )(f (x )≥0)在公共定义域内与y =f x 的单调性相同.3.谨防3种失误(1)单调区间是定义域的子集,故求单调区间应以“定义域优先”为原则.(如冲关演练第1题)(2)单调区间只能用区间表示,不能用集合或不等式表示.(3)图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接.[冲关演练]1.(2017·全国卷Ⅱ)函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A .(-∞,-2)B .(-∞,1)C .(1,+∞)D .(4,+∞)解析:选D 由x 2-2x -8>0,得x >4或x <-2.因此,函数f (x )=ln(x 2-2x -8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y =x 2-2x -8在(4,+∞)上单调递增,由复合函数的单调性知,f (x )=ln(x 2-2x -8)的单调递增区间是(4,+∞).2.下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( )A .f (x )=2xB .f (x )=|x -1|C .f (x )=1x-xD .f (x )=ln(x +1)解析:选C 由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A 、D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调,对于f (x )=1x-x ,因为y =1x与y =-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.3.已知函数y =1x -1,那么( ) A .函数的单调递减区间为(-∞,1)和(1,+∞) B .函数的单调递减区间为(-∞,1)∪(1,+∞) C .函数的单调递增区间为(-∞,1)和(1,+∞) D .函数的单调递增区间为(-∞,1)∪(1,+∞) 解析:选A 函数y =1x -1可看作是由y =1x 向右平移1个单位长度得到的,∵y =1x在(-∞,0)和(0,+∞)上单调递减,∴y =1x -1在(-∞,1)和(1,+∞)上单调递减,∴函数y =1x -1的单调递减区间为(-∞,1)和(1,+∞),故选A. 4.判断函数f (x )=x +a x(a >0)在(0,+∞)上的单调性. 解:设x 1,x 2是任意两个正数,且x 1<x 2, 则f (x 1)-f (x 2)=⎝⎛⎭⎪⎫x 1+a x 1-⎝ ⎛⎭⎪⎫x 2+a x 2=x 1-x 2x 1x 2(x 1x 2-a ).当0<x 1<x 2≤a 时,0<x 1x 2<a ,x 1-x 2<0, 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以函数f (x )在(0,a ]上是减函数; 当a ≤x 1<x 2时,x 1x 2>a ,x 1-x 2<0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在[a ,+∞)上是增函数.综上可知,函数f (x )=x +ax(a >0)在(0,a ]上是减函数,在[a ,+∞)上是增函数. 考点二 求函数的值域最值基础送分型考点——自主练透[考什么·怎么考]函数的值域最值是高考的重要内容之一,函数、方程、不等式,还有立体几何、解析几何等很多问题都需要转化为函数的值域最值问题.高考中选择题、填空题、解答题都有考查.1.函数y =x 2-1x 2+1的值域为________.解析:由y =x 2-1x 2+1,可得x 2=1+y 1-y.由x 2≥0,知1+y 1-y ≥0,解得-1≤y <1,故所求函数的值域为[-1,1). 答案:[-1,1)2.若函数f (x )=-a x +b (a >0)在⎣⎢⎡⎦⎥⎤12,2上的值域为⎣⎢⎡⎦⎥⎤12,2,则a =________,b =________.解析:∵f (x )=-a x +b (a >0)在⎣⎢⎡⎦⎥⎤12,2上是增函数, ∴f (x )min =f ⎝ ⎛⎭⎪⎫12=12,f (x )max =f (2)=2.即⎩⎪⎨⎪⎧-2a +b =12,-a2+b =2,解得a =1,b =52.答案:1 52[方法点拨](1)先进行转化与分离,再利用函数的性质(如x 2≥0,e x>0等)求解即可.(2)如果函数y =f (x )在区间[a ,b ]上单调递增,那么f (x )在区间端点处取最值;如果函数y =f (x )在区间[a ,b ]上单调递增,在区间[b ,c ]上单调递减,那么y max =f (b );如果函数y =f (x )在区间[a ,b ]上单调递减,在区间[b ,c ]上单调递增,那么y min =f (b ),从而得出值域.方法(二) 数形结合法求函数的值域(最值) 3.函数y =|x +1|+|x -2|的值域为________. 解析:函数y =⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞). 答案:[3,+∞)4.设函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),函数g (x )是二次函数,若函数f (g (x ))的值域是[0,+∞),则函数g (x )的值域是________.解析:因为函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),所以m +1=1,解得m =0,所以f (x )=⎩⎪⎨⎪⎧x 2,|x |≥1,x ,|x |<1.画出函数y=f (x )的大致图象如图所示,观察图象可知,当纵坐标在[0,+∞)上时,横坐标在(-∞,-1]∪[0,+∞)上变化.而f (x )的值域为[-1,+∞),f (g (x ))的值域为[0,+∞),因为g (x )是二次函数, 所以g (x )的值域是[0,+∞). 答案:[0,+∞) [方法点拨]先作出函数的图象,再观察其最高点或最低点,求出值域或最值. 方法(三) 换元法求函数的值域(最值) 5.函数y =x +1-x 2的最大值为________. 解析:由1-x 2≥0,可得-1≤x ≤1. 可令x =cos θ,θ∈[0,π],则y =cos θ+sin θ=2sin ⎝⎛⎭⎪⎫θ+π4,θ∈[]0,π,所以-1≤y ≤2,故原函数的最大值为 2. 答案:[2]6.已知函数f (x )的值域为⎣⎢⎡⎦⎥⎤38,49,则函数g (x )=f (x )+1-2f x 的值域为________.解析:∵38≤f (x )≤49,∴13≤1-2f x ≤12. 令t =1-2f x , 则f (x )=12(1-t 2)⎝ ⎛⎭⎪⎫13≤t ≤12,令y =g (x ),则y =12(1-t 2)+t ,即y =-12(t -1)2+1⎝ ⎛⎭⎪⎫13≤t ≤12.∴当t =13时,y 有最小值79;当t =12时,y 有最大值78.∴g (x )的值域为⎣⎢⎡⎦⎥⎤79,78.答案:⎣⎢⎡⎦⎥⎤79,78 [方法点拨]对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求值域或最值;换元法求值域时,一定要注意新元的范围对值域的影响.方法(四) 分离常数法求函数的值域(最值) 7.函数y =3x +1x -2的值域为________.解析:y =3x +1x -2=3x -2+7x -2=3+7x -2,因为7x -2≠0,所以3+7x -2≠3, 所以函数y =3x +1x -2的值域为{y |y ∈R 且y ≠3}.答案:{y |y ∈R 且y ≠3}8.当-3≤x ≤-1时,函数y =5x -14x +2的最小值为________.解析:由y =5x -14x +2,可得y =54-742x +1.∵-3≤x ≤-1,∴720≤-742x +1≤74,∴85≤y ≤3 ∴所求函数的最小值为85答案:85[方法点拨]通过配凑函数解析式的分子,把函数分离成常数和分式的形式,而此式的分式,只有分母中含有变量,进而可利用函数性质确定其值域.[怎样快解·准解]求函数值域(最值)的类型及其方法(1)若所给函数为单调函数,可根据函数的单调性求值域;当函数解析式中出现偶次方幂、绝对值等时,可利用函数的性质(如x 2≥0,|x |≥0,x ≥0,e x>0等)确定函数的值域或最值.(2)若函数解析式的几何意义较明显(如距离、斜率等)或函数图象易作出,可用数形结合法求函数的值域或最值.(3)形如求y =ax +b +(cx +d )(ac ≠0)的函数的值域或最值,常用代数换元法、三角换元法结合题目条件将原函数转化为熟悉的函数,再利用函数的相关性质求解.(4)形如求y =cx +dax +b(ac ≠0)的函数的值域或最值常用分离常数法求解. 另外,基本不等式法、导数法求函数值域或最值也是常用方法,在后面章节中有重点讲述.考点三 函数单调性的应用题点多变型考点——追根溯源函数单调性的应用常以基本初等函数为载体,考查学生数形结合思想、转化与化归思想的应用,综合分析问题的能力.在高考中常以选择题、填空题出现,难度中等.常见的命题角度有: 1比较函数值的大小; 2解函数不等式;3利用单调性求参数的取值范围或值.。

