高三数列专题复习
第一部分专题二微专题2数列求和及简单应用-高三数学二轮专题复习课件

微专题2 数列求和及简单应用
对点训练
数列S1n的前 n 项和为 1-12+12-13+…+n1-n+1 1= 1-n+1 1,
故 Tn=2n+1-2+1-n+1 1=2n+1-n+1 1-1. 选②,设公差为 d,由 a3+a5=16,S3+S5=42,得 2a1+6d=16, 8a1+13d=42, 解得ad1==22,,所以 an=2n,Sn=n2+n.
微专题2 数列求和及简单应用
对点训练
代入(a2+2)2=(a1+2)(a3+2),易得 a1=2,a2=4, a3=7,a4=12.
于是数列{an+2}的前 4 项为 4,6,9,14; 显然它不是等比数列,所以数列{an+2}不可能是等 比数列.
微专题2 数列求和及简单应用
对点训练
大题考法 4 错位相减法求数列的和
微专题2 数列求和及简单应用
对点训练
当 n 为奇数时,Gn=2×n-2 1-(2n+1)=-n-2, 所以 Tn=8(4n3-1)-n-2, 所以 Tn=88((44nn33--11))-+nn-,2n,为n偶为数奇,数.
微专题2 数列求和及简单应用
对点训练
1.在处理一般数列求和时,一定要注意运用转化思 想.把一般的数列求和转化为等差数列或等比数列进行求 和.在利用分组求和法求和时,常常根据需要对项数 n 的 奇偶进行讨论.最后再验证是否可以合并为一个表达式.
微专题2 数列求和及简单应用
对点训练
1.裂项相消法求和就是将数列中的每一项裂成两项 或多项,使这些裂开的项出现有规律的相互抵消,要注 意消去了哪些项,保留了哪些项.
2.消项规律:消项后前边剩几项,后边就剩几项, 前边剩第几项,后边就剩倒数第几项.
数列专题总复习知识点整理与经典例题讲解高三数学演示教学

数列专题复习一、等差数列的有关概念:1、等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。
如设{}n a 是等差数列,求证:以b n =na a a n+++Λ21 *n N ∈为通项公式的数列{}n b 为等差数列。
2、等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。
如(1)等差数列{}n a 中,1030a =,2050a =,则通项n a = (答:210n +); (2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______(答:833d <≤) 3、等差数列的前n 和:1()2n n n a a S +=,1(1)2n n n S na d -=+。
如(1)数列 {}n a 中,*11(2,)2n n a a n n N -=+≥∈,32n a =,前n 项和152n S =-,则1a = _,n =_(答:13a =-,10n =);(2)已知数列 {}n a 的前n 项和212n S n n =-,求数列{||}n a 的前n 项和n T (答:2*2*12(6,)1272(6,)n n n n n N T n n n n N ⎧-≤∈⎪=⎨-+>∈⎪⎩).4、等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2a bA +=。
提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。
只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。
(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d );偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(公差为2d )5、等差数列的性质:(1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222n n n d dS na d n a n -=+=+-是关于n 的二次函数且常数项为0.(2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。
高三高考数学总复习《数列》题型归纳与汇总

高考数学总复习题型分类汇《数列》篇经典试题大汇总目录【题型归纳】题型一等差数列的基本运算 (3)题型二等差数列的判定与证明 (4)题型三等差数列前n项和及其最值 (5)题型四等比数列的基本运算 (6)题型五等比数列的判定与证明 (8)题型六等差数列等比数列求前n项和 (8)题型七分组转化法求和 (9)题型八裂项相消法求和 (10)【巩固训练】题型一等差数列的基本运算 (11)题型二等比数列的基本运算 (11)题型三等差(比)数列的判定与证明 (12)题型四等差数列前n项的最值 (13)题型五数列的求和 (13)高考数学《数列》题型归纳与训练【题型归纳】题型一 等差数列的基本运算例1(1)等差数列{}n a 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则{}n a 前6项的和为( )A .-24B .-3C .3D .8 (2)设{}n a 为等差数列,公差2d =-,n S 为其前n 项和,若1011S S =,则1a =( )A .18B .20C .22D .24(3)设等差数列{}n a 的前n 项和为n S ,1m S -=-2,m S =0,1m S +=3,则m =( )A .3B .4C .5D .6(4)等差数列{}n a 前9项的和等于前4项的和.若11a =,40k a a +=,则k =_____. 【答案】 (1)A (2)B (3)C (4)10【解析】(1)设{}n a 的公差为d (0d ≠),由2326a a a =,得2(12)(1)(15)d d d +=++,所以2d =-,66561(2)242S ⨯=⨯+⨯-=-.选A . (2)由1011S S =,得1111100a S S =-=,111(111)0(10)(2)20a a d =+-=+-⨯-=. (3)有题意知m S =1()2m m a a +0=,∴1a =-m a =-(m S -1m S -)=2-,1m a += 1m S +-m S 3=,∴公差d =1m a +-m a =1,∴3=1m a +=-2m +,∴5=m ,故选C .(4)设{}n a 的公差为d ,由94S S =及11a =, 得9843914122d d ⨯⨯⨯+=⨯+,所以16d =-.又40k a a +=, 所以11[1(1)()][1(41)()]066k +-⨯-++-⨯-=,即10k =. 【易错点】等差数列求和公式易记错【思维点拨】等差数列基本运算的解题方法(1)等差数列的通项公式及前n 项和公式,共涉及五个量1,,,,S n n a a d n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而1a 和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法. 题型二 等差数列的判定与证明例1 在数列{}n a 中,若21-=a ,已知n n a a 2121+=+,则数列{}n a 前10项的和为______.【答案】25【解析】由已知可得211=-+n n a a ,25245204510110=+-=+=d a S 例2 已知数列{}n a 满足)(22,1111+++∈+==N n a a a a nn nn n(1)证明数列⎭⎬⎫⎩⎨⎧n n a 2为等差数列;(2)求数列{}n a 的通项公式. 【答案】见解析【解析】(1)1222211=-+=-++n nn n n n n n n a a a a a ,所以数列⎭⎬⎫⎩⎨⎧n n a 2是首项为2,公差为1的等差数列.(2)由(1)知()1122+=-+=n n a nn,所以12+=n a n n .例3 若数列{}n a 的前n 项和为n S ,且满足()2021≥=+-n S S a n n n ,211=a . (1)求证:⎭⎬⎫⎩⎨⎧n S 1成等差数列;(2)求数列{}n a 的通项公式. 【答案】见解析【解析】(1)证明 当2≥n 时,由021=+-n n n S S a ,得112---=-n n n n S S S S ,所以2111=--n n S S ,故⎭⎬⎫⎩⎨⎧n S 1是首项为2,公差为2的等差数列. (2)解 由(1)可得n S n 21=,∴nS n 21=. 当1=n 时,211=a 不适合上式. 当2≥n 时,()1211--=-=-n n S S a n n n .故()⎪⎪⎩⎪⎪⎨⎧≥--==2121121n n n n a n【易错点】忘记写:当2≥n 时或者不知道使用:1n n n a S S -=-【思维点拨】等差数列的证明方法:(1)定义法:d a a n n =-+1)(*∈N n 或d a a n n =--1)2,(≥∈*n N n ⇒{}n a 为等差数列. (2)等差中项法:()*++∈+=N n a a a n n n 212⇒{}n a 为等差数列.(3)通项法:B An a n +=B A ,(为常数)⇒{}n a 为等差数列.(4)前N 项和法:Bn An S n +=2B A ,(为常数)⇒{}n a 为等差数列.题型三 等差数列前n 项和及其最值例1 (1)等差数列{}n a 的前n 项和为n S ,已知131=a ,113S S =,当n S 最大时,n 的值是( )A.5B.6C.7D.8(2)若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =__时{}n a 的前n 项和最大. 【答案】(1)C (2)8【解析】(1)由113S S =,根据等差数列的性质,可得087=+a a .根据首项等于13可推知这个数列递减,从而得到07>a ,08<a ,故7=n 时n S 最大.(2)∵数列{}n a 是等差数列,且789830a a a a ++=>,80a >.又710890a a a a +=+<,∴90a <.当8=n 时,其前n 项和最大.【易错点】求最值的时候计算出错,以及去掉绝对值求和时也易出错。
