23(蒙特卡罗模拟)
蒙特卡罗方法及其在化学中的应用

蒙特卡罗方法及其在化学中的应用蒙特卡罗(Monte Carlo)方法,是计算机科学中一种统计模拟方法,用概率统计模拟随机事件,真实地模拟复杂的系统的行为,和解决若干规律计算问题。
它曾被用来解决数学、物理和特别是量子物理中的一些复杂问题。
此外,蒙特卡罗方法还在新兴科学如化学、计算机图形学等领域得到了广泛的应用。
本文针对蒙特卡罗方法及其在化学中的应用,结合具体实例,进行深入剖析和说明。
一、蒙特卡罗方法是什么及其原理蒙特卡罗方法(Monte Carlo method),是计算机科学中模拟随机过程的方法,它利用概率统计的思想,利用随机的种子来模拟复杂的现象,计算出特定结果。
它可以快速、高效地模拟场、多物质和量子物质行为,让计算机真正发挥自己的实力,在化学物性模拟、量子化学领域获得了大量的应用。
蒙特卡罗方法的核心思想是:以概率的观点建模系统的行为,然后用随机数字种子来模拟,最终多次模拟、计算出平均结果,从而获得满足系统性能最优的输出结果。
二、蒙特卡罗方法在化学中的应用1. 量子化学领域量子化学实际上就是用相对简化的数学技巧,结合量子力学求解复杂的反应机理。
蒙特卡罗方法可以用来计算量子力学中大量的细节,从而预测不同离子、原子之间的位置关系,以及分子能量和反应能量。
例如,若要计算氯氨的自振动的能量和频率,可以用蒙特卡罗方法得出分子能量,以便计算氯氨的结构和动力学过程。
2. 化学模拟领域在化学模拟中,蒙特卡罗方法可用于模拟复分子模拟、系统对接以及描述分子性质,例如温度、压力、分子重量、分子形状、分子共振等等,从而分析分子的行为和特性,可以得到更精确、客观的结果,从而优化原有的催化剂制备工艺,增进新的制备工艺的研究。
3. 生物医学领域大多数的药品的性质和效果与它们分子结构和空间结构有关,而蒙特卡罗方法可以模拟分子内部的原子各种运动,计算出其结构安排,从而更好地究其机制、理解分子作用规律、优化新药的设计,以及抗病毒等技术的开发。
随机模拟

随机模拟(蒙特卡罗算法)一 随机模拟法随机模拟法也叫蒙特卡罗法,它是用计算机模拟随机现象,通过大量仿真试验,进行分析推断,特别是对于一些复杂的随机变量,不能从数学上得到它的概率分布,而通过简单的随机模拟就可以得到近似的解答。
M onte Carlo 法也用于求解一些非随机问题,如重积分、非线性方程组求解、最优化问题等。
需要指出的是,Monte Carlo 计算量大,精度也不高,因而主要用于求那些解析方法或常规数学方法难解问题的低精度解,或用于对其他算法的验证。
蒙特卡罗方法的基本思想是:当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。
在解决实际问题的时候应用蒙特·卡罗方法主要有两部分工作: 用蒙特卡罗方法模拟某一过程时,需要产生各种概率分布的随机变量。
用统计方法把模型的数字特征估计出来,从而得到实际问题的数值解。
使用蒙特卡罗方法进行分子模拟计算是按照以下步骤进行的:使用随机数发生器产生一个随机的分子构型。
对此分子构型的其中粒子坐标做无规则的改变,产生一个新的分子构型。
计算新的分子构型的能量。
比较新的分子构型于改变前的分子构型的能量变化,判断是否接受该构型。
若新的分子构型能量低于原分子构型的能量,则接受新的构型。
若新的分子构型能量高于原分子构型的能量,则计算玻尔茲曼常数,同时产生一个随机数。
若这个随机数大于所计算出的玻尔兹曼因子,则放弃这个构型,重新计算。
若这个随机数小于所计算出的玻尔兹曼因子,则接受这个构型,使用这个构型重复再做下一次迭代。
如此进行迭代计算,直至最后搜索出低于所给能量条件的分子构型结束。
二 随机模拟法应用实例考虑二重积分(,)AI f x y dxdy =⎰⎰,其中(,)0,(,)f x y x y A ≥∀∈根据几何意义,它是以(,)f x y 为曲面顶点,A 为底的柱体C 的体积。
项目管理-蒙特卡罗模方法与项目风险案例分析43页 精品

2005 0 0
17628 17628
0 0 0 -17628 -17628 1 -17628 -17628
建设经营期 2006 32082 32082 19391 10955 1822 0 6614 13429 -4199 0.909 12208 -5420
2007 21840 21840 12196 2043 1212 4190 4750 9644 5445 0.826 7970 2550
