结构力学第五版课后习题答案

合集下载

结构力学章节习题及参考答案

结构力学章节习题及参考答案
第3章静定梁与静定刚架习题解答
习题3.1是非判断题
(1) 在使用内力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。( )
(2) 区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。( )
(3) 多跨静定梁在附属部分受竖向荷载作用时,必会引起基本部分的内力。( )
(4)习题3.1(4)图所示多跨静定梁中,CDE和EF部分均为附属部分。( )
(7) 习题2.1(6)(a)图所示体系去掉二元体EDF后,成为习题2.1(6) (c)图,故原体系是几何可变体系。( )
习题 2.1(6)图
习题2.2填空
(1) 习题2.2(1)图所示体系为_________体系。
习题2.2(1)图
(2) 习题2.2(2)图所示体系为__________体系。
习题 2-2(2)图
(4)习题5.1(3)图(a)和(b)所示两结构的变形相同。( )
习题7.2填空题
(1)习题5.2(1)图(a)所示超静定梁的支座A发生转角,若选图(b)所示力法基本结构,则力法方程为_____________,代表的位移条件是______________,其中1c=_________;若选图(c)所示力法基本结构时,力法方程为____________,代表的位移条件是______________,其中1c=_________。
(3) 习题7.2(3)图所示刚架各杆的线刚度为i,欲使结点B产生顺时针的单位转角,应在结点B施加的力矩MB=______。
习题 7.2(1)图习题 7.2(2)图 习题 7.2(3)图
(4) 用力矩分配法计算习题7.2(4)图所示结构(EI=常数)时,传递系数CBA=________,CBC=________。

结构力学课后答案第7章位移法

结构力学课后答案第7章位移法
(d)
解:(1)确定基本未知量
两个位移未知量,各种M图如下
(2)位移法典型方程
(3)确定系数并解方程
代入,解得
(4)求最终弯矩图
(e)
解:(1)确定基本未知量
两个角位移未知量,各种M图如下
(2)位移法典型方程
(3)确定系数并解方程
代入,解得
(4)求最终弯矩图
7-7试分析以下结构内力的特点,并说明原因。若考虑杆件的轴向变形,结构内力有何变化?
(a)
解:(1)利用对称性得:
(2)由图可知:
可得:
(3)求最终弯矩图
(b)
解:(1)利用对称性,可得:
(2)由图可知,各系数分别为:
解得:
(3)求最终弯矩图如下
(c)
解:(1)在D下面加一支座,向上作用1个单位位移,由于BD杆会在压力作用下缩短,所以先分析上半部分,如下图。
D点向上作用1个单位,设B向上移动x个单位,则 ,得 个单位。
习题
7-1试确定图示结构的位移法基本未知量数目,并绘出基本结构。
(a)(b) (c)
1个角位移3个角位移,1个线位移4个角位移,3个线位移
位移3个角位移,2个线位移
(g)(h)(i)
一个角位移,一个线位移一个角位移,一个线位移三个角位移,一个线位移
7-2试回答:位移法基本未知量选取的原则是什么?为何将这些基本未知位移称为关键位移?是否可以将静定部分的结点位移也选作位移法未知量?
(a) (b) (c)
(d) (e) (f)
7-8试计算图示具有牵连位移关系的结构,并绘出M图。
(a)
解:(1)画出 图
由图可得:
由图可知:
(2)列方程及解方程组

结构力学课后习题答案

结构力学课后习题答案

习题及参考答案【习题2】【习题3】【习题4】【习题5】【习题6】【习题8】【习题9】【习题10】【习题11】【习题12】【习题13】【习题14】【参考答案】习题22-1~2-14试对图示体系进行几何组成分析,如果是具有多余联系的几何不变体系,则应指出多余联系的数目。

题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图 题2-13图 题2-14图习题33-1 试作图示多跨静定梁的M 及Q 图。