河北省衡水中学高三数列的概念复习专题doc

一、数列的概念选择题1.数列1,3,5,7,9,--的一个通项公式为( )A .21n a n =-B .()1(21)nn a n =--C .()11(21)n n a n +=--D .()11(21)n n a n +=-+2.已知数列{}n a 满足1221n n n a a a ++=+,n *∈N ,若1102a <<,则( ) A .8972a a a +< B .91082a a a +> C .6978a a a a +>+D .71089a a a a +>+3.已知数列{}n a 满足: 12a =,111n na a +=-,设数列{}n a 的前n 项和为n S ,则2017S =( ) A .1007B .1008C .1009.5D .10104.在数列{}n a 中,11a =,11n na a n +=++,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,若n S m <对一切正整数n 恒成立,则实数m 的取值范围为( )A .()3,+∞B .[)3,+∞C .()2,+∞D .[)2,+∞5.已知数列{}n a ,若()12*Nn n n a a a n ++=+∈,则称数列{}na 为“凸数列”.已知数列{}nb 为“凸数列”,且11b =,22b =-,则数列{}n b 的前2020项和为( ) A .5B .5-C .0D .1-6.在数列{}n a 中,11a =,对于任意自然数n ,都有12nn n a a n +=+⋅,则15a =( )A .151422⋅+B .141322⋅+C .151423⋅+D .151323⋅+7.在数列{}n a 中,已知11a =,25a =,()*21n n n a a a n N ++=-∈,则5a 等于( )A .4-B .5-C .4D .58.在数列{}n a 中,()1111,1(2)nn n a a n a --==+≥,则5a 等于A .32B .53 C .85D .239.3……,则 ) A .第8项B .第9项C .第10项D .第11项10.已知等差数列{}n a 中,13920a a a ++=,则574a a -=( ) A .30B .20C .40D .5011.数列{}n a 前n 项和为n S ,若21n n S a =+,则72019a S +的值为( ) A .2B .1C .0D .1-12.在数列{}n a 中,12a =,111n n a a -=-(2n ≥),则8a =( ) A .1-B .12C .1D .213.已知数列{}n a 满足11a =,122n n a a n n+=++,则10a =( ) A .259B .145 C .3111D .17614.在数列{}n a 中,21n n a n +=+,则{}n a ( ) A .是常数列B .不是单调数列C .是递增数列D .是递减数列15.已知数列{}n a 满足111n n n n a a a a ++-=+,且113a =,则{}n a 的前2021项之积为( ) A .23B .13C .2-D .3-16.数列1111,,,57911--,…的通项公式可能是n a =( ) A .1(1)32n n --+B .(1)32n n -+C .1(1)23n n --+D .(1)23nn -+17.已知数列{}n a 满足1N a *∈,1,2+3,nn n n n a a a a a +⎧⎪=⎨⎪⎩为偶数为奇数,若{}n a 为周期数列,则1a 的可能取到的数值有( ) A .4个B .5个C .6个D .无数个18.意大利数学家斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…即()()121F F ==,()()()12F n F n F n =-+- (3n ≥,n *∈N ),此数列在现代物理、化学等方面都有着广泛的应用,若此数列的每一项被2除后的余数构成一个新数列{}n a ,则数列{}n a 的前2020项的和为( ) A .1348B .1358C .1347D .135719.已知数列{}n a 满足00a =,()11i i a a i +=+∈N ,则201kk a=∑的值不可能是( ) A .2B .4C .10D .1420.已知数列{}n a 满足()()*622,6,6n n p n n a n p n -⎧--≤=∈⎨>⎩N ,且对任意的*n ∈N 都有1n n a a +>,则实数p 的取值范围是( )A .71,4⎛⎫ ⎪⎝⎭B .101,7⎛⎫⎪⎝⎭C .()1,2D .10,27⎛⎫⎪⎝⎭二、多选题21.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( ) A .a 8=34 B .S 8=54C .S 2020=a 2022-1D .a 1+a 3+a 5+…+a 2021=a 202222.已知数列{}n a 满足()*111n na n N a +=-∈,且12a =,则( ) A .31a =- B .201912a =C .332S =D . 2 01920192S =23.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足140(2)n n n a S S n -+=≥,114a =,则下列说法错误的是( ) A .数列{}n a 的前n 项和为4n S n = B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1n S ⎧⎫⎨⎬⎩⎭为递增数列 24.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足11140(2),4n n n a S S n a -+=≥=,则下列说法正确的是( ) A .数列{}n a 的前n 项和为1S 4n n= B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1{}nS 为递增数列 25.已知数列{}n a 是等差数列,前n 项和为,n S 且13522,a a S +=下列结论中正确的是( ) A .7S 最小B .130S =C .49S S =D .70a =26.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列27.等差数列{}n a 是递增数列,公差为d ,前n 项和为n S ,满足753a a =,下列选项正确的是( ) A .0d <B .10a <C .当5n =时n S 最小D .0n S >时n 的最小值为828.已知递减的等差数列{}n a 的前n 项和为n S ,57S S =,则( ) A .60a > B .6S 最大 C .130S >D .110S >29.已知等差数列{}n a 的公差不为0,其前n 项和为n S ,且12a 、8S 、9S 成等差数列,则下列四个选项中正确的有( ) A .59823a a S +=B .27S S =C .5S 最小D .50a =30.设{}n a 是等差数列,n S 是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =C .95S S >D .6S 与7S 均为n S 的最大值31.等差数列{}n a 的首项10a >,设其前n 项和为{}n S ,且611S S =,则( ) A .0d > B .0d <C .80a =D .n S 的最大值是8S 或者9S32.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a <33.已知数列{}n a 的前n 项和为,n S 25,n S n n =-则下列说法正确的是( )A .{}n a 为等差数列B .0n a >C .n S 最小值为214-D .{}n a 为单调递增数列34.(多选题)等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则下列命题正确的是( )A .若59S S =,则必有14S =0B .若59S S =,则必有7S 是n S 中最大的项C .若67S S >,则必有78S S >D .若67S S >,则必有56S S >35.在下列四个式子确定数列{}n a 是等差数列的条件是( )A .n a kn b =+(k ,b 为常数,*n N ∈);B .2n n a a d +-=(d 为常数,*n N ∈);C .()*2120n n n a a a n ++-+=∈N ; D .{}n a 的前n 项和21n S n n =++(*n N ∈).【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.C 解析:C 【分析】分别观察各项的符号、绝对值即可得出. 