高考一轮复习第2章函数导数及其应用第10讲函数模型及其应用

第十讲 函数模型及其应用知识梳理·双基自测ZHI SHI SHU LI SHUANG JI ZI CE 知识梳理知识点 函数模型及其应用 1.几类常见的函数模型函数模型 函数解析式一次函数模型f(x)=ax +b(a ,b 为常数,a≠0)反比例函数模型 f(x)=kx +b(k ,b 为常数且k≠0)二次函数模型 f(x)=ax 2+bx +c(a ,b ,c 为常数,a≠0)指数函数模型 f(x)=ba x+c(a ,b ,c 为常数,b≠0,a >0且a≠1) 对数函数模型 f(x)=blog a x +c(a ,b ,c 为常数,b≠0,a >0且a≠1) 幂函数模型f(x)=ax n +b(a ,b 为常数,a≠0)2.三种函数模型的性质函数性质y =a x(a>1)y =log a x(a>1) y =x n(n>0)在(0,+∞) 上的增减性 单调递增 单调递增 单调递增 增长速度 越来越快越来越慢相对平稳 图象的变化 随x 的增大逐渐表现为与y 轴平行随x 的增大逐渐表现为与x 轴平行随n 值变化而各有不同值的比较存在一个x 0,当x>x 0时,有log a x<x n<a x3.解函数应用问题的步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识建立相应的数学模型;(3)解模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题. 以上过程用框图表示如下:重要结论1.函数f(x)=x a +bx (a>0,b>0,x>0)在区间(0,ab]内单调递减,在区间[ab ,+∞)内单调递增.2.直线上升、对数缓慢、指数爆炸双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数y =2x的函数值比y =x 2的函数值大.( × )(2)“指数爆炸”是指数型函数y =a·b x+c(a≠0,b>0,b≠1)增长速度越来越快的形象比喻.( × ) (3)幂函数增长比直线增长更快.( × ) (4)不存在x 0,使ax 0<x a0<log a x 0.( × ) [解析] (1)当x =-1时,2-1<(-1)2.(2)“指数爆炸”是针对b>1,a>0的指数型函数g(x)=a ·b x+c.(3)幂函数增长速度是逐渐加快的,当变量较小时,其增长很缓慢,题目说的太绝对,也没有任何条件限制.(4)当a∈(0,1)时存在x 0,使ax 0<x a0<log a x 0. 题组二 走进教材2.(必修1P 107BT1改编)某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是( D )A .收入最高值与收入最低值的比是3∶1B .结余最高的月份是7月C .1至2月份的收入的变化率与4至5月份的收入的变化率相同D .前6个月的平均收入为40万元3.(必修1P 107A 组T1改编)在某个物理实验中,测量得变量x 和变量y 的几组数据,如下表:x 0.50 0.99 2.01 3.98 y-0.990.010.982.00则对x ,y 最适合的拟合函数是( D ) A .y =2x B .y =x 2-1 C .y =2x -2D .y =log 2x[解析] 根据x =0.50,y =-0.99,代入计算,可以排除A ;根据x =2.01,y =0.98,代入计算,可以排除B 、C ;将各数据代入函数y =log 2x ,可知满足题意,故选D .4.(必修1P 104例5改编)某种动物繁殖量y 只与时间x 年的关系为y =alog 3(x +1),设这种动物第2年有100只,到第8年它们将发展到( A )A .200只B .300只C .400只D .500只[解析] ∵繁殖数量y 只与时间x 年的关系为y =alog 3(x +1),这种动物第2年有100只, ∴100=alog 3(2+1),∴a=100,∴y=100log 3(x +1), ∴当x =8时,y =100log 3(8+1)=100×2=200.故选A .5.(必修1P 107AT2改编)生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x 万件时的生产成本为C(x)=12x 2+2x +20(万元).一万件售价为20万元,为获取更大利润,该企业一个月应生产该商品数量为18万件.[解析] 利润L(x)=20x -C(x)=-12(x -18)2+142,当x =18时,L(x)有最大值. 题组三 走向高考6.(2020·全国Ⅲ,4)Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t 的单位:天)的Logistic 模型:I(t)=K1+e -0.23(t -53),其中K 为最大确诊病例数.当I(t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln 19≈3)( C )A .60B .63C .66D .69[解析] 本题以Logistic 模型和新冠肺炎为背景考查指数、对数的运算.由题意可得I(t *)=K 1+e -0.23(t *-53)=0.95K ,化简得e -0.23(t *-53)=119,即0.23(t *-53)=ln 19,所以t *=ln 190.23+53≈30.23+53≈66.故选C .考点突破·互动探究KAO DIAN TU PO HU DONG TAN JIU 考点 函数模型及应用考向1 利用函数图象刻画实际问题的变化过程——自主练透例1 (1)(2017·全国卷Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( A )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳(2)(多选题)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述正确的是( ABC )A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个(3)有一个盛水的容器,由悬在它的上空的一条水管均匀地注水,最后把容器注满,在注水过程中时间t与水面高度y之间的关系如图所示.若图中PQ为一线段,则与之对应的容器的形状是( B )[解析] (1)通过题图可知A 不正确,并不是逐月增加,但是每一年是递增的,所以B 正确.从图观察C 是正确的,D 也正确,1月至6月比较平稳,7月至12月波动比较大.故选A .(2)由图形可得各月的平均最低气温都在0 ℃以上,A 正确;七月的平均温差约为10 ℃,而一月的平均温差约为5 ℃,故B 正确;三月和十一月的平均最高气温都在10 ℃左右,基本相同,C 正确;平均最高气温高于20 ℃的月份只有2个,D 错误.故选A 、B 、C .(3)由函数图象可判断出该容器必定有不同规则的形状,且函数图象的变化先慢后快,所以容器下边粗,上边细.再由PQ 为线段,知这一段是均匀变化的,所以容器上端必是直的一段,故排除A 、C 、D ,选B .名师点拨 MING SHI DIAN BO 1.用函数图象刻画实际问题的解题思路将实际问题中两个变量间变化的规律(如增长的快慢、最大、最小等)与函数的性质(如单调性、最值等)、图象(增加、减少的缓急等)相吻合即可.2.判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象. (2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.考向2 已知函数模型解决实际问题——师生共研例2 (2020·北京十一中月考)已知14C 的半衰期为5 730年(是指经过5 730年后,14C 的残余量占原始量的一半).设14C 的原始量为a ,经过x 年后的残余量为b ,残余量b 与原始量a 的关系为b =ae-kx,其中x 表示经过的时间,k 为一个常数.现测得湖南长沙马王堆汉墓女尸出土时14C 的残余量约占原始量的76.7%.请你推断一下马王堆汉墓修建距今约2_292年.(参考数据:log 20.767≈-0.4).[解析] 由题意可知,当x =5 730时,ae -5 730k=12a ,解得k =ln 25 730.现测得湖南长沙马王堆汉墓女尸出土时14C 的残余量约占原始量的76.7%.