(b)(a)20kN40kN20kN/m40kN题3-1图3-2 试不计算反力而绘出梁的M 图。

(b)5kN/m40kN(a)题3-2图习题44-1 作图示刚架的M 、Q 、N 图。

(c)(b)(a)20kN /m2kN /m题4-1图4-2 作图示刚架的M 图。

P(e)(d)(a)(b)(c)20k N /m4kN题4-2图4-3 作图示三铰刚架的M 图。

(b)(a)题4-3图4-4 作图示刚架的M 图。

(a)题4-4图4-5 已知结构的M 图,试绘出荷载。

(b)(a)题4-5图4-6 检查下列刚架的M 图,并予以改正。

(e)(g)(h)P(d)(c)(a)(b)(f)题4-6图习题55-1 图示抛物线三铰拱轴线方程x x l lfy )(42-=,试求D 截面的内力。

题5-1图5-2 带拉杆拱,拱轴线方程x x l lfy )(42-=,求截面K 的弯矩。

C题5-2图 题5-3图5-3 试求图示带拉杆的半圆三铰拱截面K 的内力。

习题66-1 判定图示桁架中的零杆。

(c)(b)题6-1图6-2 用结点法计算图示桁架中各杆内力。

(b)题6-2 图6-3 用截面法计算图示桁架中指定各杆的内力。

(b)题6-3图6-4 试求图示组合结构中各链杆的轴力并作受弯杆件的M 、Q 图。

(a)题6-4图6-5 用适宜方法求桁架中指定杆内力。

(c)(b)(a)题6-6图习题88-1 试作图示悬臂梁的反力V B 、M B 及内力Q C 、M C 的影响线。

结构力学第5章答案(完整版)

结构力学第5章答案(完整版)

5-1试找出下列结构中的零力杆(在零力杆上打上“0”记号)5-2 已知平面桁架的几何尺寸和载荷情况如题5-2图所示,用节点法计算桁架各杆的内力。

解:(a)、零力杆:74,76,65,68,43分析节点4,得P N -=45分析节点5,得 2- 1P N P N ==552,(b)、零力杆:26,61,63,48,83,85,37,71分析节点7:P N -=75 分析节点5:5254P N =1221233234434554N N N N N N N N =======(c)、支座反力:均为0分析节点1: P N P N 2,31512-== 分析节点2: P N P N 2,32523== 分析节点3: P N 235-= 分析节点4: 04543==N N (d)、零力杆:12,15,52,83,43,49支座反力:P R P R P R y x y 3.1,8.0,3.2223=-==分析节点5: P N 8.056-=分析节点6: P N P N -=-=6267,8.0 分析节点9: P N P N 6.0,26.09893=-= 分析节点8: P N 6.087=分析节点3: P N P N 1.1,27.13237=-= 分析节点7: P N 23.072-=5-3 用分解成平面桁架的方法求如题5-3图所示空间桁架各杆的内力。

解:零力杆:26,48,34,24,28122152316213337317383N P a N P P cN P N P N P N P NP ==-=-=-===-3 5-4 已知平面桁架的几何尺寸和受载情况如题5-4图所示。

求图中用粗线所示的杆件①,②,③的内力。

解:(a)、零力杆如图所示1340,3P M N ==∑由得 3210,M N P ==-∑由得310,3y F N P ==∑由得 (b)、2140,2M N P ==∑由得230,x F N P ==-∑由得250,y F N ==∑由得(c)、支座反力:均为0,结构简化为:PN F P N F PN M x y 31,032,032,03213====-==∑∑∑得由得由得由5-5 求如题5-5图所示平面桁架的内力。

结构力学第3章习题及参考答案

结构力学第3章习题及参考答案
3-4试求图示桁架C点竖向位移和CD杆与CE杆夹角的改变量。已知各杆截面相同,A=1.5×10-2m2,E=210 GPa。
解(1)C点的竖向位移
(2)CD杆与CE杆夹角的改变量
3-5图示桁架AB杆的 ,其他杆的 。试求B点水平位移。
解本题中,AB杆的应力-应变关系不是线性的,计算时要用单位荷载法最基本的公式。

3-9试求图示刚架在温度作用下产生的D点的水平位移。梁为高度h=0.8m的矩形截面梁,线膨胀系数为 =10-5 oC-1。

3-10图示桁架各杆温度上升t,已知线膨胀系数 。试求由此引起的K点竖向位移。(画出需要的图)

*3-11图示梁截面尺寸为b×h=0.2m×0.6m,EI为常数,线膨胀系数为 ,弹簧刚度系数k=48EI/l3(l=2m)。梁上侧温度上升10℃,下侧上升30℃,并有图示支座移动和荷载作用。试求C点的竖向位移。
解利用虚功互等定理。
1状态:1kN的外力及其引起的15个结点的已知位移。
2状态:15个结点上10kN/15的集中荷载及其引起的15个结点的未知位移。
1状态的外力在2状态位移上做的功为
2状态的外力在1状态位移上做的功为


3-6 (b)

3-6 (c)

3-6 (d)

3-6 (e)

3-6 (f)
解(1)相对水平位移
(2)相对竖向位移
对称结构在对称荷载作用下的反对称位移等于零。
(3)相对转角
3-6 (g)

3-6 (h)

3-7试求图示结构在支座位移下的指定位移。
3-7 (a)

3-7 (b)