▪ 从这个意义上讲,蒙特卡罗方法可 以部分代替物理实验,甚至可以得 到物理实验难以得到的结果。用蒙 特卡罗方法解决实际问题,可以直 接从实际问题本身出发,而不从方 程或数学表达式出发。它有直观、 形象的特点。
②受几何条件限制小
▪ 在计算s维空间中的任一区 域Ds上的积分,无论区域 Ds的形状多么特殊,只要 能给出描述Ds的几何特征 的条件,就可以从Ds中均 匀产生N个点
甲方案:该地块主要以小高层电梯住宅开发为主,辅 以车库和部分商业配套设施,开发期共三年。甲方案预测 出的的主要经济技术指标见表5-1。
表5-1 甲方案的主要经济技术指标
序号
一 1 二 1 2 3 4 三
四 五
项目
现金流入 销售收入 现金流出 开发建设投资 营业税金及附加 土地增值税 所得税 净现金流量(税后) 累计净现金流量(税后) 现值系数(i=10%) 净现值(税后) 累计净现值(税后)
▪ 这时就必须采用主观概率,即由专家做出主观估计得到的概 率。
▪ 另一方面,在对估测目标的资料与数据不足的情况下,不可能 得知风险变量的真实分布时,根据当时或以前所收集到的类 似信息和历史资料,通过专家分析或利用德尔菲法还是能够 比较准确地估计上述各风险因素并用各种概率分布进行描 述的。
蒙特卡洛随机模拟

蒙特卡洛随机模拟蒙特卡洛模拟法简介蒙特卡洛(Monte Carlo)方法是一种应用随机数来进行计算机摸你的方法。
此方法对研究对象进行随机抽样,通过对样本值的观察统计,求得所研究系统的某些参数。
作为随机模拟方法,起源可追溯到18世纪下半叶蒲峰实验。
蒙特卡洛模拟法的应用领域蒙特卡洛模拟法的应用领域主要有:1.直接应用蒙特卡洛模拟:应用大规模的随机数列来模拟复杂系统,得到某些参数或重要指标。
2.蒙特卡洛积分:利用随机数列计算积分,维数越高,积分效率越高。
蒙特卡洛模拟法求解步骤应用此方法求解工程技术问题可以分为两类:确定性问题和随机性问题。
解题步骤如下:1.根据提出的问题构造一个简单、适用的概率模型或随机模型,使问题的解对应于该模型中随机变量的某些特征(如概率、均值和方差等),所构造的模型在主要特征参量方面要与实际问题或系统相一致2 .根据模型中各个随机变量的分布,在计算机上产生随机数,实现一次模拟过程所需的足够数量的随机数。
通常先产生均匀分布的随机数,然后生成服从某一分布的随机数,方可进行随机模拟试验。
3. 根据概率模型的特点和随机变量的分布特性,设计和选取合适的抽样方法,并对每个随机变量进行抽样(包括直接抽样、分层抽样、相关抽样、重要抽样等)。
4.按照所建立的模型进行仿真试验、计算,求出问题的随机解。
5. 统计分析模拟试验结果,给出问题的概率解以及解的精度估计。
在可靠性分析和设计中,用蒙特卡洛模拟法可以确定复杂随机变量的概率分布和数字特征,可以通过随机模拟估算系统和零件的可靠度,也可以模拟随机过程、寻求系统最优参数等。
一. 预备知识:1.随机数的产生提示:均匀分布(0, 1)U 的随机数可由C 语言或Matlab 自动产生,在此基础上可产生其他分布的随机数. 2.逆变换法:设随机变量U 服从(0,1)上的均匀分布,则)(1U F X -=的分布函数为)(x F . 步骤:(1) 产生)1,0(U 的随机数U ;(2) 计算)(1U F X -=, 则X 服从)(x F 分布. 问题:练习用此方法产生常见分布随机数.例如“指数分布,均匀分布),(b a U ”.还有其它哪种常见分布的随机数可用此方法方便产生? 3.产生离散分布随机数已知离散随机变量X 的概率分布:)2,1(,)( ===K P x X P k k ,产生随机变量X 的随机数可采用如下算法:a) 将区间[0.1]依次分为长度为 ,,21p p 的小区间 ,,21I I ;b) 产生[0,1]均匀分布随机数R ,若k I R ∈则令k x X =,重复(b),即得离散随机变量X 的随机数序列.问题:(1) 下表给出了离散分布X 的概率分布表,试产生100个随机数.X 的概率分布表(2) 用此方法给出100个二项分布(20, 0.1)B 的随机数及10个泊松分布P(1)的随机数. 4. 正态分布的抽样提示:设21,U U 是独立同分布的)1,0(U 变量,令)2sin()ln 2()2cos()ln 2(22/11222/111U U X U U X ππ-=-=则1X 与2X 独立 ,均服从标准正态分布. 