《流体力学》第二章 流体静力学2.7.

合集下载

工程流体力学第2章流体静力学

工程流体力学第2章流体静力学

① 沿任意方向 ② 沿外法线方向
有切向分力 流体受拉力
都将破坏流体平衡。
这与静止前提不符,故假设不成立,则原命题成立。


4
第2章 流体静力学
特性二、静止流体中任何一点上各个方向的静压力大小相等,与作用面方位无关。
证明:采用微元体分析法 ① 取微单元体
在静止流体中,在O点附近取出各边长分别 为dx、dy、dz的微小四面体OABC。相应坐标 轴为x、y、z。
第2章 流体静力学
流体静力学:研究流体在静止状态下的平衡规律及其应用。 静止:流体质点相对于参考系没有运动,质点之间也没有相对运动。 静止状态包括两种情况: 1、绝对静止:流体整体对地球没有相对运动。
2、相对静止:流体整体对地球有运动,但流体各质点之间没有相对运动。
举例:
绝对静止
等加速水平直线运动 等角速定轴转动
2
第2章 流体静力学
§2.1 流体静压力及其特性
1、静压力的概念
(1)静压力:静止流体作用在单位面积上的压力,称为静压力,或静压强。记作“p”
一点的静压力表示方法:
设静止流体中某一点m,围绕该点取一微小作用面积A,其上压力为P,则: 平均静压力: p P
A
m点的静压力:p lim P
单位:
A0 A
m
国际单位:Pa
物理单位:dyn/cm2
工程单位:kgf/m2
混合单位:1大气压(工程大气压) = 1kgf/cm2
(2)总压力:作用在某一面积上的总静压力,称为总压力。记作“P”
单位:N
3
第2章 流体静力学
2、静压力的两个重要特性
特性一、静压力方向永远沿着作用面内法线方向。

流体力学第2章

流体力学第2章

px=pn 同理,由∑Fy=0,及∑Fz=0,可得py=pn,pz=pn,由此 可得出 px=py=pz=pn
第三节 流体的平衡微分方程式
一、 流体平衡微分方程
研究对象:边长为dx、dy、 dz的微元六面体。 原 理:∑F=0
质量力:Xρdxdydz,
Yρdxdydz, Zρdxdydz, 表面力:各表面的τ=0
ay cos gz az sin c
等压面是一簇平行的斜面。
dz a cos dy g a sin
在自由液面上,因y=0,z=0,所以积分常数 c=0,故自由液面方程为 a cos ay cos gz az sin 0 z y g a sin a cos arctan 自由液面与y方向的倾角为: g a sin
dp xdx ydy gdz
2 2


1. 流体静压力分布规律
z
dp xdx ydy gdz
2 2


p0 o

2 x2 2 y2 2r 2 p gz c gz c 2 2 2
作用在流体上的力 流体的静压力及其特性 流体的平衡微分方程式 重力场中流体静力学基本方程 压力的单位和压力的测量方法 流体的相对平衡 静止流体作用力
第一节
作用在流体上的力
作用于流体上的力按作用方式可分为表面力和质量 力两类。 一、 表面力
表面力指作用在所研究的流体表面的力。它是由所研 究流体的表面与相接触的物体的相互作用而产生的。 单位是N/m2(Pa) 。 表面力按作用方向可分为:法向压力(流体压力p)- -垂直于作用面;切向应力--平行于作用面。

流体力学第二版第二章流体静力学

流体力学第二版第二章流体静力学

p B p Ba p b a s1.9 0 9 2 4 8 .9 k/m N 2
A点的相对压强为负值,说明A点处于真空状态,真空 值为: p kp ap Aa bp s A 1.7 4 k/N m 2
二、压强的表示方法 1、用应力单位表示 即从压强的定义出发,用单位面积上的力表示。
2、用大气压的倍数表示 在工程上,常用工程大气压为单位来表示压强。
解:1、绝对压强
pabspah 9 8 9 .8 2 1.1 6 k7 Pa
= 117.6 kN/m2
117.6 98
1.2pa
pabs117.612m(水柱)
9.8
2、相对压强
p h9.821.6 9 kN /m 21.6 9kP0 a.2pa
p h 2m(水柱)
三、静压强分布图
用线段长度表示各点压强大小,用箭头表示压强 的方向,如此绘成的几何图形,称为压强分布图。
d p(X dYxd Z y)dz
不可压缩液体在有势的质量力的作用下才能静止。
三、等压面及其特性 1、等压面
液体中由压强相等的各点所构成的面(可以是平面 或曲面)称为等压面。
静止液体的自由表面即为等压面。 2、等压面的特性
由 d p(X dYxd Z y)d及z等压面定义,得:
等压面方程: Xd YxdZ yd 0 z 等压面的特性: 1)压强一定相等;
P0
h1
A
h2
解:1、绝对压强
B
p A ap b 0 s h 1 7 .4 8 9 .8 0 .5 8 .3 k 3 /m N 2 p B a p 0 b s h 2 7 .4 8 9 .8 2 .5 1.9 k 0 /m N 2 2
2、相对压强