所以76.7%=e -ln 25 730x ,得ln 0.767=-ln 25 730x ,x =-5 730×ln 0.767ln 2=-5 730×log 2 0.767≈2 292.〔变式训练1〕(2020·山西太原模拟)某公司为了业务发展,制定了一项激励销售人员的奖励方案:销售额为8万元时,奖励1万元;销售额为64万元时,奖励4万元,若公司拟定的奖励模型为y =alog 4x +b(其中x 为销售额,y 为相应的奖金).某业务员要得到8万元奖励,则他的销售额应为1_024万元.[解析] 依题意得⎩⎪⎨⎪⎧alog 48+b =1,alog 464+b =4,即⎩⎪⎨⎪⎧32a +b =1,3a +b =4,解得⎩⎪⎨⎪⎧a =2,b =-2.所以y =2log 4x -2,当y =8时,有2log 4x -2=8,解得x =1 024. 考向3 构建函数模型解决实际问题——多维探究 角度1 一次函数、二次函数分段函数模型例3 某校学生研究学习小组发现,学生上课的注意力指标随着听课时间的变化而变化,老师讲课开始时,学生的兴趣激增;接下来学生的兴趣将保持较理想的状态一段时间,随后学生的注意力开始分散,设f(t)表示学生注意力指标.该小组发现f(t)随时间t(分钟)的变化规律(f(t)越大,表明学生的注意力越集中)如下: f(t)=⎩⎪⎨⎪⎧100a t10-60(0≤t≤10),340(10<t≤20),-15t +640(20<t≤40)(a>0且a≠1).若上课后第5分钟时的注意力指标为140,回答下列问题: (1)求a 的值;(2)上课后第5分钟和下课前第5分钟比较,哪个时间注意力更集中?并请说明理由; (3)在一节课中,学生的注意力指标至少达到140的时间能保持多长? [解析] (1)由题意得,当t =5时,f(t) =140, 即100·a 510-60=140,解得a =4.(2)因为f(5)=140,f(35)=-15×35+640=115,所以f(5)>f(35),故上课后第5分钟时比下课前第5分钟时注意力更集中.(3)①当0<t≤10时,由(1)知,f(t)=100·4t10-60≥140,解得5≤t≤10; ②当10<t≤20时,f(t) =340>140恒成立;③当20<t≤40时,f(t)=-15t +640≥140,解得20<t≤1003.综上所述,5≤t≤1003.故学生的注意力指标至少达到140的时间能保持1003-5=853分钟.名师点拨 MING SHI DIAN BO (1)分段函数主要是每一段自变量变化所遵循的规律不同,可以先将其当作几个问题,将各段的变化规律分别找出来,再将其合到一起,要注意各段自变量的范围,特别是端点值.(2)构造分段函数时,要力求准确、简洁,做到分段合理,不重不漏. (3)分段函数的最大(小)值是各段最大(小)值中的最大(小)值. 角度2 指数函数与对数函数模型例4 候鸟每年都要随季节的变化进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v(单位:m/s)与其耗氧量Q 之间的关系为:v =a +blog 3Q10(其中a ,b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s.(1)求出a ,b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要多少个单位? [分析](1)根据已知列出方程组→解方程组求a ,b 的值 (2)由(1)列出不等式→解不等式求Q 的最小值[解析] (1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位,则a +blog 33010=0,即a +b =0;当耗氧量为90个单位时,速度为1 m/s , 则a +blog 39010=1,整理得a +2b =1.解方程组⎩⎪⎨⎪⎧a +b =0,a +2b =1,得⎩⎪⎨⎪⎧a =-1,b =1. (2)由(1)知,v =a +blog 3Q 10=-1+log 3Q10.所以要使飞行速度不低于2 m/s ,则v ≥2,所以-1+log 3Q 10≥2,即log 3Q 10≥3,解得Q10≥27,即Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要270个单位.名师点拨 MING SHI DIAN BO指数函数与对数函数模型的应用技巧(1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题.〔变式训练2〕(1)(角度1)某城市对一种售价为每件160元的商品征收附加税,税率为R%(即每销售100元征税R 元),若每年销售量为⎝⎛⎭⎪⎫30-52R 万件,要使附加税不少于128万元,则R 的取值范围是( A )A .[4,8]B .[6.10]C .[4%,8%]D .[6%,10%](2)(角度2)一个容器装有细沙a cm 3,细沙从容器底部一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =ae-bt(cm 3),经过8 min 后发现容器内还有一半的沙子,则再经过16min ,容器中的沙子只有开始时的八分之一.[解析] (1)根据题意,要使附加税不少于128万元,需⎝ ⎛⎭⎪⎫30-52R ×160×R%≥128,整理得R 2-12R +32≤0,解得4≤R≤8,即R∈[4,8]. (2)当t =0时,y =a ,当t =8时,y =ae -8b=12a ,∴e -8b =12.令y =18a ,即ae -bt =18a ,e -bt =18=(e -8b )3=e-24b,则t =24,∴再经过16 min ,容器中的沙子只有开始时的八分之一.名师讲坛·素养提升MING SHI JIANG TAN SU YANG TI SHENG函数y =x +ax(a>0)模型及应用例5 (2021·烟台模拟)小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x 万件,需另投入流动成本为W(x)万元.在年产量不足8万件时,W(x)=13x 2+x(万元);在年产量不小于8万件时,W(x)=6x +100x -38(万元).每件产品售价为5元.通过市场分析,小王生产的商品当年能全部售完.(1)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少? [解析] (1)因为每件产品售价为5元,则x 万件产品的销售收入为5x 万元,依题意得: 当0<x<8时,L(x)=5x -⎝ ⎛⎭⎪⎫13x 2+x -3=-13x 2+4x -3.当x≥8时,L(x)=5x -⎝ ⎛⎭⎪⎫6x +100x -38-3=35-⎝ ⎛⎭⎪⎫x +100x .所以L(x)=⎩⎪⎨⎪⎧-13x 2+4x -3,0<x<8,35-⎝ ⎛⎭⎪⎫x +100x ,x≥8.(2)当0<x<8时,L(x)=-13(x -6)2+9,此时,当x =6时,L(x)取得最大值L(6)=9(万元).当x≥8时,L(x)=35-⎝⎛⎭⎪⎫x +100x ≤35-2x ·100x=35-20=15(万元).此时,当且仅当x =100x,即x =10时,L(x)取得最大值15万元.因为9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元. 名师点拨 MING SHI DIAN BO (1)解决此类问题时一定要关注函数的定义域.(2)利用模型f(x)=ax +bx 求解最值时,注意取得最值时等号成立的条件.〔变式训练3〕某村计划建造一个室内面积为800 m 2的矩形蔬菜温室、在矩形温室内,沿左、右两侧与后侧内墙各保留1 m 宽的通道,沿前侧内墙保留3 m 宽的空地.当矩形温室的边长各为40_m ,20_m 时,蔬菜的种植面积最大?最大面积是648_m 2.[解析] 设矩形温室的左侧边长为x m ,则后侧边长为800x m ,所以蔬菜种植面积y =(x -4)·⎝ ⎛⎭⎪⎫800x -2=808-2⎝⎛⎭⎪⎫x +1 600x (4<x<400). 因为x +1 600x≥2x ·1 600x=80,所以y≤808-2×80=648.当且仅当x =1 600x ,即x =40时取等号,此时800x=20,y max =648.即当矩形温室的相邻边长分别为40 m ,20 m 时,蔬菜的种植面积最大,最大面积是648 m 2.。