【详解】数列1,-3,5,-7,9,…的一个通项公式()()112nn a n =--. 故选C . 【点睛】本题考查了球数列的通项公式的方法,属于基础题.2.C解析:C 【分析】 由递推公式1221n n n a a a ++=+得出25445n n n a a a ++=+,计算出25,24a ⎛⎫∈ ⎪⎝⎭,利用递推公式推导得出()0,1n a ∈(n 为正奇数),1n a >(n 为正偶数),利用定义判断出数列{}()21n a n N *-∈和{}()2n a n N *∈的单调性,进而可得出结论.【详解】()()113212132221212221n n n n n n a a a a a a ++++===++++,110,2a ⎛⎫∈ ⎪⎝⎭,25,24a ⎛⎫∴∈ ⎪⎝⎭,()()121259245221545944221454544452121n n n n n n n n n n n n a a a a a a a a a a a a ++++++-+++=====-+++++⨯++,且()2241544545n n n n n n n a a a a a a a +-+-=-=++,()212122121n n n n n n n a a a a a a a +-+-=-=++. 110,2a ⎛⎫∈ ⎪⎝⎭,则101a <<,则()()3590,14445n a a =-∈+, 如此继续可得知()()210,1n a n N *-∈∈,则()22121212141=045n n n n a aa a -+---->+,所以,数列{}()21n a n N *-∈单调递增;同理可知,()21na n N *>∈,数列{}()2na n N *∈单调递减.对于A 选项,78a a <且79a a <,8972a a a ∴+>,A 选项错误; 对于B 选项,89a a >且108a a <,则91082a a a +<,B 选项错误; 对于C 选项,68a a >,97a a >,则6978a a a a +>+,C 选项正确; 对于D 选项,79a a <,108a a <,则71098a a a a +<+,D 选项错误. 故选:C. 【点睛】本题考查数列不等式的判断,涉及数列递推公式的应用,解题的关键就是推导出数列{}()21n a n N *-∈和{}()2n a n N *∈的单调性,考查推理能力,属于难题.3.D解析:D 【分析】根据题设条件,可得数列{}n a 是以3为周期的数列,且3132122S =+-=,从而求得2017S 的值,得到答案. 【详解】由题意,数列{}n a 满足: 12a =,111n na a +=-, 可得234111,121,1(1)2,22a a a =-==-=-=--=,可得数列{}n a 是以3为周期的数列,且3132122S =+-= 所以20173672210102S =⨯+=. 故选:D.【点睛】本题主要考查了数列的递推公式的应用,其中解答中得出数列{}n a 是以3为周期的数列,是解答的关键,着重考查了推理与运算能力,属于中档试题.4.D解析:D 【分析】利用累加法求出数列{}n a 的通项公式,并利用裂项相消法求出n S ,求出n S 的取值范围,进而可得出实数m 的取值范围. 【详解】11n n a a n +=++,11n n a a n +∴-=+且11a =,由累加法可得()()()()12132111232n n n n n a a a a a a a a n -+=+-+-++-=++++=,()122211n a n n n n ∴==-++,22222222222311n S n n n ⎛⎫⎛⎫⎛⎫∴=-+-++-=-< ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, 由于n S m <对一切正整数n 恒成立,2m ∴≥,因此,实数m 的取值范围是[)2,+∞.故选:D. 【点睛】本题考查数列不等式恒成立问题的求解,同时也考查了累加法求通项以及裂项求和法,考查计算能力,属于中等题.5.B解析:B 【分析】根据数列的递推关系可求得数{}n b 的周期为6,即可求得数列{}n b 的前2020项和. 【详解】()*21N n n n b b b n ++=-∈,且11b =,22b =-, ∴345673,1,2,3,1,b b b b b =-=-===∴{}n b 是以6为周期的周期数列,且60S =, ∴20203366412345S S b b b b ⨯+==+++=-,故选:B. 【点睛】本题考查数列的新定义、数列求和,考查运算求解能力,求解时注意通过计算数列的前6项,得到数列的周期.解析:D 【分析】在数列的递推公式中依次取1,2,3,1n n =- ,得1n -个等式,累加后再利用错位相减法求15a . 【详解】12n n n a a n +=+⋅, 12n n n a a n +-=⋅,12112a a ∴-=⋅,23222a a -=⋅,34332a a -=⋅11(1)2n n n a a n ---=-⋅,以上1n -个等式,累加得12311122232(1)2n n a a n --=⋅+⋅+⋅++-⋅①又2341122122232(2)2(1)2n n n a a n n --=⋅+⋅+⋅++-⋅+-⋅②①- ②得23112222(1)2n n n a a n --=++++--⋅12(12)(1)2(2)2212n n n n n --=--⋅=-⋅--,(2)23n n a n ∴=-⋅+ ,151515(152)231323a ∴=-⋅+=⋅+,故选:D 【点睛】本题主要考查了累加法求数列通项,乘公比错位相减法求数列的和,由通项公式求数列中的项,属于中档题.7.B解析:B 【分析】根据已知递推条件()*21n n n a a a n N ++=-∈即可求得5a【详解】由()*21n n n a a a n N++=-∈知:3214a a a 4321a a a 5435a a a【点睛】本题考查了利用数列的递推关系求项,属于简单题8.D解析:D 【解析】分析:已知1a 逐一求解2345122323a a a a ====,,,. 详解:已知1a 逐一求解2345122323a a a a ====,,,.故选D 点睛:对于含有()1n-的数列,我们看作摆动数列,往往逐一列举出来观察前面有限项的规律.9.D解析:D 【解析】 【分析】根据根号下的数字规律,可知为等差数列.利用等差数列性质求得通项公式,即可判断为第几项. 【详解】根据数列中的项,… 由前几项可知,根式下的数列是以5为首项, 4为公差的等差数列 则根式下的数字组成的等差数列通项公式为()51441n a n n =+-⨯=+而=所以4541n =+ 解得11n = 故选:D 【点睛】本题考查了等差数列通项公式的求法及简单应用,属于基础题.10.B解析:B 【分析】利用等差数列{}n a 的通项公式代入可得574a a -的值. 【详解】由13920a a a ++=,得131020a d +=,则有5711144(4)631020a a a d a d a d -=+--=+=. 故选:B.考查等差数列通项公式的运用,知识点较为简单.11.A解析:A 【分析】根据21n n S a =+,求出1a ,2a ,3a ,4a ,⋯⋯,寻找规律,即可求得答案. 【详解】21n n S a =+当1n =,1121a a =+,解得:11a = 当2n =,122221a a a +=+,解得:21a =- 当3n =,32132221a a a a ++=+,解得:31a = 当4n =,4321422221a a a a a +++=+,解得:41a =-⋯⋯当n 奇数时,1n a = 当n 偶数时,1n a =-∴71a =,20191S =故720192a S += 故选:A. 【点睛】本题主要考查了根据递推公式求数列值,解题关键是掌握数列的基础知识,考查了分析能力和计算能力,属于中档题.12.B解析:B 【分析】通过递推公式求出234,,a a a 可得数列{}n a 是周期数列,根据周期即可得答案. 【详解】 解:211111=1=22a a =--,3211121a a =-=-=-,4311112a a =-=+=, 则数列{}n a 周期数列,满足3n n a a -=,4n ≥85212a a a ∴===, 故选:B. 【点睛】本题考查数列的周期性,考查递推公式的应用,是基础题.13.B解析:B【分析】 由122n n a a n n +=++转化为11121n n a a n n +⎛⎫-=- ⎪+⎝⎭,利用叠加法,求得23na n =-,即可求解. 【详解】 由122n n a a n n +=++,可得12112(1)1n n a a n n n n +⎛⎫-==- ⎪++⎝⎭, 所以()()()()11223211n n n n n n n a a a a a a a a a a -----=-+-+-++-+11111111222*********n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+ ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭⎝⎭122113n n ⎛⎫=-+=- ⎪⎝⎭,所以102143105a =-=. 故选:B. 