流体力学第二章习题解答

流体力学第二章习题解答

第2章 流体静力学2.1 大气压计的读数为100.66kPa(755mmHg),水面以下7.6m 深处的绝对压力为多少?知:a a KP P 66.100= 3/1000m kg =水ρ m h 6.7= 求:水下h 处绝对压力 P解:aa KP ghP P 1756.71000807.96.100=⨯⨯+=+=ρ 2.2 烟囱高H=20m ,烟气温度t s =300℃,压力为p s ,确定引起火炉中烟气自动流通的压力差。

烟气的密度可按下式计算:p=(1.25-0.0027t s )kg/m 3,空气ρ=1.29kg/m 3。

解:把t 300s C =︒代入3s (1.250.0027)/s t kg m ρ=-得3s (1.250.0027)/s t kg m ρ=-33(1.250.0027300)/0.44/kg m kg m=-⨯=压力差s =-p ρρ∆a ()gH ,把31.29/a kg m ρ=,30.44/s kg m ρ=,9.8/g N kg =,20H m =分别代入上式可得s =-20p Paρρ∆⨯⨯a ()gH=(1.29-0.44)9.8166.6Pa =2.3 已知大气压力为98.1kN/m 2。

求以水柱高度表示时:(1)绝对压力为117.2kN/m 2时的相对压力;(2)绝对压力为68.5kN/m 2时的真空值各为多少?解:(1)相对压力:p a =p-p 大气=117.72-98.1=19.62KN/2m以水柱高度来表示:h= p a/ g ρ=19.62* 310 /(9.807* 310)=2.0m(2)真空值:2v a p =p p=98.168.5=29.6/m KN -- 以水柱高度来表示:h= p a/g ρ=29.6* 310 /(9.807* 310)=3.0m2.4 如图所示的密封容器中盛有水和水银,若A 点的绝对压力为300kPa ,表面的空气压力为180kPa ,则水高度为多少?压力表B 的读数是多少?解:水的密度1000 kg/m 3,水银密度13600 kg/m 3A 点的绝对压力为:)8.0(20g gh p p Hg o h A ρρ++=300⨯310=180⨯310+1000⨯9.8 h+13600⨯9.8⨯0.8 求得:h=1.36m压力表B 的读数p (300101)199g a p p KPa KPa =-=-=2.5 如图所示,在盛有油和水的圆柱形容器的盖上加载F=5788N 已知h 1=50cm ,h 2=30cm ,d=0.4cm ,油密度ρ油=800kg/m 3水银密度ρHg =13600kg/m 3,求U 型管中水银柱的高度差H 。

流体力学-第2章

流体力学-第2章
p = p ( x, y , z )
流体静压强是空间点坐标的标量函数 说明: 1) 静止流体中不同点的压强一般是不等的,同一点的各向静 压强大小相等。 2) 运动状态下的实际流体,流体层间若有相对运动,则由于 粘性会产生切应力,这时同一点上各向法应力不再相等。 流体力学
§2.2
流体平衡微分方程
• 流体平衡微分方程的推导
p ρ= R T
T =T0 − βz
z 5.256 ⇒ p =101.3(1− ) kPa 44300
(2)同温层压强的分布 流体力学 见 P23
三、压强的度量 1、压强的两种计算基准 绝对压强pabs:以无气体分子存在的完全真空为零点起算的压强 相对压强p:以当地同高程的大气压强pa为零点起算的压强 p= pabs - pa • 正压 负压 真空度pv pv= -p = pa - pabs
流体力学
例 2-5 封 闭 水 箱 如 图 , 水 箱 顶 面 安 装 的 压 力 表 读 值 为 p0=10kN/m2,水箱内水深 h =3m,当地大气压pa=98kN/m2。求 水面下2m处的绝对压强和相对压强。 解:
p = p0 + γh = 10 + 9.8 × 2 = 29.6 kPa
p0 3m A 封闭水箱
(2)质量力
ρ dxdydz
X ρ dxdydz
Y ρ dxdydz
Z ρ dxdydz
流体力学
x 方向平衡微分方程
∂p dx ∂p dx (p− ) dydz − ( p + ) dydz + X ρ dxdydz = 0 ∂x 2 ∂x 2
1 ∂p X− =0 ρ ∂x
流体力学
1 ∂p X− =0 ρ ∂x