高三数学一轮复习单元评估检测(2) 第2章 函数、导数及其应用 理 新人教A版

单元评估检测(二)(第二章)(120分钟 150分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形中可以表示以M ={x|0≤x≤1}为定义域,以N ={y|0≤y≤1}为值域的函数的图象是( )2.(2012·韶关模拟)已知函数f(x)=ax 3+bx -3,若f(-2)=7,则f(2) =( )(A)13 (B)-13 (C)7 (D)-73.(2011·广东高考)设函数f(x)和g(x)分别是R 上的偶函数和奇函数,则下列结论恒成立的是( )(A)f(x)+|g(x)|是偶函数 (B)f(x)-|g(x)|是奇函数 (C)|f(x)|+g(x)是偶函数 (D)|f(x)|-g(x)是奇函数4.已知函数f(x)=a x(a>0,a≠1)是定义在R 上的单调递减函数,则函数g(x)=log a (x +1)的图象大致是( )5.设函数f(x)=13x -lnx(x >0),则y =f(x)( )(A)在区间(1e,1),(1,e)内均有零点(B)在区间(1e,1),(1,e)内均无零点(C)在区间(1e ,1)内有零点,在区间(1,e)内无零点(D)在区间(1e,1)内无零点,在区间(1,e)内有零点6.(2012·珠海模拟)函数y =f(x)的导函数y =f′(x)的图象如图所示,则f(x)的解析式可能是( )(A)y =a x(B)y =log a x (C)y =xe x (D)y =xlnx7.(易错题)设函数f(x)=x·sinx,若x 1,x 2∈[-π2,π2],且f(x 1)>f(x 2),则下列不等式恒成立的是( )(A)x 1>x 2 (B)x 1<x 2 (C)x 1+x 2>0 (D)x 12>x 228.(2011·湖南高考)已知函数f(x)=e x-1,g(x)=-x 2+4x -3.若有f(a)=g(b),则b 的取值范围为( )(A)[ 2-2,2+2] (B)(2-2,2+2) (C)[1,3] (D)(1,3)二、填空题(本大题共6小题,每小题5分,共30分.请把正确答案填在题中横线上)9.(2011·四川高考)计算(lg 14-lg25)÷10012 = .10.定积分∫0ln2e xdx 的值为 .11.已知直线y =x +1与曲线y =ln(x +a)相切,则a 的值为 .12.当x∈(1,2)时,不等式(x -1)2<log a x 恒成立,则实数a 的取值范围为 . 13.函数f(x)=(x +a)3对任意t∈R,总有f(1+t)=-f(1-t),则f(2)+ f(-2)等于 .14.(2011·四川高考)函数f(x)的定义域为A ,若x 1,x 2∈A 且f(x 1)=f(x 2)时总有x 1=x 2,则称f(x)为单函数.例如,函数f(x)=2x +1(x∈R)是单函数.下列命题:①函数f(x)=x 2(x∈R)是单函数;②若f(x)为单函数,x 1,x 2∈A 且x 1≠x 2,则f(x 1)≠f(x 2);③若f :A→B 为单函数,则对于任意b∈B,A 中至多有一个元素与之对应; ④函数f(x)在某区间上具有单调性,则f(x)一定是单函数. 其中的真命题是 .(写出所有真命题的编号)三、解答题(本大题共6小题,共80分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(12分)(2012·广州模拟)设函数f(x)=lg(2x +1-1)的定义域为集合A ,函数g(x)=1-a 2-2ax -x 2的定义域为集合B.(1)求证:函数f(x)的图象关于原点成中心对称;(2)a≥2是A∩B= 的什么条件(充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件),并证明你的结论.16.(13分)两个二次函数f(x)=x 2+bx +c 与g(x)=-x 2+2x +d 的图象有唯一的公共点P(1,-2).(1)求b ,c ,d 的值;(2)设F(x)=(f(x)+m)·g′(x),若F(x)在R 上是单调函数,求m 的取值范围,并指出F(x)是单调递增函数,还是单调递减函数.17.(13分)(2011·北京高考)已知函数f(x)=(x -k)2e x k. (1)求f(x)的单调区间;(2)若对于任意的x∈(0,+∞),都有f(x)≤1e,求k 的取值范围.18.(14分)某市旅游部门开发一种旅游纪念品,每件产品的成本是15元,销售价是20元,月平均销售a 件.通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为x(0<x<1),那么月平均销售量减少的百分率为x 2.记改进工艺后,旅游部门销售该纪念品的月平均利润是y(元). (1)写出y 与x 的函数关系式;(2)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大. 19.(14分)已知幂函数f(x)=2m 2m 3x -++(m∈Z)为偶函数,且在区间(0,+∞)上是单调增函数.(1)求函数f(x)的解析式;(2)设函数g(x)=14f(x)+ax 3+92x 2-b(x∈R),其中a ,b∈R.若函数g(x)仅在x =0处有极值,求a 的取值范围.20.(14分)(预测题)已知f(x)=xlnx ,g(x)=12x 2-x +a.(1)当a =2时,求函数y =g(x)在[0,3]上的值域; (2)求函数f(x)在[t ,t +2](t>0)上的最小值;(3)证明:对一切x∈(0,+∞),都有xlnx>g′(x)+1e x-2e 成立.答案解析1. 【解析】选C.由题意知,自变量的取值范围是[0,1],函数值的取值范围也是[0,1],故可排除A 、B ;再结合函数的定义,可知对于集合M 中的任意x ,N 中都有唯一的元素与之对应,故排除D.2.【解析】选B.∵f(-2)=-a ·23-2b -3=-(a ·23+2b)-3=7, ∴a ·23+2b =-10,∴f(2)=a ·23+2b -3=-10-3=-13.3. 【解析】选A.∵g(x)是奇函数,其图象关于原点对称, ∴|g(x)|的图象关于y 轴对称,是偶函数, 又f(x)为偶函数,∴f(x)+|g(x)|是偶函数. 【方法技巧】函数奇偶性与函数图象的关系(1)函数的奇偶性,揭示了函数图象的对称性.已知函数的奇偶性可得函数图象的对称性;反之,已知函数图象的对称性可得函数的奇偶性.(2)从图象判断函数的奇偶性是很有效的方法.利用图象变换,可以很容易地画出形如|f(x)|或f(|x|)的函数图象,进而可判断函数的奇偶性.4. 【解题指南】由指数函数的单调性可得a 的取值范围,再判断函数g(x)=log a (x +1)的图象.【解析】选D.由题可知0<a<1,函数g(x)的图象由函数y =log a x 的图象向左平移一个单位得到,故选D.5. 【解析】选D.∵f ′(x)=13-1x ,∴x ∈(3,+∞)时,y =f(x)单调递增; x ∈(0,3)时,y =f(x)单调递减. 而0<1e<1<e <3,又f(1e )=13e +1>0,f(1)=13>0,f(e)=e3-1<0,∴在区间(1e,1)内无零点,在区间(1,e)内有零点.【一题多解】选D.令g(x)=13x ,h(x)=lnx ,如图,作出g(x)与h(x)在x>0的图象,可知g(x)与h(x)的图象在(1e,1)内无交点,在(1,e)内有1个交点,故选D.【变式备选】已知函数f(x)=⎩⎪⎨⎪⎧4x -4,x ≤1x 2-4x +3,x >1,则关于x 的方程f(x)=log 2x 解的个数为( )(A)4 (B)3 (C) 2 (D)1【解析】选B.在同一直角坐标系中画出y =f(x)与y =log 2x 的图象,从图象中可以看出两函数图象有3个交点,故其解有3个.6.【解析】选D.由图知,导函数的定义域为(0,+∞), ∵(a x)′=a xlna ,(xe x)′=e x+xe x,导函数的定义域为R , ∴排除选项A ,C.由图象知导函数的值是先负后正,又(log a x)′=1xlna ,导函数的符号与参数a 有关,排除B ,故选D.7.【解析】选D.显然f(x)为偶函数, 当x ∈(0,π2]时,f ′(x)=sinx +xcosx >0,∴f(x)在(0,π2]上单调递增.又f(x 1)>f(x 2)⇔f(|x 1|)>f(|x 2|)⇔|x 1|>|x 2|⇔x 12>x 22.8.【解析】选B.