【点睛】数列的通项公式的常见求法:1、对于递推关系式可转化为1()n n a a f n +-=的数列,通常采用叠加法(逐差相加法)求其通项公式;2、对于递推关系式可转化为1()n na f n a +=的数列,并且容易求数列{()}f n 前n 项积时,通常采用累乘法求其通项公式; 3、对于递推关系式形如1n n a pa q +=+的数列,可采用构造法求解数列的通项公式.14.D解析:D 【分析】由21111n n a n n +==+++,利用反比例函数的性质判断即可. 【详解】在数列{}n a 中,21111n n a n n +==+++, 由反比例函数的性质得:{}n a 是*n N ∈时单调递减数列, 故选:D15.B解析:B 【分析】由111n n n n a a a a ++-=+,且113a =,可得:111n n na a a ++=-,可得其周期性,进而得出结论.【详解】因为111n n n n a a a a ++-=+,且113a =, 所以111nn na a a ++=-, 21132113a +∴==-,33a =-,412a =-,513a =,⋯⋯, 4n n a a +∴=.123411···2(3)()132a a a a ∴=⨯⨯--⋅⨯=.则{}n a 的前2021项之积50511133=⨯=. 故选:B 【点睛】方法点睛:已知递推关系式求通项:(1)用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式.(2)通过具体的前几项找到其规律,如周期性等求解.16.D解析:D 【分析】根据观察法,即可得出数列的通项公式. 【详解】因为数列1111,,,, (57911)--可写成 ()()()()2342322311111,1,1,12,..24.333-⨯-⨯-⨯+⨯+⨯+⨯+-⨯, 所以其通项公式为(1)(1)23213nnn a n n -=-=++⨯. 故选:D.17.B解析:B 【分析】讨论出当1a 分别取1、2、3、4、6时,数列{}n a 为周期数列,然后说明当19a ≥时,分1a 为正奇数和正偶数两种情况分析出数列{}n a 不是周期数列,即可得解.【详解】已知数列{}n a 满足1N a *∈,1,2+3,nn n n n a a a a a +⎧⎪=⎨⎪⎩为偶数为奇数. ①若11a =,则24a =,32a =,41a =,54a =,,以此类推,可知对任意的n *∈N ,3n n a a +=,此时,{}n a 为周期数列;②若12a =,则21a =,34a =,42a =,51a =,,以此类推,可知对任意的n *∈N ,3n n a a +=,此时,{}n a 为周期数列;③若13a =,则26a =,33a =,46a =,,以此类推,可知对任意的n *∈N ,2n n a a +=,此时,{}n a 为周期数列;④若14a =,则22a =,31a =,44a =,52a =,,以此类推,可知对任意的n *∈N ,3n n a a +=,此时,{}n a 为周期数列;⑤若15a =,则28a =,34a =,42a =,51a =,64a =,,以此类推,可知对任意的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列; ⑥若16a =,则23a =,36a =,43a =,,以此类推,可知对任意的n *∈N ,2n n a a +=,此时,{}n a 为周期数列;⑦若17a =,则210a =,35a =,48a =,54a =,,以此类推,可知对任意的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列; ⑧若18a =,则24a =,32a =,41a =,54a =,,以此类推,可知对任意的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列.下面说明,当19a ≥且1N a *∈时,数列{}n a 不是周期数列.(1)当(3412,2a ⎤∈⎦且1N a *∈时,由列举法可知,数列{}n a 不是周期数列;(2)假设当(()112,23,k k a k k N +*⎤∈≥∈⎦且1N a *∈时,数列{}n a 不是周期数列,那么当(()1212,23,k k a k k N ++*⎤∈≥∈⎦时. 若1a 为正偶数,则(1122,22k k a a +⎤=∈⎦,则数列{}n a 从第二项开始不是周期数列,从而可知,数列{}n a 不是周期数列; 若1a 为正奇数,则((121321323,232,2k k k k a a ++++⎤⎤=+∈++⊆⎦⎦且2a 为偶数,由上可知,数列{}n a 从第二项开始不是周期数列,进而可知数列{}n a 不是周期数列.综上所述,当19a ≥且1N a *∈时,数列{}n a 不是周期数列.因此,若{}n a 为周期数列,则1a 的取值集合为{}1,2,3,4,6. 故选:B. 【点睛】本题解题的关键是抓住“数列{}n a 为周期数列”进行推导,对于1a 的取值采取列举法以及数学归纳法进行论证,对于这类问题,我们首先应弄清问题的本质,然后根据数列的基本性质以及解决数列问题时常用的方法即可解决.18.C解析:C 【分析】由题意可知,得数列{}n a 是周期为3的周期数列,前3项和为1102++=,又202067331=⨯+,由此可得答案 【详解】解:由数列1,1,2,3,5,8,13,21,34,55,…,各项除以2的余数,可得数列{}n a 为1,1,0,1,1,0,1,1,0,⋅⋅⋅,所以数列{}n a 是周期为3的周期数列,前3项和为1102++=, 因为202067331=⨯+,所以数列{}n a 的前2020项的和为673211347⨯+= 故选:C19.B解析:B 【分析】先由题中条件,得到21221i i i a a a +-=+,由累加法得到202211221k k a a ==-∑,根据00a =,()11i i a a i +=+∈N ,逐步计算出221a 所有可能取的值,即可得出结果.【详解】由11i i a a +=+得()2221121i i i i a a a a +=+=++,则21221i i i a a a +-=+, 所以2221121a a a -=+, 2232221a a a -=+,……,2202022121a a a -=+,以上各式相加可得:()2112022102212 (20202)kk a a a a a a=-=+++++=∑,所以20221211220k k a a a ==--∑,又00a =,所以2120211a a a =++=,则202211221k k a a ==-∑,因为()11i i a a i +=+∈N ,00a =,则0111a a =+=,所以11a =±,则2110a a =+=或2,所以20a =或2±;则3211a a =+=或3,所以31a =±或3±;则4310a a =+=或2或4,所以42a =±或4±或0;则5411a a =+=或3或5,所以51a =±或3±或5±;……,以此类推,可得:211a =±或3±或5±或7±或9±或11±或13±或15±或17±或19±或21±,因此221a 所有可能取的值为222222222221,3,5,7,9,11,13,15,17,19,21,所以221122a -所有可能取的值为10-,6-,2,14,30,50,74,102,134,170,210;则201kk a=∑所有可能取的值为10,6,2,14,30,50,74,102,134,170,210,即ACD 都有可能,B 不可能. 故选:B. 【点睛】 关键点点睛:求解本题的关键在于将题中条件平方后,利用累加法,得到20221211220k k a a a ==--∑,将问题转化为求221a 的取值问题,再由条件,结合各项取值的规律,即可求解.20.D解析:D 【分析】根据题意,得到数列是增数列,结合通项公式,列出不等式组求解,即可得出结果. 【详解】因为对任意的*n ∈N 都有1n n a a +>, 则数列{}n a 单调递增;又()()*622,6,6n n p n n a n p n -⎧--≤=∈⎨>⎩N , 所以只需67201p p a a ->⎧⎪>⎨⎪<⎩,即21106p p p p<⎧⎪>⎨⎪-<⎩,解得1027p <<. 故选:D.【点睛】本题主要考查由数列的单调性求参数,属于基础题型.二、多选题 21.BCD 【分析】由题意可得数列满足递推关系,依次判断四个选项,即可得正确答案. 【详解】对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,,故B 正确; 对于C ,可解析:BCD 【分析】由题意可得数列{}n a 满足递推关系()12211,1,+3n n n a a a a a n --===≥,依次判断四个选项,即可得正确答案. 【详解】对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,81+1+2+3+5+8+13+2154S ==,故B 正确; 对于C ,可得()112n n n a a a n +-=-≥, 则()()()()1234131425311++++++++++n n n a a a a a a a a a a a a a a +-=----即212++1n n n n S a a a a ++=-=-,∴202020221S a =-,故C 正确; 对于D ,由()112n n n a a a n +-=-≥可得,()()()135202124264202220202022++++++++a a a a a a a a a a a a =---=,故D 正确.