中南大学《流体力学》课件第二章静力学.

中南大学《流体力学》课件第二章静力学.

证明
质量力 表面力
1 f x dxdydz 6
1 p 0 0 p A cos( n , x ) x dydz n n 2
导出关系式 得出结论
F 0
x
px pn
第一节 平衡流体中的应力特征
第二节 流体平衡微分方程
压强在流体运动、流体与固体相互作用中扮演重要角色,如 机翼升力、高尔夫球及汽车的尾流阻力,龙卷风产生强大的 负压强作用,液压泵和压缩机推动流体做功等都与压强有关。 然而,压强在静止流体、相对静止流体及粘性运动流体中的 分布规律将明显不同。
如图所示的密闭容器中,液面压强 问题1: p0=9.8kPa,A点压强为49kPa, 则B点压强为多少 ,在液面下的深度为多少? 答案 39.2kPa;
3m
问题2: 露天水池水深5m处的相对压强为:
答案
49kPa
图示容器内 A、B 两点同在一水 问题3:平面上,其压强分别为 pA 及 pB。 因 h1 h 2,所以 pA pB。 答案
• 点压强的定义及特性 • 微元体法推导出流体平衡微分方程 即流体平衡的规律 • 重力作用下流体的平衡
p p ( U U ) 0 0
pp gh 0
等压– 绝对压强p‘ 绝对压强不可为负 – 相对压强(表压强)p 相对压强可正可负 – 真空压强(真空值)pv 真空压强恒为正值
自由面上 p 0 所以 AB 上各点的压强均为 0
[例]试标出如图所示盛液容器内A、B、C三点的位置水头、 测压管高度、测压管水头。以图示0-0为基准面。
pC g pB g
A
pA g
Z
Z
c
ZB
C 因为 ,所以,以A点的测压管水头为依据, g 可以确定B点的位置水头为2m和测压管高度为6m ;C点的 位置水头6m,测压管高度为2m.

流体力学(张景松版)第二章 流体静力学

流体力学(张景松版)第二章 流体静力学

工程大气压 98066.5 0.98067 1
0.9678 735.6 10.000 735.6 14.22
标准大气压 101325 1.01325 1.033
1
760 10.332 760
14.7

133.3 0.00133 0.00136 0.00132 1
13.6
1 0.01934
毫米水柱 9.8067 0.000098 0.0001 0.0000968 0.07356 1 0.07356 0.00142
一、压强的计量
p
1、绝对压强
以完全真空为基准计量的压强
绝对 压强
2、计示(相对)压强
以当地大气压强为基准计量的压强
o
计示 压强
计示 压强 (真空)
p>pa
大气压强 p=pa
p<pa 绝对 压强
完全真空 p=0
表压: p pa pe p pa gh
真空: p pa pv pa p pe
p p dx x 2
o y
dz
b ac
dy dx
p p dx x 2
x
为得到b面和c面的压强,利用a点压强进行泰勒展开:
b(x dx , y, z) : 2
pb

p

p x
dx 2
c(x dx , y, z) : 2
pc

p
p x
dx 2
2 流体静力学
z
p p dx x 2
一、流体的静压强
流体处于绝对静止或相对静止时的压强。
P dP p lim
A0 A dA
2.2 流体的静压力及其特性