∵f(a)>-1,∴g(b)>-1, ∴-b 2+4b -3>-1,∴b 2-4b +2<0, ∴2-2<b<2+ 2.故选B. 9.【解析】(lg 14-lg25)÷12100-=lg 1425÷1100=lg 1100÷110=10×lg10-2=-20. 答案:-2010.【解析】∫0ln2e xdx =e x|0ln2=e ln2-e 0=2-1=1. 答案:111.【解析】y ′=1x +a (x +a)′=1x +a,设切点为(x 0,x 0+1),则⎩⎪⎨⎪⎧1x 0+a =1x 0+1=ln(x 0+a),解得a =2. 答案:212.【解析】设y 1=(x -1)2,则y 1的图象如图所示:设y 2=log a x ,则当x ∈(1,2)时,y 2的图象应在y 1的图象上方, ∴a >1且log a 2≥(2-1)2=1, ∴a ≤2,∴1<a ≤2. 答案:{a|1<a ≤2}13.【解析】令t =1,则f(2)=-f(0). ∴(2+a)3=-a 3, ∴a =-1,∴f(2)+f(-2)=(2-1)3+(-2-1)3=-26. 答案:-26 14.【解析】答案:②③15.【解析】(1)A ={x|2x +1-1>0},2x +1-1>0⇒x -1x +1<0⇒(x +1)(x -1)<0, ∴-1<x<1.∴A =(-1,1),故f(x)的定义域关于原点对称. 又f(x)=lg 1-x x +1,则f(-x)=lg 1+x -x +1=lg(1-x x +1)-1=-lg 1-xx +1,∴f(x)是奇函数.即函数f(x)的图象关于原点成中心对称. (2)B ={x|x 2+2ax -1+a 2≤0},得-1-a ≤x ≤1-a ,即B =[-1-a,1-a], 当a ≥2时,-1-a ≤-3,1-a ≤-1,由A =(-1,1),B =[-1-a,1-a],有A ∩B =∅. 反之,若A ∩B =∅,可取-a -1=2,则a =-3,a 小于2. 所以,a ≥2是A ∩B =∅的充分不必要条件.16.【解题指南】(1)把点P 的坐标代入两函数解析式,结合x 2+bx +c =-x 2+2x +d 有唯一解,可求得b ,c ,d ,(2)若F(x)在R 上是单调函数,则F ′(x)在R 上恒有F ′(x)≥0或F ′(x)≤0.【解析】(1)由已知得⎩⎪⎨⎪⎧1+b +c =-2-1+2+d =-2,化简得⎩⎪⎨⎪⎧b +c =-3d =-3,且x 2+bx +c =-x 2+2x +d ,即2x 2+(b -2)x +c -d =0有唯一解, 所以Δ=(b -2)2-8(c -d)=0,即b 2-4b -8c -20=0, 消去c 得b 2+4b +4=0,解得b =-2,c =-1,d =-3. (2)由(1)知f(x)=x 2-2x -1,g(x)=-x 2+2x -3, 故g ′(x)=-2x +2, F(x)=(f(x)+m)·g ′(x) =(x 2-2x -1+m)·(-2x +2)=-2x 3+6x 2-(2+2m)x +2m -2, F ′(x)=-6x 2+12x -2-2m.若F(x)在R 上为单调函数,则F ′(x)在R 上恒有F ′(x)≤0或F ′(x)≥0成立. 因为F ′(x)的图象是开口向下的抛物线, 所以F ′(x)≤0在R 上恒成立,所以Δ=122+24(-2-2m)≤0,解得m ≥2, 即m ≥2时,F(x)在R 上为单调递减函数.17.【解析】(1)f ′(x)=1k (x 2-k 2)e xk ,令f ′(x)=0,得x =±k.当k >0时,f(x)与f ′(x)的情况如下:所以f(x)的单调递增区间是(-∞,-k)和(k ,+∞);单调递减区间是(-k ,k). 当k <0时,f(x)与f ′(x)的情况如下:所以f(x)的单调递减区间是(-∞,k)和(-k ,+∞);单调递增区间是(k , -k).(2)当k >0时,因为f(k +1)=ek 1k+>1e ,所以不会有∀x ∈(0,+∞),f(x)≤1e. 当k <0时,由(1)知f(x)在(0,+∞)上的最大值是f(-k)=4k2e .所以∀x ∈(0,+∞),f(x)≤1e ,等价于f(-k)=4k 2e ≤1e ,解得-12≤k <0.故对∀x ∈(0,+∞),f(x)≤1e 时,k 的取值范围是[-12,0).18.【解析】(1)改进工艺后,每件产品的销售价为20(1+x)元,月平均销售量为a(1-x 2)件,则月平均利润y =a(1-x 2)·[20(1+x)-15](元),∴y 与x 的函数关系式为 y =5a(1+4x -x 2-4x 3)(0<x<1).(2)y ′=5a(4-2x -12x 2),令y ′=0得x 1=12,x 2=-23(舍),当0<x<12时y ′>0;12<x<1时y ′<0,∴函数y =5a(1+4x -x 2-4x 3)(0<x<1)在x =12处取得最大值.故改进工艺后,产品的销售价为20(1+12)=30元时,旅游部门销售该纪念品的月平均利润最大.【变式备选】某地建一座桥,两端的桥墩已建好,这两个桥墩相距m 米,余下的工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为x 米的相邻两墩之间的桥面工程费用为(2+x)x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y 万元. (1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小? 【解析】(1)设需要新建n 个桥墩,(n +1)x =m ,即n =mx -1,所以y =f(x)=256n +(n +1)(2+x)x =256(m x -1)+mx (2+x)x=256m x+m x +2m -256.(2)由(1)知,f ′(x)=-256m x 2+1212mx -=m2x2(x 32-512).令f ′(x)=0,得x 32=512,所以x =64,当0<x<64时,f ′(x)<0,f(x)在区间(0,64)上为减函数; 当64<x<640时,f ′(x)>0,f(x)在区间(64,640)上为增函数, 所以f(x)在x =64处取得最小值,此时, n =m x -1=64064-1=9, 故需新建9个桥墩才能使y 最小.19.【解题指南】(1)由函数f(x)在区间(0,+∞)上为增函数,可得-m 2+2m +3>0,再由f(x)为偶函数得m 的值.(2)g(x)仅在x =0处有极值,则意味着g ′(x)=0有唯一一个变号零点是0.【解析】(1)∵f(x)在区间(0,+∞)上是单调增函数,∴-m 2+2m +3>0即m 2-2m -3<0,∴-1<m<3.又m ∈Z ,∴m =0,1,2,而m =0,2时,f(x)=x 3不是偶函数,m =1时,f(x)=x 4是偶函数, ∴f(x)=x 4.(2)g(x)=14x 4+ax 3+92x 2-b , g ′(x)=x(x 2+3ax +9),显然x =0不是方程x 2+3ax +9=0的根.为使g(x)仅在x =0处有极值,则有x 2+3ax +9≥0恒成立,即有Δ=9a 2-36≤0,解不等式,得a ∈[-2,2].这时,g(0)=-b 是唯一极值,∴a ∈[-2,2].20.【解析】(1)∵g(x)=12(x -1)2+32,x ∈[0,3], 当x =1时,g(x)min =g(1)=32; 当x =3时,g(x)max =g(3)=72, 故g(x)在[0,3]上的值域为[32,72]. (2)f ′(x)=lnx +1,当x ∈(0,1e),f ′(x)<0,f(x)单调递减, 当x ∈(1e,+∞),f ′(x)>0,f(x)单调递增. ①0<t<t +2<1e,t 无解; ②0<t<1e <t +2,即0<t<1e 时,f(x)min =f(1e) =-1e; ③1e ≤t<t +2,即t ≥1e时,f(x)在[t ,t +2]上单调递增,f(x)min =f(t)=tlnt ; 所以f(x)min =⎩⎪⎨⎪⎧ -1e ,0<t<1e tlnt ,t ≥1e .(3)g ′(x)+1=x ,所以问题等价于证明xlnx>x e x -2e(x ∈(0,+∞)),由(2)可知f(x)=xlnx(x ∈(0,+∞))的最小值是-1e ,当且仅当x =1e时取到; 设m(x)=x e x -2e(x ∈(0,+∞)), 则m ′(x)=1-x e x , 易得m(x)max =m(1)=-1e,当且仅当x =1时取到,从而对一切x ∈(0,+∞),都有xlnx>g ′(x)+1e x -2e成立.。