故选:BCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,解题的关键是得出数列的递推关系,()12211,1,+3n n n a a a a a n --===≥,能根据数列性质利用累加法求解.22.ACD 【分析】先计算出数列的前几项,判断AC ,然后再寻找规律判断BD . 【详解】由题意,,A 正确,,C 正确; ,∴数列是周期数列,周期为3. ,B 错; ,D 正确.故选:ACD . 【点睛】 本解析:ACD 【分析】先计算出数列的前几项,判断AC ,然后再寻找规律判断BD . 【详解】由题意211122a =-=,311112a =-=-,A 正确,3132122S =+-=,C 正确;41121a =-=-,∴数列{}n a 是周期数列,周期为3. 2019367331a a a ⨯===-,B 错;20193201967322S =⨯=,D 正确.故选:ACD . 【点睛】本题考查由数列的递推式求数列的项与和,解题关键是求出数列的前几项后归纳出数列的性质:周期性,然后利用周期函数的定义求解.23.ABC 【分析】数列的前项和为,且满足,,可得:,化为:,利用等差数列的通项公式可得,,时,,进而求出. 【详解】数列的前项和为,且满足,, ∴,化为:,∴数列是等差数列,公差为4, ∴,可得解析:ABC 【分析】数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),114a =,可得:1140n n n n S S S S ---+=,化为:1114n n S S --=,利用等差数列的通项公式可得1nS ,n S ,2n ≥时,()()111144141n n n a S S n n n n -=-=-=---,进而求出n a . 【详解】数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),114a =, ∴1140n n n n S S S S ---+=,化为:1114n n S S --=, ∴数列1n S ⎧⎫⎨⎬⎩⎭是等差数列,公差为4, ∴()14414n n n S =+-=,可得14n S n=, ∴2n ≥时,()()111144141n n n a S S n n n n -=-=-=---, ∴()1(1)41(2)41n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,对选项逐一进行分析可得,A ,B ,C 三个选项错误,D 选项正确. 故选:ABC. 【点睛】本题考查数列递推式,解题关键是将已知递推式变形为1114n n S S --=,进而求得其它性质,考查逻辑思维能力和运算能力,属于常考题24.AD 【分析】先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求,最后根据和项与通项关系得. 【详解】因此数列为以为首项,为公差的等差数列,也是递增数列,即D 正确;解析:AD 【分析】先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求S n ,最后根据和项与通项关系得n a . 【详解】11140(2),40n n n n n n n a S S n S S S S ---+=≥∴-+= 11104n n n S S S -≠∴-=因此数列1{}n S 为以114S =为首项,4为公差的等差数列,也是递增数列,即D 正确; 所以1144(1)44n n n n S S n=+-=∴=,即A 正确; 当2n ≥时111144(1)4(1)n n n a S S n n n n -=-=-=--- 所以1,141,24(1)n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,即B ,C 不正确;故选:AD 【点睛】本题考查由和项求通项、等差数列定义与通项公式以及数列单调性,考查基本分析论证与求解能力,属中档题.25.BCD 【分析】由是等差数列及,求出与的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】设等差数列数列的公差为. 由有,即 所以,则选项D 正确.选项A. ,无法判断其是否有最小解析:BCD 【分析】由{}n a 是等差数列及13522,a a S +=,求出1a 与d 的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】设等差数列数列{}n a 的公差为d .由13522,a a S +=有()1112542252a a a d d ⨯+=++,即160a d += 所以70a =,则选项D 正确. 选项A. ()71176773212S a d a d d ⨯=+=+=-,无法判断其是否有最小值,故A 错误. 选项B. 113137131302a S a a +=⨯==,故B 正确. 选项C. 9876579450a a a a S a a S -=++++==,所以49S S =,故C 正确.故选:BCD 【点睛】关键点睛:本题考查等差数列的通项公式及求和公式的应用,解答本题的关键是由条件13522,a a S +=得到160a d +=,即70a =,然后由等差数列的性质和前n 项和公式判断,属于中档题.26.BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: ,得是等差数列,当时不是等比数列,故错; 选项B: ,,得是等差数列,故对; 选项C: ,,当时也成立,是等比数列解析:BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11nn S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键.27.BD 【分析】由题意可知,由已知条件可得出,可判断出AB 选项的正误,求出关于的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】由于等差数列是递增数列,则,A 选项错误解析:BD 【分析】由题意可知0d >,由已知条件753a a =可得出13a d =-,可判断出AB 选项的正误,求出n S 关于d 的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误.由于等差数列{}n a 是递增数列,则0d >,A 选项错误;753a a =,则()11634a d a d +=+,可得130a d =-<,B 选项正确;()()()22171117493222224n n n d n n d n n d S na nd n d -⎡⎤--⎛⎫=+=-+==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当3n =或4时,n S 最小,C 选项错误; 令0n S >,可得270n n ->,解得0n <或7n >.n N *∈,所以,满足0n S >时n 的最小值为8,D 选项正确.故选:BD.28.ABD 【分析】转化条件为,进而可得,,再结合等差数列的性质及前n 项和公式逐项判断即可得解. 【详解】 因为,所以,即,因为数列递减,所以,则,,故A 正确; 所以最大,故B 正确; 所以,故C 错误解析:ABD 【分析】转化条件为670a a +=,进而可得60a >,70a <,再结合等差数列的性质及前n 项和公式逐项判断即可得解. 【详解】因为57S S =,所以750S S -=,即670a a +=,因为数列{}n a 递减,所以67a a >,则60a >,70a <,故A 正确; 所以6S 最大,故B 正确; 所以()113137131302a a S a+⨯==<,故C 错误; 所以()111116111102a a S a+⨯==>,故D 正确.故选:ABD.29.BD 【分析】设等差数列的公差为,根据条件、、成等差数列可求得与的等量关系,可得出、的表达式,进而可判断各选项的正误.设等差数列的公差为,则,, 因为、、成等差数列,则,即, 解得,,解析:BD 【分析】设等差数列{}n a 的公差为d ,根据条件12a 、8S 、9S 成等差数列可求得1a 与d 的等量关系,可得出n a 、n S 的表达式,进而可判断各选项的正误. 【详解】设等差数列{}n a 的公差为d ,则8118788282S a d a d ⨯=+=+,9119899362S a d a d ⨯=+=+, 因为12a 、8S 、9S 成等差数列,则81922S a S =+,即11116562936a d a a d +=++,解得14a d =-,()()115n a a n d n d ∴=+-=-,()()219122n n n d n n d S na --=+=. 对于A 选项,59233412a a d d +=⨯=,()2888942d S d -⨯==-,A 选项错误; 对于B 选项,()2229272d Sd -⨯==-,()2779772d S d -⨯==-,B 选项正确;对于C 选项,()2298192224n d d S n n n ⎡⎤⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.若0d >,则4S 或5S 最小;若0d <,则4S 或5S 最大.C 选项错误; 对于D 选项,50a =,D 选项正确. 故选:BD. 【点睛】在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解,另外在求解等差数列前n 项和n S 的最值时,一般利用二次函数的基本性质或者数列的单调性来求解.30.BD 【分析】设等差数列的公差为,依次分析选项即可求解. 