步骤:(1) 由)1,0(U 独立抽取1122,U u U u ==(2) 用(*)式计算21,x x .用此方法可同时产生两个标准正态分布的随机数.问题: 有关随机数产生方法很多,查阅相关材料进行系统总结.二. 随机决策问题1.某小贩每天以一元的价格购进一种鲜花,卖出价为b 元/束,当天卖不出去的花全部损失,顾客一天内对花的需求量是随机变量, 服从泊松分布,(),0, 1, 2,,!kP X k ek k λλ-=== .其中常数λ由多日销售量的平均值来估计, 问小贩每天应购进多少束鲜花?(准则:期望收入S(u)最高) 问题:(1) 在给定 1.25, 50b λ==的值后, 画出目标函数S(u)连线散点图, 观察单调性,给出最优决策*u ;(2) 选取其他的λ,b ,再观察S(u)的单调性;(3) 用计算机模拟方法来求出最优决策*u .对固定的u ,例如,u=40,对随机变量X 模拟100次,每次模拟得到一个收入,求出100个收入的平均值,即得到在决策u=40情况下的可能收入;(4) 对所有的可能的u ,重复(3),从中找最大的,并与(1)的结果相比较. 3.一重定积分的蒙特卡罗算法问题描述:假设函数()f x 在[,]a b 内有界连续,且()0f x ≥,求解定积分()baI f x dx =⎰.为计算出其值,可构造概率模型如下:取一个边长分别为b a -和c 的矩形D ,使曲边梯形在矩形域之内,如图2,并在矩形内随机投点,假设随机点均匀地落在整个矩形之内,则落在图中灰色区域内的随机点数k 与投点总数N 之比k/N 就近似地等于曲线下方面积(即阴影面积)与矩形面积之比,从而得出近似积分()kI b a c N≈-.图2例 求211x e--⎰由于2x e -是非初等函数,我们很难求出其原函数,所以用牛顿-莱布尼茨公式无法求解,但可以运用蒙特卡罗方法求出其近似值.将上述方法推广到一般情况:假设函数()f x 在[a ,b]内有界连续,对于定积分()baI f x dx =⎰,为计算出其值,可构造如下概率模型:取一个边长分别为b a -和c d -的矩形D ,使曲线[,]a b 段的值在矩形域之内,如图3,并在矩形内随机投点,假设随机点均匀地落在整个矩形之内,则落在图中x 轴上下灰色区域内的随机点数m 与n 的差与投点总数p 之比(m-n)/P 就近似地等于曲线上下方面积之差(即阴影面积之差)与矩形面积之比,从而得出近似积分()()m nI b a c d P-≈--.图34. 二重积分的蒙特卡罗算法问题描述:实际计算中常常要遇到如(,)Df x y dxdy ⎰⎰的二重积分,发现被积函数的原函数往往很难求出,或者原函数根本就不是初等函数,对于这样的重积分,蒙特卡罗方法也有成熟的计算方法. 方法1: 步骤:1,取一个包含D 的矩形区域Ω:,a x b c y d ≤≤≤≤,面积()()A b a d c =--;2,(,), 1,2,,i i x y i n = ,为Ω上的均匀分布随机数列,不妨设(,),1,2,i i x y i n = ()为落在D 中的n 个随机数,则n 充分大时,有1(,)(,)ki i i DA f x y dxdy f x y n =≈∑⎰⎰.方法2: 对二重积分(,)AI f x y dxdy =⎰⎰,假设(,)f x y 为区域A 上的有界函数,且(,)0f x y ≥,几何意义对应的是以(,)f x y 为曲面顶, A 为底的曲顶柱体C 的体积.因此,用均匀随机数计算二重积分的蒙特卡罗方法基本思路为:假设曲顶柱体C 包含在己知体积为DV的几何体D 的内部,在D 内产生N 个均匀随机点,统计出在C 内部的随机点数目C N ,则DC V I N N=.例:计算(1Adxdy +⎰⎰,其中22{(,)|1}A x y x y =+≤.分析:该二重积分可以看作以1+曲顶柱体在一个边长为2的立方体内,用数学分析方法可计算出其精确值为π.。
蒙特卡罗法

统计学模拟法之一
01 概念
03 优缺点 05 应用举例
目录
02 基本思路 04 步骤
蒙特卡罗法也称统计模拟法、统计试验法。是把概率现象作为研究对象的数值模拟方法。是按抽样调查法求 取统计值来推定未知特性量的计算方法。蒙特卡罗是摩纳哥的著名赌城,该法为表明其随机抽样的本质而命名。 故适用于对离散系统进行计算仿真试验。在计算仿真中,通过构造一个和系统性能相近似的概率模型,并在数字 计算机上进行随机试验,可以模拟系统的随机特性。