2021届高考数学一轮复习第一部分考点通关练第二章函数导数及其应用考点测试10对数与对数函数含解析人教B版

考点测试10 对数与对数函数高考概览高考在本考点的常考题型为选择题,分值5分,中、低等难度考纲研读1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点 3.体会对数函数是一类重要的函数模型4.了解指数函数y =a x(a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数一、基础小题1.计算log 29×log 34+2log 510+log 50.25=( ) A .0 B .2 C .4 D .6答案 D解析 由对数的运算公式和换底公式可得log 29×log 34+2log 510+log 50.25=2log 23×log 24log 23+log 5(102×0.25)=4+2=6.故选D.2.设函数f (x )=⎩⎪⎨⎪⎧4x-1,x ≤0,log 2x ,x >0,则f ⎝ ⎛⎭⎪⎫12=( )A .-1B .1C .-12D .22答案 A解析 f ⎝ ⎛⎭⎪⎫12=log 212=-1,故选A. 3.函数f (x )=lg (x +1)+lg (x -1)( ) A .是奇函数 B .是偶函数C .是非奇非偶函数D .既是奇函数又是偶函数答案 C解析 函数f (x )的定义域为{x |x >1},定义域不关于原点对称,故该函数是非奇非偶函数,故选C.4.若lg 2,lg (2x +1),lg (2x+5)成等差数列,则x 的值等于( ) A .1 B .0或18C .18D .log 23答案 D解析 由题意知lg 2+lg (2x+5)=2lg (2x+1),2(2x+5)=(2x+1)2,(2x )2-9=0,2x=3,x =log 23.故选D.5.已知a ,b ,c 分别是方程2x =-x ,log 2x =-x ,log 2x =x 的实数解,则( ) A .b <c <a B .a <b <c C .a <c <b D .c <b <a答案 B解析 由2a=-a >0,得a <0,由log 2b =-b <0,得0<b <1,由log 2c =c >0,得c >1,综上可知,a <b <c ,故选B.6.设m =log 0.30.6,n =12log 20.6,则( )A .m -n >m +n >mnB .m -n >mn >m +nC .m +n >m -n >mnD .mn >m -n >m +n答案 A解析 m =log 0.30.6>log 0.31=0,n =12log 20.6<12log 21=0,mn <0.1m +1n =log 0.60.3+log 0.64=log 0.61.2<log 0.60.6=1,即m +nmn<1,故m +n >mn .又(m -n )-(m +n )=-2n >0,所以m -n >m +n .故m -n >m +n >mn ,所以选A.7.已知log 23=a ,log 37=b ,则log 4256=( ) A.3+ab1+a +abB .3a +ba +a 2+bC.3+b1+a +bD .1+a +ab 3+ab答案 A解析 log 4256=log 256log 242=3+log 271+log 23+log 27=3+log 23·log 371+log 23+log 23·log 37=3+ab1+a +ab.故选A.8.已知函数f (x )=⎩⎪⎨⎪⎧e x -1,x <2,log 3x 2-1,x ≥2,若f (a )≥1,则a 的取值范围是( )A .[1,2)B .[1,+∞)C .[2,+∞)D .(-∞,-2]∪[1,+∞)答案 B解析 函数f (x )=⎩⎪⎨⎪⎧e x -1,x <2,log 3x 2-1,x ≥2,若f (a )≥1,可得⎩⎪⎨⎪⎧a <2,e a -1≥1或⎩⎪⎨⎪⎧a ≥2,log 3a 2-1≥1,解⎩⎪⎨⎪⎧a <2,e a -1≥1,可得1≤a <2;解⎩⎪⎨⎪⎧a ≥2,log 3a 2-1≥1,可得a ≥2.综上a ≥1.故选B.9.设x ,y ,z 均为大于1的实数,且log 2x =log 3y =log 5z ,则x 3,y 5,z 2中最小的是( ) A .z 2B .y 5C .x 3D .三个数相等答案 C解析 因为x ,y ,z 均为大于1的实数,所以log 2x =log 3y =log 5z >0,不妨设log 2x =log 3y =log 5z =t ,则t >0,x =2t,y =3t,z =5t,所以x 3=23t=8t ,y 5=35t =243t ,z 2=52t =25t,又y =x t 在(0,+∞)上单调递增,故x 3最小.故选C.10.计算:912-log95=________.答案 35解析 912-log 95=912×9-log 95=3×15=35.11.已知2x =72y=A ,且1x +1y=2,则A 的值是________.答案 7 2解析 由2x =72y=A 得x =log 2A ,y =12log 7A ,则1x +1y =1log 2A +2log 7A =log A 2+2log A 7=log A 98=2,A 2=98.又A >0,故A =98=7 2.12.已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm=________.答案 9解析 因为f (x )=|log 3x |,正实数m ,n 满足m <n ,且f (m )=f (n ),所以-log 3m =log 3n ,所以mn =1.因为f (x )在区间[m 2,n ]上的最大值为2,函数f (x )在[m 2,1)上是减函数,在(1,n ]上是增函数,所以-log 3m 2=2或log 3n =2.若-log 3m 2=2,得m =13,则n =3,此时log 3n =1,满足题意.那么n m =3÷13=9.同理.若log 3n =2,得n =9,则m =19.此时-log 3m 2=4>2,不满足题意.综上可得n m=9.二、高考小题13.(2019·天津高考)已知a =log 52,b =log 0.50.2,c =0.50.2,则a ,b ,c 的大小关系为( )A .a <c <bB .a <b <cC .b <c <aD .c <a <b答案 A解析 因为y =log 5x 是增函数,所以a =log 52<log 55=0.5.因为y =log 0.5x 是减函数,所以b =log 0.50.2>log 0.50.5=1.因为y =0.5x 是减函数,所以0.5=0.51<c =0.50.2<0.50=1,即0.5<c <1.所以a <c <b .故选A.14.(2019·北京高考)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )A .1010.1B .10.1C .lg 10.1D .10-10.1答案 A解析 由题意知,m 1=-26.7,m 2=-1.45,代入所给公式得-1.45-(-26.7)=52lg E 1E 2,所以lg E 1E 2=10.1,所以E 1E 2=1010.1.故选A.15.(2018·全国卷Ⅲ)下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( )A .y =ln (1-x )B .y =ln (2-x )C .y =ln (1+x )D .y =ln (2+x )答案 B解析 函数y =ln x 过定点(1,0),(1,0)关于直线x =1对称的点还是(1,0),只有y =ln (2-x )过此点,故选B.16.(2016·全国卷Ⅰ)若a >b >1,0<c <1,则( ) A .a c<b cB .ab c <ba cC .a log b c <b log a cD .log a c <log b c解析 解法一:由a >b >1,0<c <1,知a c>b c,A 错误;∵0<c <1,∴-1<c -1<0,∴y =x c -1在x ∈(0,+∞)上是减函数,∴bc -1>ac -1,又ab >0,∴ab ·bc -1>ab ·ac -1,即ab c >ba c,B 错误;易知y =log c x 是减函数,∴0>log c b >log c a ,∴log b c <log a c ,D 错误;由log b c <log a c <0,得-log b c >-log a c >0,又a >b >1>0,∴-a log b c >-b log a c >0,∴a log b c <b log a c ,故选C.解法二:依题意,不妨取a =10,b =2,c =12.易验证A ,B ,D 均是错误的,只有C 正确.17.(2018·全国卷Ⅰ)已知函数f (x )=log 2(x 2+a ),若f (3)=1,则a =________. 答案 -7解析 根据题意,有f (3)=log 2(9+a )=1,可得9+a =2,所以a =-7.18.(2016·浙江高考)已知a >b >1.若log a b +log b a =52,a b =b a,则a =________,b =________.