【详解】根据题意,设等差数列的公差为,依次分析选项: 是等差数列,若,则,故B 正确;又由得,则有,故A 错误; 而C 选项,,即,可得,解析:BD 【分析】设等差数列{}n a 的公差为d ,依次分析选项即可求解. 【详解】根据题意,设等差数列{}n a 的公差为d ,依次分析选项:{}n a 是等差数列,若67S S =,则7670S S a -==,故B 正确;又由56S S <得6560S S a -=>,则有760d a a =-<,故A 错误; 而C 选项,95S S >,即67890a a a a +++>,可得()7820a a +>, 又由70a =且0d <,则80a <,必有780a a +<,显然C 选项是错误的. ∵56S S <,678S S S =>,∴6S 与7S 均为n S 的最大值,故D 正确; 故选:BD. 【点睛】本题考查了等差数列以及前n 项和的性质,需熟记公式,属于基础题.31.BD 【分析】由,即,进而可得答案. 【详解】 解:, 因为所以,,最大, 故选:. 【点睛】本题考查等差数列的性质,解题关键是等差数列性质的应用,属于中档题.解析:BD 【分析】由6111160S S S S =⇒-=,即950a =,进而可得答案. 【详解】解:1167891011950S S a a a a a a -=++++==, 因为10a >所以90a =,0d <,89S S =最大, 故选:BD . 【点睛】本题考查等差数列的性质,解题关键是等差数列性质的应用,属于中档题.32.AD 【分析】由已知得到,进而得到,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为,可知不一定成立,从而判定C 错误. 【详解】 由已知得:,结合等差数列的性质可知,,该等差解析:AD 【分析】由已知得到780,0a a ><,进而得到0d <,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为160a d +=,可知不一定成立,从而判定C 错误. 【详解】由已知得:780,0a a ><,结合等差数列的性质可知,0d <,该等差数列是单调递减的数列, ∴A 正确,B 错误,D 正确,310S S =,等价于1030S S -=,即45100a a a ++⋯+=,等价于4100a a +=,即160a d +=,这在已知条件中是没有的,故C 错误. 故选:AD. 【点睛】本题考查等差数列的性质和前n 项和,属基础题,关键在于掌握和与项的关系.33.AD 【分析】利用求出数列的通项公式,可对A ,B ,D 进行判断,对进行配方可对C 进行判断 【详解】 解:当时,, 当时,, 当时,满足上式, 所以,由于,所以数列为首项为,公差为2的等差数列, 因解析:AD 【分析】利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列的通项公式,可对A ,B ,D 进行判断,对25,n S n n =-进行配方可对C 进行判断【详解】解:当1n =时,11154a S ==-=-,当2n ≥时,2215[(1)5(1)]26n n n a S S n n n n n -=-=-----=-,当1n =时,14a =-满足上式, 所以26n a n =-,由于()122n n a a n --=≥,所以数列{}n a 为首项为4-,公差为2的等差数列, 因为公差大于零,所以{}n a 为单调递增数列,所以A ,D 正确,B 错误, 由于225255()24n S n n n =-=--,而n ∈+N ,所以当2n =或3n =时,n S 取最小值,且最小值为6-,所以C 错误, 故选:AD 【点睛】此题考查,n n a S 的关系,考查由递推式求通项并判断等差数列,考查等差数列的单调性和前n 项和的最值问题,属于基础题34.ABC 【分析】根据等差数列性质依次分析即可得答案. 【详解】解:对于A.,若,则,所以,所以,故A 选项正确;对于B 选项,若,则,由于,公差,故,故,所以是中最大的项;故B 选项正确; C. 若解析:ABC 【分析】根据等差数列性质依次分析即可得答案. 【详解】解:对于A.,若59S S =,则67890a a a a +++=,所以781140a a a a +=+=,所以()114141402a a S +==,故A 选项正确; 对于B 选项,若59S S =,则780+=a a ,由于10a >,公差0d ≠,故0d <,故780,0a a ><,所以7S 是n S 中最大的项;故B 选项正确;C. 若67S S >,则70a <,由于10a >,公差0d ≠,故0d <,故80a <,6a 的符号不定,故必有78S S >,56S S >无法确定;故C 正确,D 错误. 故选:ABC . 【点睛】本题考查数列的前n 项和的最值问题与等差数列的性质,是中档题.35.AC 【分析】直接利用等差数列的定义性质判断数列是否为等差数列. 【详解】A 选项中(,为常数,),数列的关系式符合一次函数的形式,所以是等差数列,故正确,B 选项中(为常数,),不符合从第二项起解析:AC 【分析】直接利用等差数列的定义性质判断数列是否为等差数列. 【详解】A 选项中n a kn b =+(k ,b 为常数,*n N ∈),数列{}n a 的关系式符合一次函数的形式,所以是等差数列,故正确,B 选项中2n n a a d +-=(d 为常数,*n N ∈),不符合从第二项起,相邻项的差为同一个常数,故错误;C 选项中()*2120n n n a a a n ++-+=∈N ,对于数列{}n a 符合等差中项的形式,所以是等差数列,故正确;D 选项{}n a 的前n 项和21n S n n =++(*n N ∈),不符合2n S An Bn =+,所以{}n a 不为等差数列.故错误. 故选:AC 【点睛】本题主要考查了等差数列的定义的应用,如何去判断数列为等差数列,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.。
一般数列求和(裂项、错位、分组)-2023届高三数学一轮复习专题

一般数列求和一.裂项求和1.已知数列{a n}满足a1=2,.(1)设,求证:数列{b n}为等差数列,并求数列{a n}的通项公式;(2)设,求数列{c n c n+2}的前n项和为T n,2.已知数列{a n}满足a1=3,且a n+1=2a n﹣n+1.(1)证明:数列{a n﹣n}为等比数列;(2)记,求数列{b n}前n项的和S n.3.设数列{a n}的前n项和为S n,已知a n>0,.(1)求{a n}的通项公式;(2)若数列{b n}满足,求{b n}的前n项和T n.4.已知数列{a n}的前n项和S n满足2S n﹣na n=3n(n∈N*),且a2=5.(1)证明数列{a n}为等差数列,并求{a n}的通项公式;(2)设b n=,求为数列{b n}的前n项和T n.【裂和】5.已知数列{a n}和{}均为等差数列,a1=.(1)求数列{a n}的通项公式;(2)设数列{b n}满足b n=(﹣1)n•,求数列{b n}的前n项和S n.二.错位相减法6.已知等差数列{a n}满足(a1+a2)+(a2+a3)+…+(a n+a n+1)=2n(n+1)(n∈N*).(1)求数列{a n}的通项公式;(2)求数列{}的前n项和S n.三.分组求和【并项求和】7.(2021•湖南模拟)已知正项数列{a n}的前n项和为S n,2S n=a n2+a n﹣2.(1)证明:数列{a n}是等差数列.(2)若b n=(﹣1)n a n2,求数列{b n}的前2n项和为T2n.【分组求和】8.(2020秋•湖北期中)已知数列{a n}的前n项和为S n,a1=2,S n+1=3S n+2,n∈N*.(1)证明:数列{S n+1}为等比数列;(2)若b n=,求数列{b n}的前2n项的和T2n.练习:9.已知数列{a n}和{}均为等差数列,a1=.(1)求数列{a n}的通项公式;(2)设数列{b n}满足b n=(﹣1)n•,求数列{b n}的前n项和S n.10.在数列{a n}中,a1=14,a n+1﹣3a n+4=0.(1)证明:数列{a n﹣2}是等比数列.(2)设b n=,记数列{b n}的前n项和为T n,若对任意的n∈N*,m≥T n恒成立,求m 的取值范围.11.已知等比数列{a n}的前n项和为S n,a1=1,且S3=2S2+1.(1)求数列{a n}的通项公式;(2)若数列{a n}为递增数列,数列{b n}满足,求数列b n的前n项和T n.12.已知等差数列{a n}的前n项和为S n,且S5=25,a2+a5+a10=31.(1)求数列{a n}的通项公式以及前n项和S n;(2)若求数列{b n}的前2n﹣1项和T2n﹣1.答案:1.(2021秋•湖北月考)已知数列{a n}满足a1=2,.(1)设,求证:数列{b n}为等差数列,并求数列{a n}的通项公式;(2)设,数列{c n c n+2}的前n项和为T n,是否存在正整数m,使得对任意的n∈N*都成立?若存在,求出m的最小值;若不存在,试说明理由.【解答】(1)证明:∵,∴,则=.又,且,∴数列{b n}是以1为首项,以1为公差的等差数列,则,即,;(2)解:=,,则=2=<3.要使对任意的n∈N*都成立,只要3,即,解得m≤﹣4或m≥3.∵m>0,∴m≥3,即m的最小值为3.2.(2020秋•湖北期末)已知数列{a n}满足a1=3,且a n+1=2a n﹣n+1.(1)证明:数列{a n﹣n}为等比数列;(2)记,S n是数列{b n}前n项的和,求证:.