解:希望能用某种方法把我方将要对敌人实施的20次打击结果显示出来,确定有效射击的比率及毁伤敌方火 炮的平均值。这是一个概率问题,可以通过理论计算得到相应的概率和期望值。但这样只能给出作战行动的最终 静态结果,而显示不出作战行动的动态过程。
为了显示我方20次射击的过程,必须用某种方式模拟出以下两件事:一是观察所对目标的指示正确或不正确; 二是当指示正确时,我方火力单位的射击结果。对第一件事进行模拟试验时有两种结果,每一种结果出现的概率 都是1/2。因此,可用投掷1枚硬币的方式予以确定。当硬币出现正面时为指示正确,反之为不正确。对第二件事 进行模拟试验时有3种结果,毁伤1门火炮的可能为1/3,毁伤2门火炮的可能为1/6,没能毁伤敌火炮的可能为1/2。 这时,可用投掷骰子的办法来确定,如果出现的是1、2、3三个点则认为没能击中敌人,如果出现的是4、5点则 认为毁伤敌1门火炮,如果出现6点则认为毁伤敌2门火炮。
应用举例
在我方某前沿防守地域,敌人以1个炮兵排(含两门火炮)为单位对我方进行干扰和破坏。为躲避我方打击, 敌方对其指挥所进行了伪装并经常变换射击地点。经过长期观察发现,我方指挥所对敌方目标的指示有50%是准 确的,而我方火力单位在指示正确时,有1/3的射击效果能毁伤敌人1门火炮,有1/6的射击效果能全击的过程动态地显现出来。
蒙特卡罗方法 boltzmann数值模拟

蒙特卡罗方法boltzmann数值模拟全文共四篇示例,供读者参考第一篇示例:蒙特卡罗方法是一种基于随机数的数值计算方法,被广泛应用于各个领域的数值模拟中。
蒙特卡罗方法在Boltzmann方程数值模拟中有着重要的应用,通过蒙特卡罗方法可以模拟气体分子在气体介质的运动规律,从而研究气体的输运性质,比如热传导、扩散等。
本文将详细介绍蒙特卡罗方法在Boltzmann数值模拟中的原理和应用。
一、蒙特卡罗方法的基本原理蒙特卡罗方法是一种基于随机抽样的数值计算方法,主要用于处理那些难以用解析方法求解的问题。
其基本思想是通过随机抽样的方法,模拟系统的随机行为,并根据大量的模拟数据来估计系统的性质。
蒙特卡罗方法的核心思想是大数定律,即当重复进行随机模拟的次数足够多时,随机变量的平均值将趋于其期望值。
在Boltzmann方程数值模拟中,蒙特卡罗方法可以用于模拟气体分子在气体介质中的运动。
根据分子间的相互作用,可以通过随机抽样的方法模拟分子的碰撞和运动,从而推导出气体的输运性质。
通过蒙特卡罗方法,可以有效地模拟大规模气体分子系统的运动,为研究气体输运性质提供了有力的工具。
二、Boltzmann方程的数值模拟Boltzmann方程是描述气体分子在气体介质中运动规律的基本方程,其数值模拟可以通过离散化空间坐标和速度分布来实现。
在蒙特卡罗方法中,可以通过模拟气体分子的随机运动,来求解Boltzmann方程获得气体的输运性质。
在实际应用中,蒙特卡罗方法在Boltzmann数值模拟中可以用于研究气体的传热性质。
通过模拟气体分子的运动规律,可以得到气体的热传导系数、导热性等重要参数,从而揭示气体在不同条件下的传热规律。
这对于设计热传导设备、优化热传导效率等具有重要的意义。
四、总结第二篇示例:蒙特卡罗方法是一种数学上的随机模拟方法,可以用于解决各种复杂的问题,其中蒙特卡罗方法的一种应用就是Boltzmann数值模拟。
Boltzmann数值模拟是一种基于统计力学和蒙特卡罗方法的数值模拟技术,用于模拟大规模复杂系统的行为。
第一讲蒙特卡洛模拟及衍生品定价ppt课件
累计盈利350万美元
• 协议汇率:
0.7815-0.9600美元/澳元
• 加权协议汇率: 0.8971美元/澳元
• 杠杆比率:
2.5
• 合约签订日:
2008年7月16日
• 汇率现价:
0.9749美元/澳元
• 合约开始时间: 2008年10月15日
定价分析:
定价步骤
• 给出(月)汇率演化的随机过程(包括参数、初值) • 模拟出一条路径 • 给出这条路径上每个月的损益 • 计算累计损益 -当节点价格大于协议价格,则收益:节点价格-协议价格 -当节点价格小于协议价格,则损失:2.5*(节点价格-协议价格) -计算所有节点的累计损益 • 如果累计损益大于350万元,则合约停止 • 如果累计损益小于350万元,则合约继续 • 得到多条实际的损益路径 • 现金流贴现定价
5.4
5.6
5.8