答案 4 2解析 令log a b =t ,∵a >b >1,∴0<t <1,由log a b +log b a =52得,t +1t =52,解得t =12或t =2(舍去),即log a b =12,∴b =a ,又a b =b a ,∴a a =(a )a ,即a a =a a 2,亦即a =a2,解得a =4,∴b =2.三、模拟小题19.(2020·湖南湘潭高三阶段测试)如果2log a (P -2Q )=log a P +log a Q ,那么P Q的值为( )A.14 B .4 C .6 D .4或1答案 B解析 由题意知P >0,Q >0,P >2Q .由2log a (P -2Q )=log a P +log a Q 可得log a (P -2Q )2=log a (PQ ),所以(P -2Q )2=PQ ,可化为P 2-5PQ +4Q 2=0,又因为Q >0,所以⎝ ⎛⎭⎪⎫P Q 2-5P Q+4=0,解得P Q =4或P Q=1(舍去).故选B.20.(2019·广州市高三年级调研)已知实数a =2ln 2,b =2+2ln 2,c =(ln 2)2,则a ,b ,c 的大小关系是( )A .c <b <aB .c <a <bC .b <a <cD .a <c <b解析 因为ln 2=log e 2,所以0<ln 2<1,所以c =(ln 2)2<1,而20<2ln 2<21,即1<a <2,b =2+2ln 2>2,所以c <a <b .故选B.21.(2019·大庆模拟)设函数f (x )=x 3+log 2(x +x 2+1),则对任意实数a ,b ,若a +b ≥0,则( )A .f (a )+f (b )≤0B .f (a )+f (b )≥0C .f (a )-f (b )≤0D .f (a )-f (b )≥0答案 B解析 设f (x )=x 3+log 2(x +x 2+1),其定义域为R ,f (-x )=-x 3+log 2(-x +x 2+1)=-x 3-log 2(x +x 2+1)=-f (x ),所以f (x )是奇函数,且在[0,+∞)上单调递增,故f (x )在R 上单调递增,那么a +b ≥0,即a ≥-b 时,f (a )≥f (-b ),得f (a )≥-f (b ),可得f (a )+f (b )≥0.故选B.22.(2019·安庆二模)若函数f (x )=log a x (a >0且a ≠1)的定义域与值域都是[m ,n ](m <n ),则a 的取值范围是( )A .(1,+∞)B .(e ,+∞)C .(1,e)D .答案 D解析 函数f (x )=log a x 的定义域与值域相同等价于方程log a x =x 有两个不同的实数解.因为log a x =x ⇔ln x ln a =x ⇔ln a =ln x x ,所以问题等价于直线y =ln a 与函数y =ln x x 的图象有两个交点.作函数y =ln x x 的图象,如图所示.根据图象可知,当0<ln a <1e 时,即1<a <e 1e 时,直线y =ln a 与函数y =ln xx的图象有两个交点.故选D.23.(2019·陕西咸阳高三联考)已知函数f (x )=x ·ln 1+x 1-x ,a =f ⎝ ⎛⎭⎪⎫-1π,b =f ⎝ ⎛⎭⎪⎫1e ,c=f ⎝ ⎛⎭⎪⎫14,则以下关系成立的是( )A .c <a <bB .c <b <aC .a <b <cD .a <c <b答案 A解析 因为f (x )=x ·ln 1+x1-x=x [ln (1+x )-ln (1-x )],所以f (-x )=(-x )[ln (1-x )-ln (1+x )]=x [ln (1+x )-ln (1-x )]=f (x ),所以f (x )为偶函数,所以a =f ⎝ ⎛⎭⎪⎫-1π=f ⎝ ⎛⎭⎪⎫1π.当0<x <1时,易知f (x )为增函数.又0<14<1π<1e <1,所以f ⎝ ⎛⎭⎪⎫14<f ⎝ ⎛⎭⎪⎫1π<f ⎝ ⎛⎭⎪⎫1e ,即c <a <b ,故选A.24.(2019·山东省烟台市高三(上)期末)已知函数f (x )=⎩⎨⎧|log 2x -1|,0<x ≤4,3-x ,x >4,设a ,b ,c 是三个不相等的实数,且满足f (a )=f (b )=f (c ),则abc 的取值范围为________. 答案 (16,36)解析 作出函数f (x )的图象如图所示.当x >4时,由f (x )=3-x =0,得x =3,得x =9,若a ,b ,c 互不相等,不妨设a <b <c ,因为f (a )=f (b )=f (c ),所以由图象可知0<a <2<b <4,4<c <9,由f (a )=f (b ),得1-log 2a =log 2b -1,即log 2a +log 2b =2,即log 2(ab )=2,则ab =4,所以abc =4c ,因为4<c <9,所以16<4c <36,即16<abc <36,所以abc 的取值范围是(16,36).一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.(2020·湖北黄冈摸底)设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值.解 (1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得-1<x <3,∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x ) =log 2[(1+x )(3-x )] =log 2[-(x -1)2+4],∴当x ∈[0,1]时,f (x )是增函数;当x ∈⎝ ⎛⎦⎥⎤1,32时,f (x )是减函数, 故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=2. 2.(2019·福建漳州模拟)已知函数f (x )=-x +log 21-x1+x .(1)求f ⎝⎛⎭⎪⎫12019+f ⎝ ⎛⎭⎪⎫-12019的值;(2)当x ∈(-a ,a ],其中a ∈(0,1),a 是常数时,函数f (x )是否存在最小值?若存在,求出f (x )的最小值;若不存在,请说明理由.解 (1)∵f (x )+f (-x )=log 21-x 1+x +log 21+x 1-x =log 21=0,∴f ⎝ ⎛⎭⎪⎫12019+f ⎝ ⎛⎭⎪⎫-12019=0.(2)函数f (x )存在最小值.f (x )的定义域为(-1,1), ∵f (x )=-x +log 2⎝⎛⎭⎪⎫-1+2x +1, 当x ∈(-1,1)时,f (x )为减函数,∴当a ∈(0,1),x ∈(-a ,a ]时,f (x )单调递减. ∴当x =a 时,f (x )min =-a +log 21-a1+a .3.(2019·渭南模拟)已知函数f (x )=lnx +1x -1. (1)求函数f (x )的定义域,并判断函数f (x )的奇偶性; (2)对于x ∈[2,6],f (x )=ln x +1x -1>ln mx -17-x恒成立,求实数m 的取值范围. 解 (1)由x +1x -1>0,解得x <-1或x >1, ∴函数f (x )的定义域为(-∞,-1)∪(1,+∞), 当x ∈(-∞,-1)∪(1,+∞)时,f (-x )=ln-x +1-x -1=ln x -1x +1=ln ⎝⎛⎭⎪⎫x +1x -1-1=-ln x +1x -1=-f (x ). ∴f (x )=lnx +1x -1是奇函数.(2)由于x ∈[2,6]时,f (x )=ln x +1x -1>ln mx -17-x恒成立,∴x +1x -1>m x -17-x>0恒成立, ∵x ∈[2,6],∴0<m <(x +1)(7-x )在x ∈[2,6]上恒成立. 令g (x )=(x +1)(7-x )=-(x -3)2+16,x ∈[2,6],由二次函数的性质可知,当x ∈[2,3]时函数g (x )单调递增,x ∈[3,6]时函数g (x )单调递减,∴当x ∈[2,6]时,g (x )min =g (6)=7, ∴0<m <7.故实数m 的取值范围为(0,7).4.(2019·大庆模拟)已知函数f (x )=lg ⎝⎛⎭⎪⎫x +ax-2,其中a 是大于0的常数.(1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值; (3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围. 解 (1)当a >1时,定义域为(0,+∞), 当a =1时,定义域为{x |x >0且x ≠1},当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }. (2)设g (x )=x +a x-2,当a ∈(1,4),x ∈[2,+∞)时,g ′(x )=1-a x 2=x 2-ax2>0恒成立,∴g (x )=x +a x-2在[2,+∞)上是增函数,∴f (x )=lg ⎝ ⎛⎭⎪⎫x +a x -2在[2,+∞)上的最小值为f (2)=lg a2.(3)对任意x ∈[2,+∞)恒有f (x )>0, 即x +ax-2>1对x ∈[2,+∞)恒成立, ∴a >3x -x 2,令h (x )=3x -x 2,则h (x )=3x -x 2=-⎝ ⎛⎭⎪⎫x -322+94,又h (x )在x ∈[2,+∞)上是减函数, ∴h (x )max =h (2)=2,∴a的取值范围为(2,+∞).。