【解答】证明:(1)依题意,由a n+1=2a n﹣n+1,两边同时减去n+1,可得a n+1﹣(n+1)=2a n﹣n+1﹣(n+1)=2(a n﹣n),∵a1﹣1=3﹣1=2,∴数列{a n﹣n}是以2为首项,2为公比的等比数列.(2)由(1)知,a n﹣n=2•2n﹣1=2n,∴a n=2n+n,∴==﹣,则S n=b1+b2+…+b n=﹣+﹣+…+﹣=﹣=﹣<,∴不等式成立.3.(2018秋•荆州区校级期末)设数列{a n}的前n项和为S n,已知a n>0,.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n}满足,求{b n}的前n项和T n.【解答】解:(Ⅰ),则,两式相减得:(a n+a n﹣1)(a n﹣a n﹣1﹣2)=0,∵a n>0,∴a n﹣a n﹣1=2(n≥2),且,∴{a n}是以3为首项,2为公差的等差数列,∴a n=2n+1.(Ⅱ)∴=.4.(2019秋•西湖区校级期中)已知数列{a n}的前n项和S n满足2S n﹣na n=3n(n∈N*),且a2=5.(1)证明数列{a n}为等差数列,并求{a n}的通项公式;(2)设b n=,T n为数列{b n}的前n项和,求使T n成立的最小正整数n的值.【解答】解:(1)当n≥2时,2S n﹣1﹣(n﹣1)a n﹣1=3(n﹣1),又2S n﹣na n=3n,相减可得(n﹣1)a n﹣1﹣(n﹣2)a n=3,当n≥3时,(n﹣2)a n﹣2﹣(n﹣3)a n﹣1=3,所以(n﹣1)a n﹣1﹣(n﹣2)a n=(n﹣2)a n﹣2﹣(n﹣3)a n﹣1,可得2a n﹣1=a n﹣2+a n,所以{a n}为等差数列.又2S1﹣a1=3,且a1=S1,得a1=3,又a2=5,所以{a n}为公差为2的等差数列,则a n=2n+1;(2)b n=====(﹣),T n=(﹣+﹣+﹣+﹣+…+﹣)=(﹣),要使T n成立,即(﹣)>,解得n>,所以最小正整数n的值为8.4.(2019秋•湖北月考)已知数列{a n}和{}均为等差数列,a1=.(1)求数列{a n}的通项公式;(2)设数列{b n}满足b n=(﹣1)n•,求数列{b n}的前n项和S n.【解答】解:(1){}均为等差数列,a1=.可得2•=a12+,数列{a n}也为等差数列,公差设为d,可得(a1+d)2=a12+,化为a1=d=,则a n=+(n﹣1)=n;(2)b n=(﹣1)n•=(﹣1)n•=(﹣1)n•(+),S n=﹣(1+)+(+)﹣(+)+…+(﹣1)n•(+)=﹣1+(﹣1)n•.6.已知等差数列{a n}满足(a1+a2)+(a2+a3)+…+(a n+a n+1)=2n(n+1)(n∈N*).(1)求数列{a n}的通项公式;(2)求数列{}的前n项和S n.【解答】解:∵(a1+a2)+(a2+a3)+…+(a n+a n+1)=2n(n+1),①∴(a1+a2)+(a2+a3)+…+(a n﹣1+a n)=2n(n﹣1),②由①﹣②可得,a n+a n+1=4n,③,令n=n﹣1,可得a n+a n﹣1=4(n﹣1),④,由③﹣④可得2d=4,∴d=2,∵a1+a2=4,∴a1=1,∴a n=1+2(n﹣1)=2n﹣1,(2)=(2n﹣1)•()n﹣1,∴S n=1•()0+3•()1+5•()2+…+(2n﹣1)•()n﹣1,∴S n=1•()1+3•()2+5•()3+…+(2n﹣3)•()n+(2n﹣1)•()n,∴S n=1+2•()1+2•()2+2•()3+…+2•()n﹣1﹣(2n﹣1)•()n=1+2﹣(2n﹣1)•()n=3﹣(2n+3)•()n,∴S n=6﹣(2n+3)•()n﹣1.7.(2021•湖南模拟)已知正项数列{a n}的前n项和为S n,2S n=a n2+a n﹣2.(1)证明:数列{a n}是等差数列.(2)若b n=(﹣1)n a n2,求数列{b n}的前2n项和为T2n.【解答】解:(1)证明:因为,所以当n=1时,,即,解得a1=2或a1=﹣1(舍去).当n≥2时,,则,即(a n+a n﹣1)(a n﹣a n﹣1﹣1)=0,因为a n>0,所以a n+a n﹣1>0,则a n﹣a n﹣1﹣1=0,即a n﹣a n﹣1=1,(n∈N*,n⩾2)所以数列{a n}是等差数列.(2)由(1)可得a n=2+n﹣1=n+1,n∈N*,则,n∈N*,从而,故T2n=b1+b2+…+b2n﹣1+b2n(4+1)+(4×2+1)+…+(4n+1)==2n2+3n.8.(2020秋•湖北期中)已知数列{a n}的前n项和为S n,a1=2,S n+1=3S n+2,n∈N*.(1)证明:数列{S n+1}为等比数列;(2)若b n=,求数列{b n}的前2n项的和T2n.【解答】解:(1)证明:∵S n+1=3S n+2,∴,又S1+1=3,∴数列{S n+1}是以3为首项,以3为公比的等比数列;(2)解:由(1)可得,∴,又当n≥2时,,a1=2也适合上式,∴,∴,∴T2n=(b1+b3+…+b2n﹣1)+(b2+b4+…+b2n)=+=.9.(2019秋•湖北月考)已知数列{a n}和{}均为等差数列,a1=.(1)求数列{a n}的通项公式;(2)设数列{b n}满足b n=(﹣1)n•,求数列{b n}的前n项和S n.【解答】解:(1){}均为等差数列,a1=.可得2•=a12+,数列{a n}也为等差数列,公差设为d,可得(a1+d)2=a12+,化为a1=d=,则a n=+(n﹣1)=n;(2)b n=(﹣1)n•=(﹣1)n•=(﹣1)n•(+),S n=﹣(1+)+(+)﹣(+)+…+(﹣1)n•(+)=﹣1+(﹣1)n•.10.在数列{a n}中,a1=14,a n+1﹣3a n+4=0.(1)证明:数列{a n﹣2}是等比数列.(2)设b n=,记数列{b n}的前n项和为T n,若对任意的n∈N*,m≥T n恒成立,求m的取值范围.【解答】(1)证明:∵数列{a n}满足a n+1﹣3a n+4=0,∴a n+1﹣2=3(a n﹣2),即=3(常数).数列{a n﹣2}是以12为首项,3为公比的等比数列;(2)解:由(1)知,即.∴b n==.当n为偶数时,=;当n为奇数时,﹣…+=.当n为偶数时,是递减的,此时当n=2时,T n取最大值﹣,则m≥﹣;当n为奇数时,T n=﹣是递增的,此时T n<﹣,则m≥﹣.综上,m的取值范围是[﹣,+∞).11.已知等比数列{a n}的前n项和为S n,a1=1,且S3=2S2+1.(1)求数列{a n}的通项公式;(2)若数列{a n}为递增数列,数列{b n}满足,求数列b n的前n项和T n.(3)在条件(2)下,若不等式λnT n﹣3λn+b n<0对任意正整数n都成立,求λ的取值范围.【解答】解:(1)等比数列{a n}的公比设为q,前n项和为S n,a1=1,且S3=2S2+1,可得1+q+q2=2(1+q)+1,解得q=﹣1或q=2,则a n=(﹣1)n﹣1;或a n=2n﹣1;(2)数列{a n}为递增数列,可得a n=2n﹣1,数列{b n}满足,即为b n=(2n﹣1)•()n,前n项和T n=1•+3•+…+(2n﹣1)•()n,T n=1•+3•+…+(2n﹣1)•()n+1,相减可得T n=+2(++…+()n)﹣(2n﹣1)•()n+1=+2•﹣(2n﹣1)•()n+1,化为T n=3﹣(2n+3)•()n;(3)不等式λnT n﹣3λn+b n<0对任意正整数n都成立,即为λ(T n﹣3)+<0,即λ>恒成立,可令t=2n﹣1(t为正奇数),可得==,由t+≥4,当t=1时,t+=5,t=3时,t+=,t=5时,t+=,可得t=3,即n=2时,取得最大值,则λ>.12.已知等差数列{a n}的前n项和为S n,且S5=25,a2+a5+a10=31.(1)求数列{a n}的通项公式以及前n项和S n;(2)若求数列{b n}的前2n﹣1项和T2n﹣1.【解答】解:(1)由S5=25,得5a1+d=25①,由a2+a5+a10=31,得a1+d+(a1+4d)+(a1+9d)=3a1+14d=31②,由①②解得,a1=1,d=2,所以数列{a n}的通项公式a n=a1+(n﹣1)d=2n﹣1,前n项和S n==n2.(2)b n===,所以T2n﹣1=(b1+b3+…+b2n﹣1)+(b2+b4+…+b2n﹣2)=(21+25+29+…+22n﹣1)+(﹣+﹣+…+﹣)=+(﹣)=﹣﹣.。
高三专题复习:数列解答题去答案

数列解答题提升训练
1、 【2013·江西卷】正项数列{}n a 的前n 项和n S 满足:222(1)()0n n S n n S n n -+--+=
(1)求数列{}n a 的通项公式;
(2)令221(2)n n n b n a +=
+,数列{}n b 的前n 项和为n T ,证明:对于任意的n ∈N *,都有Tn<564.
2、【江苏海安高级中学2014高三数学期末复习】数列{n a }的前n 项和为n S ,213122
n n S a n n +=--+,(*)n N ∈. (1)设n n b a n =+,证明:数列{}n b 是等比数列;
(2)求数列{}n nb 的前n 项和n T ;
3、【2013·天津卷】已知首项为32
的等比数列{a n }不.是递减数列,其前n 项和为S n (n∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.
(1)求数列{a n }的通项公式;
(2)设T n =S n -1S n
(n∈N *),求数列{T n }的最大项的值与最小项的值.