6
• 得到200个期权价格 • 得到期权价格的直方图及定价区间
估计亚式期权的定价区间
• 亚式期权是一种路径依赖型期权,它的收益函数依赖于期 权存续期内标的资产的平均价格
•
离散平均价格
A 1 n S n i1
ti
• 亚式看涨期权的现金流
maxN1
N i1
Sti
K, 0,
——Merriam-Webster, Inc.,1994,P754-755
蒙特卡洛方法的基本原理
•基本思想:抽样试验来计算参数的统计特征,最 后给出求解问题的近似值。 •理论依据:中心极限定理及大数定律为其主要理 论基础 •主要手段:随机抽样 •使用前提:已知随机变量服从的分布或可以化为 已知分布的变量的函数。
第一讲 蒙特卡洛模拟及衍生品定价
蒙特卡洛方法
蒙特卡罗法也称统计模拟法、统计试验法。
是把概率现象作为研究对象的数值模拟方法。
是按抽样调查法求取统计值来推定未知特性量的计算方法。
蒙特卡罗是摩纳哥的著名赌城,该法为表明其随机抽样的本质而命名。
故适用于对离散系统进行计算仿真试验。
在计算仿真中,通过构造一个和系统性能相近似的概率模型,并在数字计算机上进行随机试验,可以模拟系统的随机特性。
概念蒙特卡罗法(又称统计试验法)是描述装备运用过程中各种随机现象的基本方法,而且它特别适用于一些解析法难以求解甚至不可能求解的问题,因而在装备效能评估中具有重要地位。
用蒙特卡罗法来描述装备运用过程是1950年美国人约翰逊首先提出的。
这种方法能充分体现随机因素对装备运用过程的影响和作用。
更确切地反映运用活动的动态过程。
在装备效能评估中,常用蒙特卡罗法来确定含有随机因素的效率指标,如发现概率、命中概率、平均毁伤目标数等;模拟随机服务系统中的随机现象并计算其数字特征;对一些复杂的装备运用行动,通过合理的分解,将其简化成一系列前后相连的事件,再对每一事件用随机抽样方法进行模拟,最后达到模拟装备运用活动或运用过程的目的。
基本思路蒙特卡罗法的基本思想是:为了求解问题,首先建立一个概率模型或随机过程,使它的参数或数字特征等于问题的解:然后通过对模型或过程的观察或抽样试验来计算这些参数或数字特征,最后给出所求解的近似值。
解的精确度用估计值的标准误差来表示。
蒙特卡罗法的主要理论基础是概率统计理论,主要手段是随机抽样、统计试验。
用蒙特卡罗法求解实际问题的基本步骤为:(1)根据实际问题的特点.构造简单而又便于实现的概率统计模型.使所求的解恰好是所求问题的概率分布或数学期望;(2)给出模型中各种不同分布随机变量的抽样方法;(3)统计处理模拟结果,给出问题解的统计估计值和精度估计值。
优缺点蒙特卡罗法的最大优点是:1.方法的误差与问题的维数无关。
2.对于具有统计性质问题可以直接进行解决。
3.对于连续性的问题不必进行离散化处理蒙特卡罗法的缺点则是:1.对于确定性问题需要转化成随机性问题。
简析蒙特卡洛模拟法的应用
简析蒙特卡洛模拟法的应用1.项目风险管理的重要性在建设工程项目过程中,风险管理占据着非常重要的地位。
不管是立项分析还是设计计划都要依赖于对将来的预测,以及对风险情况的把握。
在工程项目进行的时候,存在着各种各样的风险,这些风险会在不同程度上引起工程项目工期或是造价的增加,影响工程收益。
概算超估算、预算超概算、决算超预算现象,是工程项目管理中面临的比较普遍的问题。
因此,在工程项目前期准备阶段,必须将各种可能的风险因素考虑完全。
风险在自然科学和社会经济领域普遍存在,不确定性是其最大的特点,同时也正成为各个学科领域研究的重要对象。
在工程项目管理中,由于风险现象与工程经济收益密切关联,因此,充分了解与评估风险对工程项目的影响,能够很大程度上帮助降低其所能带来的损失。
很多工程项目预算是根据设计文件或者经验数据计算出风险数值,工程承包企业便以此定值为依据做投标报价并制订成本计划。
但实际上,工程项目在实施过程中往往受到诸如自然、施工管理水平、经济情况等众多不确定因素的影响,成本并非确定值,而是服從某种概率分布的随机变量[1]。
蒙特卡洛(Monte-Carlo)方法又称随机抽样技巧或统计试验方法,是估计经济风险和工程风险常用的一种方法。
蒙特卡罗方法可以处理每一个风险因素的不确定性,并把这种不确定性在成本方面的影响以概率分布的形式表示出来。
蒙特卡罗方法是一种多元素变化分析方法,在该方法中所有的元素都同时受风险不确定性的影响,在工程上常用模拟预测工程项目的风险[2]。