高考一轮总复习数学(理)课件 第2章 函数、导数及其应用 2-11 板块一 知识梳理 自主学习ppt版本

一轮总复习·数学(理)
第2章 函数、导数及其应用 第11讲 导数在研究函数中的应用
板块一 知识梳理·自主学习
[必备知识] 考点1 函数的导数与单调性的关系 函数y=f(x)在某个区间内可导: (1)若f′(x)>0,则f(x)在这个区间内 单调递增 ; (2)若f′(x)<0,则f(x)在这个区间内 单调递减 ; (3)若f′(x)=0,则f(x)在这个区间内是 常数函数 .
1

a.

f′(x)

1 x

ax

a

1

-ax2+1+ x
ax-x.①若
a≥0,当
0<x<1
时,f′(x)>0,f(x)
单调递增;当 x>1 时,f′(x)<0,f(x)单调递减,所以 x=1
是 f(x)的极大值点.②若 a<0,由 f′(x)=0,得 x=1 或 x
=-1a.因为 x=1 是 f(x)的极大值点,所以-1a>1,解得-
命题角度2 根据函数的单调性求参数范围
例2 已知a≥0,函数f(x)=(x2-2ax)ex,若f(x)在[-1,1]
上是单调减函数,则a的取值范围是(
)
A.0,34
C.34,+∞

B.12,34 D.0,12
[解 析 ] f′(x)= (2x- 2a)ex + (x2 - 2ax)ex = [x2 + (2 - 2a)x-2a]ex,由题意知当 x∈[-1,1]时,f′(x)≤0 恒成立, 即 x2+(2-2a)x-2a≤0 恒成立.
①当-a2≤1 时,即-2≤a<0 时,f(x)在[1,4]上的最小
值为 f(1),由 f(1)=4+4a+a2=8,得 a=±2 2-2,均不符
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年高考数学一轮复习 第二章 函数、导数及其应用 第10讲 函
数与方程实战演练 理
1.(2016·天津卷)已知函数f (x )=⎩
⎪⎨
⎪⎧
x 2

4a -3x +3a ,x <0,
log a x +1+1,x ≥0
(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|f (x )|=2-x 恰有两个不相等的实数解,则a 的取值范围是( C )
A .⎝ ⎛
⎦⎥⎤0,23
B .⎣⎢⎡⎦⎥⎤23,43
C .⎣⎢⎡⎦⎥⎤13,23∪⎩⎨⎧⎭
⎬⎫34 D .⎣⎢⎡⎭⎪⎫13,23∪⎩⎨⎧⎭
⎬⎫34 解析:要使函数f (x )在R 上单调递减,只需⎩⎪⎨⎪⎧
3-4a 2≥0,
0<a <1,
3a ≥1,
解得13≤a ≤3
4
,因为方
程|f (x )|=2-x 恰有两个不相等的实数解,所以直线y =2-x 与函数y =|f (x )|的图象有两个交点.如图所示.
易知y =|f (x )|的图象与x 轴的交点的横坐标为1a -1,又13≤1
a -1≤2,故由图可知,直
线y =2-x 与y =|f (x )|的图象在x >0时有一个交点;当直线y =2-x 与y =x 2
+(4a -3)x
+3a (x <0)的图象相切时,设切点为(x 0,y 0),则⎩
⎪⎨
⎪⎧
2-x 0=x 2
0+4a -3x 0+3a ,
-1=2x 0+4a -3,整理可
得4a 2
-7a +3=0,解得a =1(舍)或a =34.而当3a ≤2,即a ≤23时,直线y =2-x 与y =|f (x )|
的图象在y 轴左侧有一个交点,综合可得a ∈⎣⎢⎡⎦⎥⎤13,23∪⎩⎨⎧⎭
⎬⎫34.
2.(2015·安徽卷)下列函数中,既是偶函数又存在零点的是( A ) A .y =cos x B .y =sin x C .y =ln x
D .y =x 2
+1
解析:y =cos x 是偶函数,且存在零点;y =sin x 是奇函数;y =ln x 既不是奇函数
也不是偶函数;y =x 2
+1是偶函数,但不存在零点.故选A .
3.(2015·北京卷)设函数f (x )=⎩⎪⎨
⎪⎧
2x
-a ,x <1,
4x -a
x -2a ,x ≥1.
(1)若a =1,则f (x )的最小值为-1.
(2)若f (x )恰有2个零点,则实数a 的取值范围是⎣⎢⎡⎭
⎪⎫12,1∪[2,+∞).
解析:(1)当a =1时,f (x )=⎩⎪⎨
⎪⎧
2x
-1,x <1,
4x -1
x -2,x ≥1,
其大致图象如图所示.
由图可知f (x )的最小值为-1. (2)当a ≤0时,显然函数f (x )无零点;
当0<a <1时,易知f (x )在(-∞,1)上有一个零点,要使f (x )恰有2个零点,则当x ≥1时,f (x )有且只有一个零点,结合图象可知,2a ≥1,即a ≥12,则1
2≤a <1;当a ≥1时,2a >1,
由二次函数的性质可知,当x ≥1时,f (x )有2个零点,则要使f (x )恰有2个零点,则需要
f (x )在(-∞,1)上无零点,则2-a ≤0,即a ≥2.
综上可知,满足条件的a 的取值范围是⎣⎢⎡⎭
⎪⎫12,1∪[2,+∞).
4.(2015·湖南卷)已知函数f (x )=⎩⎪⎨⎪

x 3
,x ≤a ,x 2
,x >a .
若存在实数b ,使函数g (x )=f (x )
-b 有两个零点,则a 的取值范围是(-∞,0)∪(1,+∞).
解析:当a <0时,若x ∈(a ,+∞),
则f (x )=x 2
,当b ∈(0,a 2
)时,函数g (x )=f (x )-b 有两个零点,分别是x 1=-b ,
x 2=b .
当0≤a ≤1时,f (x )的图象如图(1)所示. 易知函数g (x )=f (x )-b 最多有一个零点. 当a >1时,f (x )的图象如图(2)所示.
图(1) 图(2)
当b∈(a2,a3]时,函数g(x)=f(x)-b有两个零点,分别是x1=3
b,x2=b.综上,a
∈(-∞,0)∪(1,+∞).。

相关文档
最新文档