3-8图示结构各杆件均为截面高度相同的矩形截面,内侧温度上升t,外侧不变。试求C点的竖向位移。线膨胀系数为 。

结构力学第5章习题及参考答案5-1——5-8

结构力学第5章习题及参考答案5-1——5-8

第5章5-1 试确定图示结构位移法的基本未知量。

解(a)n=2(b)n=1(c)n=2(e)n=5(f)n=2(d)n=35-2 试用位移法作图示刚架的M解 1111P 0k F ∆+=111P 1245kN m k i F ==-,1154kN m i∆=⋅11P M M M =∆+习题5-2图1M 图基本结构 90M P 图(kNm)82.5 M 图(kNm)5-3试用位移法作图示刚架的M图。

习题5-3图1M图及系数k11、k21的求解i3i/l2M图及系数k12、k22的求解解111221P 1112222P 111221222221P 2P 231239752124813197254F F k k F k k F i i k i k k k l lql ql ql qli i∆∆∆∆===-===∆=-∆=-1++=0++=0,,,,M 图(272ql ⨯)M P 图及自由项F 1P 、F 2P 的求解23qlql58ql5-4试用位移法作图示刚架的M 图。

解1111P 111P P P101010k F k i F F lF l i∆+===∆=-,习题5-4图基本结构M 图(P F l )0.21M 图M p 图5-5 作图示刚架的M 图。

解1111P 0k F ∆+=111P 224,60kN ik F l ==- 215kN2l i ∆=-习题5-5图 基本结构M P 图(kNm)及自由项F 1P 的求解 M 图(kNm)1M 图及系数k 11的求解5-6习题5-6图 基本结构k 12、k 22的求解1M 图及系数k 11、k 21的求解 4i 4i k 2i 4i 21k 2i k 4i 4i 3ik M P 图(kNm)及自由项F 1P 、F 2P 的求解 1P 60F 2P解111221P1212222P111221221P2P1282725kNm60kNm295265kNm kNm5226k k Fk k Fki k k i k iF Fi i∆∆∆∆=====-=∆=∆=-1++=0++=0,,,,M图(1kNm26)F N图(1kN104⋅⨯) FQ图(1kN104⋅⨯)5-7 试用位移法计算图示结构,并作内力图。

结构力学课后答案-第6章--力法

结构力学课后答案-第6章--力法

习题6-1试确定图示结构的超静定次数。

(a)(b)(c)(d)(e)(f)(g)所有结点均为全铰结点2次超静定6次超静定4次超静定3次超静定II去掉复铰,可减去2(4-1)=6个约束,沿I-I截面断开,减去三个约束,故为9次超静定沿图示各截面断开,为21次超静定I II 刚片I与大地组成静定结构,刚片II只需通过一根链杆和一个铰与I连接即可,故为4次超静定(h)6-2试回答:结构的超静定次数与力法基本结构的选择是否有关?力法方程有何物理意义?6-3试用力法计算图示超静定梁,并绘出M 、F Q 图。

(a)解:上图=l1M pM 01111=∆+p X δ其中:EIl l l l l l l EI l l l l EI 8114232332623232333211311=⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯+⨯⨯⨯+⎪⎭⎫ ⎝⎛⨯⨯⨯⨯=δEIl F l lF l lF EI l pp p p817332322263231-=⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯=∆0817*******=-EI l F X EI l p p F X 211=p M X M M +=11l F p 61l F p 61F PA2l 3l 3B2EIEIC题目有错误,为可变体系。

+pF p lF 32X 1=1M 图p Q X Q Q +=11p F 21⊕p F 21(b)解:基本结构为:l1M 3l l2M l F p 21pM l F p 31⎪⎩⎪⎨⎧=∆++=∆++0022221211212111p p X X X X δδδδp M X M X M M ++=2211pQ X Q X Q Q ++=22116-4试用力法计算图示结构,并绘其内力图。

(a)l2l 2l2lABCD EI =常数F Pl 2E FQ 图F PX 1X 2F P解:基本结构为:1M pM 01111=∆+p X δpM X M M +=11(b)解:基本结构为:EI=常数qACEDB4a 2a4a4a20kN/m3m6m6mAEI 1.75EIB CD 20kN/mX 1166810810计算1M ,由对称性知,可考虑半结构。