本文提出首先依据工程项目的历史成本资料,得出各风险因素的分布参数,继而利用蒙特卡洛模拟技术预测电力工程项目可能发生的风险因素对总成本的影响,并得出其概率分布。
在各种随机因素在工程施工时发挥着各自的作用,他们共同引起工程的成本值在某一范围内变化,借助统计分析软件,我们能够得到其最大、最小值和最可能值,经过大量的模拟后,会呈现出较强的统计规律性,即使无法得到准确影响值,也可以通过数学手段对其分布情况加以描述。
蒙特卡罗模拟水晶球
蒙特卡罗模拟与水晶球?要运行一个模拟使用水晶球? :1。
设置电子表格构建一个电子表格,将计算的性能测量(例如,利润)的投入(随机)。
对于随机输入,只需输入任何数字。
2。
定义假设即随机变量定义哪些细胞都是随机的,和什么分配应当遵循。
3。
定义预测即输出或绩效衡量定义的单元格(s)您有兴趣在预测(通常的性能测量,例如利润)。
4。
选择的审判案件数目选择的审判案件数目。
如果您稍后会生成一样的灵敏度分析图表,请选择"敏感度分析”中的选项下运行“首选项”。
5。
运行模拟运行模拟。
如果您想要更改参数,并重新运行模拟,您应“重置”模拟(单击“重置模拟”按钮在工具栏上或在“运行”菜单中)。
6。
查看结果“预测”窗口的屏幕快照显示了模拟的结果后自动显示(或在)模拟。
很多不同的结果(频率图、累计图表、统计、百分数、敏感度分析、趋势图)。
其结果可以复制到工作表中。
水晶球工具栏,请执行以下步骤:定义定义运行开始重置预测趋势假设预测首选项模拟仿真窗口图表沃尔顿书店模拟与水晶球?回顾沃尔顿书店示例:八月,他们必须决定多少的下一个日历年的性质。
每个日历美元成本的书店出售7.5和10元。
二月后,所有未售出日历返回到"发布者",并要求退款的2.50美元每个日历。
假设沃尔顿预测需求之间的某个地方将100和300(独立统一)。
需求量= D~统一[100,300]订单数量=Q(可变)收入= $10*min(Q,D )7.5成本=$*Q退款=2.50美元*最大( Q-d 0)利润=收入-成本+退款步骤#1(设置电子表格)1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17A B C D E F Simulation of W alton's BookstoreDataUnit Cost =$7.50Unit Price =$10.00Unit Refund =$2.50Demand Distribution (Uniform)Minimum =100Maximum =300Decision VariableOrder Quantity =200S imulationDemand Revenue Cost Refund P rofit200$2,000.00$1,500.00$0.00$500.0015 16 17B C D E F SimulationDemand Revenue Cost Refund Profit 200=C5*MIN(C13,B17)=C4*C13=C6*MAX(C13-B17,0)=C17-D17+E17沃尔顿书店模拟与水晶球?步骤#2(定义假设即随机变量)请选择一个单元格,该包含随机变量(B17)--颜色代码(蓝色)(以英语发言):1617B Demand200然后单击“定义假设”工具栏中的按钮(或在单元格”菜单):选择分发类型:提供参数的分布:8910B CDemand Distribution (Uniform)Minimum =100Maximum =300沃尔顿书店模拟与水晶球?步骤#3(定义预测即输出)请选择一个单元格,该包含输出变量来预测(F17):1617F Profit$500.00单击“定义预测”工具栏中的按钮(或在单元格”菜单)并填写定义预测”对话框。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 专题5 蒙特卡罗模拟的有关问题 大家知道,只有当经典回归模型满足所有的假定条件时,参数的估计量才具有最佳线性无偏特性,即有限样本特性,同时也具有渐近特性。当假定条件不成立时(比如存在异方差、自相关等),所采用的广义最小二乘法,以及对联立方程模型的估计,动态分布滞后模型的估计,向量自回归模型的估计所得参数的估计量只具有渐近特性。也就是说,只有当样本容量相当大时,渐近特性才起作用。而当样本容量不是很大,甚至很小时,仍然不知道估计量的有限样本分布特征。 另外通过对非平稳过程的研究知单位根检验式和非平稳变量之间回归参数和t统计量不服从正态分布。他们都是渐近地服从Wiener过程函数的分布。参数估计量和统计量的有限样本特性不能用解析的方法求解。 对于上述两种情形,若要研究这些估计量和统计量的有限样本分布特征,通常采用两种方法。一种为数值计算法。也称为有限样本近似法(finite-sample approximation)。这种方法要用到许多数学知识,专业性很强,使没有受过专门训练的人员运用此方法受到限制。(2)蒙特卡罗模拟方法。又称随机模拟法。Boot strap