4、【江苏省常州市金坛市第一中学2013年高考冲刺模拟试卷】数列{}n a 中,11a =,37a =,
且11(2)1
n n na a n n +-=-≥. (1)求2a 及{}n a 的通项公式;
(2)设k a 是{}n a 中的任意一项,是否存在,()r p N r p k *∈>>,使,,k p r a a a 成等比 数列?如存在,试分别写出p 和r 关于k 的一个..
表达式,并给出证明; (3)证明:对一切n N *∈,21176
n
i i a =<∑.。
数列专题总复习知识点整理与经典例题讲解高三数学.pdf

Sn ,其中 a1 、d 称作为基本元素。只要已知这 5 个元素中的任意 3 个,便可求出其余 2 个,
即知 3 求 2。(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,
a − 2d, a − d, a, a + d, a + 2d … ( 公 差 为 d ); 偶 数 个 数 成 等 差 , 可 设 为 … ,
2
值。(答:前 13 项和最大,最大值为 169); (2)若{an} 是等差数列,首项 a1 0, a2003 + a2004 0 , a2003 a2004 0 ,则使前 n 项和
Sn 0 成立的最大正整数 n 是
(答:4006)
(3)在等差数列 an 中,a10 0, a11 0 ,且 a11 | a10 | ,S n 是其前 n 项和,则( )
如(1)等差数列{an} 中, a10 = 30 , a20 = 50,则通项 an =
(答: 2n +10 );
(2)首项为-24 的等差数列,从第 10 项起开始为正数,则公差的取值范围是______(答:
8 d 3) 3
3、等差数列的前
n
和:
Sn
=
n(a1 + 2
an )
,
Sn
=
na1
+
n(n −1) 2
a −3d, a − d, a + d, a + 3d ,…(公差为 2 d )
5、等差数列的性质:
(1)当公差 d 0 时,等差数列的通项公式 an = a1 + (n −1)d = dn + a1 − d 是关于 n 的一
次函数,且斜率为公差
d
高三数学二轮专题复习教案――数列

0
(2) 设
c
1 3 ,当 n 1 时, a1
0 ,结论成立
当 n 2 时, ∵ an can3 1 1 c ,∴ 1 an c (1 an 1 )(1 an 1 an2 1 )
1 ∵ 0 C 3 ,由( 1)知 an 1 [0,1] ,所以 1 an 1 an2 1 3 且 1 an 1 0
∴1 an 3c(1 an 1 )
n( n 1)
1 11 1 1 1 … 1 1
6 22 3 3 4
n n1
学习必备
欢迎下载
1 11 1 1 1 5 6 2 2 n 1 6 4 12
综上,原不等式成立. 点评:本小题主要考查等差数列,等比数列,数学归纳法,不等式等基础知识,考查综合运用数学知识进行归纳、总结、推 理、论证等能力.
例7 . ( 2008 安徽理)设数列 an 满足 a0 0, an 1 can3 1 c, c N * ,其中 c 为实数
(3)通项公式: an
(4)性质 等差数列的主要性质:
a1 (n 1)d, an
a1q n 1, n
N.
①单调性: d ≥ 0 时为递增数列, d ≤ 0 时为递减数列, d 0 时为常数列.
②若 m n p q ,则 am an ap aq (m,n, p, q N ) .特别地,当 m n 2 p 时,有 am an 2ap .
(Ⅰ)证明: an [0,1] 对任意 n N * 成立的充分必要条件是 c [0,1] ;
1
0
(Ⅱ)设
c
3 ,证明: an
1 (3c) n 1, n
N*
;
0
(Ⅲ)设
c
1 3 ,证明:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三(文科数学)第二轮专题复习
数列及其应用
一、基本概念:
1. 数列的定义及表示方法.
2. 数列的项与项数.
3. 有穷数列与无穷数列.
4. 递增(减)、摆动、循环数列.
5. 数列{a n }的通项公式a n .
6. 数列的前n 项和公式S n .
7. 等差数列、公差d 、等差数列的结构.
8. 等比数列、公比q 、等比数列的结构.
9. 无穷递缩等比数列的意义及公比q 的取值范围.
二、基本公式:
1. 一般数列的通项a n 与前n 项和S n 的关系:
⎩⎨⎧≥-==-)2(,)1(,11n s s n s a n n
n . 2.等差数列的通项公式:a n =a 1+(n-1)d , a n =a k +(n-k)d (其中a 1为首项、a k 为已知的第k 项) 当d ≠0时,a n 是关于n 的一次式;当d=0时,a n 是一个常数.
3.等差数列的前n 项和公式: (1)d n n na s n 2
)1(1-+=, (2)2)(1n n a a n s +=. 当d ≠0时,S n 是关于n 的二次式且常数项为0;当d=0时(a 1≠0),
S n =na 1是关于n 的正比例式.
4.等差中项公式:2
b a A +=(有唯一的值). 5.等比数列的通项公式:(1)a n = a 1 q n-1 , (2)a n = a k q n-k . .
(其中a 1为首项、a k 为已知的第k 项,a n ≠0).
6.等比数列的前n 项和公式:
(1)当q=1时,S n =n a 1 (是关于n 的正比例式);
(2)当q ≠0时,(1)q
q a s n n --=1)1(1, (2)q q a a s n n --=11. 7.等比中项公式: ab G ±=(ab>0,有两个值).
三、有关等差、等比数列的结论
1.等差数列{a n }中,若m+n=p+q ,则 q p n m a a a a +=+.
2. 等比数列{a n }中,若m+n=p+q ,则
q p n m a a a a •=•. 3.等差数列{a n }的任意连续m 项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m - S 3m 、……仍为等差数列.
4.等比数列{a n }的任意连续m 项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m - S 3m 、……仍为等比数列.
5.两个等差数列{a n }与{b n }的和差的数列{a n +b n }、{a n -b n }仍为等差数列.
6.两个等比数列{a n }与{b n }的积、商、倒数的数列{a n ·b n } 、 ⎭
⎬⎫⎩⎨⎧n n b a 、⎭⎬⎫⎩⎨⎧n b 1 ,仍为等比数列. 7.等差数列{a n }的任意等距离的项构成的数列仍为等差数列.
8.等比数列{a n }的任意等距离的项构成的数列仍为等比数列.
9.三个数成等差的设法:a-d,a,a+d ;四个数成等差的设法:
a-3d,a-d,,a+d,a+3d .
10.三个数成等比的设法:q a , a, aq ;四个数成等比的错误设法:3q
a , q a , aq, aq 3 . 四、数列求和其他方法
1.拆项法求数列的和,如a n = 2n+3n ;
2.错位相减法求和,如a n = (2n-1) 2n ;
3.分裂项法求和,如a n = )
1(1 n n ; 4.反序相加法求和,如a n =n n C 100;
5.公式法求和;
6.观察规律求和.
五.数列的综合应用
数列的综合应用主要归结为等差、等比和递推数列的应用.
主要题型有:产量的增减、价格的升降、细胞的繁植、求利率、增长率等.解决此类问题的关键是数列的建模问题.
六、数列实际应用
例题1.从盛满a 升(a >1)纯酒精的容器里倒出一升酒精,然后用水填满后搅匀,再倒出一升混合溶液后再用水填满,如此继续进行下去.
(1)每次用水填满后的酒精浓度是否依次成等差数列或等比数列?试证明你的结论.
(2)若a =2,至少倒几次后(每次倒过后都用水加满搅匀)才能使酒精浓度低于10%?
例题2.资料表明,2000年我国荒漠化土地占国土陆地总面积960万平方公里的17%,近二十年来,我国荒漠化土地每年以2460平方公里的速度扩展,若这二十年间我国治理荒漠化土地的面积占前一年荒漠化土地面积的1%,试问:二十年前我国荒漠化土地的面积有多少平方公里?( 精确到1平方公里)
例题3.某单位用分期付款的方式为职工购买40套住房,共需1150万元.购买当天先付150万元,以后每月这一天都交付50万元,并加付欠款利息,月利率1%.
(1)若交付150万元后的第一个月算开始分期付款的第一个月,问分期付款的第十个月应该付多少钱?
(2)全部款项付清后,买这40套住房实际花了多少钱?。