(NEW)李廉锟《结构力学》(第5版)(下册)笔记和课后习题(含考研真题)详解

(NEW)李廉锟《结构力学》(第5版)(下册)笔记和课后习题(含考研真题)详解

目 录第12章 结构动力学12.1 复习笔记12.2 课后习题详解12.3 名校考研真题详解第13章 结构弹性稳定13.1 复习笔记13.2 课后习题详解13.3 名校考研真题详解第14章 结构的极限荷载14.1 复习笔记14.2 课后习题详解14.3 名校考研真题详解第15章 悬索计算15.1 复习笔记15.2 课后习题详解15.3 名校考研真题详解第12章 结构动力学12.1 复习笔记【知识框架】动力荷载与静力荷载基本概念自由振动和强迫振动 结构动力计算的目的 振动自由度的定义结构振动的自由度 结构按自由度的数目分类:单自由度结构和多自由度结构 确定结构的振动自由度 无限自由度结构 自由振动的原因:初始位移、初始速度单自由度结构的自由振动 不考虑阻尼时的自由振动 考虑阻尼时的自由振动 简谐荷载作用下单自由度受迫振动单自由度结构在简谐荷载作用下的受迫振动 不考虑阻尼的纯受迫振动考虑阻尼的纯受迫振动 瞬时冲量作用于质点单自由度结构在任意荷载作用下的受迫振动 任意动力载荷作用下的质点位移公式 振动微分方程 两种特殊载荷作用下的质点位移公式 按柔度法求解多自由度结构的自由振动按刚度法求解主振型的正交性多自由度结构在筒谐荷载作用下的的受迫振动 按柔度法求解振型分解法的优点 按刚度法求解振型分解法振型分解法的步骤 振动微分方程组的建立多自由度结构在任意荷载作用下的受迫振动 振动微分方程组的解耦待定常数的确定求解的具体步骤 地震作用的基本概念 地震作用的定义地震作用的计算 地震作用的分类:水平地震和竖向地震地震作用的实质单自由度结构的地震作用计算 多自由度结构的地震作用计算 梁的自由振动无限自由度结构的振动简谐均布干扰力作用下的受迫振动计算频率的近似计算方法:能量法、集中质量法、用相当梁法计算桁架的最低频率【重点难点归纳】一、基本概念1.动力载荷与静力载荷(1)静力载荷静力荷载是指施力过程缓慢,不致使结构产生显著的加速度,因而可以略去惯性力影响的荷载。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结构力学第五版课后习题答案
结构力学第五版课后习题答案
结构力学是工程学中的一门重要学科,它研究物体在受力作用下的变形和破坏
行为。

对于学习结构力学的学生来说,课后习题是巩固知识和提高能力的重要
途径。

本文将为大家提供结构力学第五版课后习题的答案,希望能对大家的学
习有所帮助。

第一章:引言
第一章主要介绍了结构力学的基本概念和基本原理。

习题一般涉及力的分解、
合成、平衡条件等内容。

以下是一道典型的习题及其答案:
习题1.1:一个物体受到一个力F,该力可分解为两个力F1和F2,方向如图所示。

已知F1=3N,F2=4N,求F的大小和方向。

解答:根据力的平衡条件,可以得到F1+F2=F。

代入已知数据,得到
3N+4N=F,即F=7N。

根据力的合成,可以得到F的方向与F1和F2的方向相反,即向左。

第二章:静力学基本原理
第二章主要介绍了静力学的基本原理,包括力的作用点、力的大小、力的方向等。

习题一般涉及受力分析、力矩计算等内容。

以下是一道典型的习题及其答案:
习题2.1:一个杆AB长2m,质量为10kg。

在杆的中点C处施加一个力P=20N,方向向上。

求杆的重力作用点与杆的中点C之间的距离。

解答:首先计算杆的重力,即重力=质量×重力加速度=10kg×9.8m/s²=98N。

由于杆是均匀杆,所以重力作用点在杆的中点C处。

因此,重力作用点与杆的中
点C之间的距离为0。

第三章:平面结构的受力分析
第三章主要介绍了平面结构的受力分析方法,包括平衡方程、约束条件等。


题一般涉及平面结构的受力分析和计算等内容。

以下是一道典型的习题及其答案:
习题3.1:一个桥梁由两个杆组成,杆AB和杆BC的长度分别为3m和4m。


梁的两端A和C分别受到一个力Fa和Fc,方向如图所示。

已知Fa=10N,
Fc=15N,求桥梁的重力。

解答:根据平衡方程,可以得到力的合成关系:Fa+Fc=重力。

代入已知数据,
得到10N+15N=重力,即重力=25N。

第四章:梁的受力分析
第四章主要介绍了梁的受力分析方法,包括梁的支座反力计算、梁的弯矩计算等。

习题一般涉及梁的受力分析和计算等内容。

以下是一道典型的习题及其答案:
习题4.1:一个梁的长度为6m,两个支座之间的距离为4m。

在梁的中点C处
施加一个力P=30N,方向向下。

求梁的支座反力。

解答:首先计算梁的重力,即重力=质量×重力加速度。

由于未给出梁的质量,
所以无法计算重力的具体数值。

根据平衡条件,可以得到支座反力的合成关系:Fa+Fc=重力+P。

代入已知数据,得到Fa+Fc=重力+30N。

通过以上几个章节的习题答案,我们可以看到结构力学的基本原理和方法在实
际问题中的应用。

希望这些答案能够帮助大家更好地理解和掌握结构力学的知识。

当然,为了更好地学习和提高能力,还是建议大家多做习题,并与同学或
老师进行讨论和交流。

相关文档
最新文档