1.蒙特卡罗(Monte Carlo)模拟和自举(Boost trap)发展过程 这是一种通过设定随机过程(数据生成系统),反复生成时间序列,并计算参数估计量和统计量,进而研究其分布特征的方法。蒙特卡罗在欧洲的摩那哥,以著名赌城而得名。据说这个术语是Metropolis 在1949年提出的。若再晚些时候,蒙特卡罗模拟也许就称作Las Vegas(在美国的Nevada州,著名赌城)模拟方法了。 自举模拟与蒙特卡罗模拟既有联系,又不相同。自举(Boost trap,亦称靴襻)这个名词是Efron在1979年提出的。“自举”一词来源于儿童故事。指一个人落水时,试图用自提鞋扣儿的方法自救。20世纪80,90年代发展很快。自举,即采用从总体中反复抽取样本的方法计算参数估计量的值,置信区间或相应统计量的值并估计这些量的分布。这里介绍的远不是自举模拟的全貌,而是参数估计方面的应用。 因为这些方法的实现是以高容量和高速度的计算机为前提条件,所以只是在近年才得到广泛推广。
2.蒙特卡罗模拟和自举模拟原理 进行蒙特卡罗模拟和自举模拟首先要设定数据生成系统。而设定数据生成系统的关键是要产生大量的随机数。例如模拟样本为100的随机趋势过程的DF统计量的分布,若试验1万次,则需要生成200万个随机数。 计算机所生成的随机数并不是“纯随机数”,而是具有某种相同统计性质的随机数。计量经济学中蒙特卡罗模拟和自举模拟所用到的随机数一般是服从N(0,1)分布的随机数。计算机生成的随机数称作“伪随机数”(pseudo-random number)。生成的随机数的程序称作“伪随机数生成系统”。实际上计算机不可能生成纯随机数。 在进行蒙特卡罗模拟时一般要给定多种条件。例如样本容量要选择50,100,200等多种。有时模型形式也要选择多种。从而研究参数估计量和统计量在各种条件下的分布特征。当只需要这几个特定条件下的模拟结果时,把结果纪录下来就可以了。当需要很多条件下的模拟结果时,一般采用估计响应面函数(response surface function)的方法研究之。例如Dicky-Fuller的DF检验表中只给出了样本容量为25,50,100,250,500几个点的DF分布特征。显然对25至500间每个样本容量都进行DF分布模拟是不实际的,也是无必要的。 2
可以把上述几个条件下得到的DF分布百分位数看作样本点,然后采用回归的方法从而得到每个样本容量所对应的DF分布百分位数。这条回归直线称为响应面函数。麦金农的协整检验临界值表就是用这种方法得到的。 一个简单的估计回归参数估计量分布的蒙特卡罗模拟流程图见图1。
达到N
未达到N 图1 蒙特卡罗模拟过程示意图
自举方法的原理是从独立同分布(IID)总体X中确定T个随机变量{x1, x2, …, xT}。则第一个自举样本是 X1* = {x11, x12, …, x1T} 现在随机得到N个自举样本, X2* = {x11, x12, …, x1T} X3* = {x11, x12, …, x1T} ... XN* = {xN1, xN2, …, xNT}
假设关心的是统计量ˆ(X),那么用N个自举样本可以得到一个容量为N的ˆ(X)的估计值序列, {ˆ(X1*), ˆ(X2*), …, ˆ(XN*)}
通过这个序列,可以研究ˆ(X)的分布特征,ˆ(X)的特征数,百分位数,ˆ(X)的平均数与真值 的差以及用ˆ(X)的第/2、(1-/2)百分位数构造 的(1-)的置信区间。 一个简单的分析t(1ˆ)分布特征的自举模拟流程图见图2。
达到 未达到 图2 自举模拟过程示意图 3.计算机高级语言(Mathematica和EViews介绍) 蒙特卡罗模拟和自举模拟的实现要通过计算机编程来实现。常用的软件有Mathematica,Gauss,Ox,EViews等。其原理基本一样。 下面主要介绍EViews和Mathematica。Mathematica由Wolfram Research公司1991年推出。是一种计算机高级语言。具有计算与画图等多种功能。若干例子见图。
生成xt, yt 估计1ˆ和 t(1ˆ)统计量 分析1ˆ和 t(1ˆ)的分布 设定循环 次数N 设定xt,生成xt, 估计1ˆ和 t(1ˆ)统计量 分析1ˆ和 t(1ˆ)的分布 设定循 环次数 生成 yt 设定0, 1 设定xt, yt 3
050100150200-10-505 0501001502000
10
203040
图3 随机游走序列 图4 带趋势项的随机游走序列 -4-2024-1-0.500.51-4-2024 -2
02-1-0.5
0
0.51
-202
图5 三维图圆环 图6 空间曲面
0200400600800100000.20.40.60.81
图7 投币1000次的概率值模拟 图8 生长曲线 -2-2-101200.250.50.751-1012
图9 二元正态分布 图10 蒲丰问题 4
4.蒙特卡罗模拟框图与Mathematica、EViews程序。 (1)两个I(1)变量相关系数分布的蒙特卡罗模拟。
达到N
未达到N 图11 蒙特卡罗模拟过程示意图 Mathematica程序如下: corre2[t_,f_]:= Module[{x,y,xx,yy,Exx,Eyy,Sxxyy,Sxx,Syy,rr}, Table[ x=Table[Random[NormalDistribution[0,1]],{t}]; y=Table[Random[NormalDistribution[0,1]],{t}]; xx=FoldList[Plus,0,x];xx=Rest[xx]; yy=FoldList[Plus,0,y];yy=Rest[yy]; Exx=Apply[Plus,xx]/t; Eyy=Apply[Plus,yy]/t; Sxxyy=(xx-Exx).(yy-Eyy); Sxx=Sqrt[(xx-Exx).(xx-Exx)]; Syy=Sqrt[(yy-Eyy).(yy-Eyy)]; rr=Sxxyy/(Sxx Syy), {f} ] ] r2=corre2[100,10000]; histg4[r2,0,1,0.1]
-1-0.500.510.10.20.30.40.50.6
图12 两个非相关I(1) 序列的相关系数的分布
生成 xt, ytI(1) 估计相关 系数r 分析r的 分布 设定循环 次数N 设定 xt, yt I(1) 5 EViews程序如下: workfile corr u 1 500 series result for !i=1 to 500 smpl 1 100 series x=nrnd series y=nrnd series xx series yy scalar sum1=0 scalar sum2=0 for !counter=1 to 100 sum1=sum1+x(!counter) sum2=sum2+y(!counter) xx(!counter)=sum1 yy(!counter)=sum2 next scalar r=@cor(xx,yy) result(!i)=r next result.hist 定义一个非时间序列(u)工作文件,corr,容量为500。 定义一个空序列result,用来存储相关系数的计算结果。 !i为控制变量,通过一个for循环语句使计算进行500次。 把样本范围设置成100。 生成两个互不相关的白噪声序列x、y,样本容量100。 定义两个空的序列xx和yy,样本容量也是100。
定义两个标量sum1和sum2,初始值为0。 !counter为控制变量,在这个for循环中,分别对序列x和y进行一次累加生成两个一阶单整的序列,将结果分别放到序列xx和yy中。
累加一次。 计算序列xx和yy的相关系数,并将结果放到标量r中。 将相关系数计算结果放到序列result中,在这个for循环中,这个操作要进行500次。 显示序列result的直方图以及有关统计量。
图13 两个非相关I(1) 序列的相关系数的分布 (2) t(ˆ)分布的蒙特卡罗模拟。 数据生成过程如下, yt = yt-1 + ut , ut IID(0, 1) 估计的方程式如下: yt = + yt-1 + ut ,
检验统计量 t(ˆ)=)ˆ(ˆs