流体力学第二章参考答案

流体力学第二章参考答案

第二章 流体静力学2-1 将盛有液体的U 形小玻璃管装在作水平加速运动的汽车上(如图示),已知L =30 cm ,h =5cm ,试求汽车的加速度a 。

解:将坐标原点放在U 形玻璃管底部的中心。

Z 轴垂直向上,x 轴与加速度的方向一致,则玻璃管装在作水平运动的汽车上时,单位质量液体的质量力和液体的加速度分量分别为0,0,,0,0x y z x y z g g g ga a a a ===-===代入压力全微分公式得d (d d )p a x g z ρ=-+因为自由液面是等压面,即d 0p =,所以自由液面的微分式为d d a x g z =- 积分的:a z x c g=-+,斜率为a g -,即a g h L = 解得21.63m/s 6g a g h L ===2-2 一封闭水箱如图示,金属测压计测得的压强值为p =4.9kPa(相对压强),测压计中心比A 点高z =0.5m ,而A 点在液面以下h =1.5m 。

求液面的绝对压强和相对压强。

解:由0p gh p gz ρρ+=+得相对压强为30() 4.91010009.81 4.9kPa p p g z h ρ=+-=⨯-⨯⨯=-绝对压强0( 4.998)kPa=93.1kPa abs a p p p =+=-+2-3 在装满水的锥台形容器盖上,加一力F =4kN 。

容器的尺寸如图示,D =2m ,d =l m ,h =2m 。

试求(1)A 、B 、A ’、B ’各点的相对压强;(2)容器底面上的总压力。

解:(1)02 5.06kPa 4F F p D A π===,由0p p gh ρ=+得:0 5.06kPa A B p p p ===''0 5.06kPa+10009.82Pa 24.7kPa A B p p p gh ρ==+=⨯⨯=(2) 容器底面上的总压力为2'24.7kPa 77.6kN 4A D P p A π==⨯= 2-4 一封闭容器水面的绝对压强p 0=85kPa ,中间玻璃管两端开口,当既无空气通过玻璃管进入容器、又无水进人玻璃管时,试求玻璃管应该伸入水面下的深度h 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dW Xdx Ydy Zdz
dW W dx W dy W dz
x
y
z
W X , W Y , W Z
x
y
z
满足 dp (Xdx Ydy Zdz) 的函数W(x,y,z)称为势函数
具有这样势函数的质量力称为有势的力
函数 W (x, y称, z为) 势函数。
具有势函数的力称为有势的力。 液体只有在有势的质量力的作用下才能平衡。
(1
2)(
d )2] D
156Pa 16mmH2O
例题:油箱液面指示器的功用是:在较短尺寸的液面指示管上成比 例地示出油箱中液面的升降情况。图示三液交叉式U型管中,装有 汽油1,水银3和水2,汽油装满时,U型管中的水银面为1-1,液面 指示管中的水位在刻度1处,当油箱液面下降h1时,指示管中液面 下降h2,求h2和h1的比例关系式。
Y 1 p
y
Z 1 p
z
X 1 p
x
Y 1 p
y
Z 1 p
z
欧拉平衡方程指出流体处于平衡 状态时,作用于流体上的质量力 与压强递增率之间的关系。
平衡流体受哪个方向的质量分力, 则流体静压强沿该方向必然发生 变化;反之,如果哪个方向没有 质量分力,则流体静压强在该方 向上必然保持不变。
试确定使交界面升至h=280mm时的压强差Δp.
解升:或设下初降始均液为面Δ距h离为h1和h2,当交界面上升h时,液面上
1h1 2h2
h D2 h d 2
4
4
h ( d )2 h D
以变动后交界面为基准,列平衡方程:
p1 1(h1 hh) p2 2(h2 hh)
p
p1
p2
h[(1
2)
解:当油箱装满时:
1H1 2H2
当汽油面下降时,以左支管交 界面为基准,列平衡方程
1(H1 h1 h2 ) 3 2h2 2H2
H2
H1
1(H1 h1 h2Leabharlann ) 2 3h2 1H1h2
1h1 2 3 1
kh1
X p 0
x
将 Y p 0
y
Z p 0
z
分别乘以dx, dy, dz相加,得
p dx p dy p dz (Xdx Ydy Zdz)
x y z
dp (Xdx Ydy Zdz)
dp (Xdx Ydy Zdz)
如果流体是不可压缩的,则上式右边括号 内的数值必然是某一函数的全微分
第七节 流体平衡微分方程
作用在六面体上的外力有质量力和表面力,列X轴
向平衡方程为:
( p 1 p dx)dydz ( p 1 p dx)dydz Xdxdydz 0
2 x
2 x
X p 0 Y p 0 Z p 0
x
y
z
X 1 p
上式即流体平
x
衡微分方程 (欧拉方 程),也可 写为:
X 0
重力各轴向分力为: Y 0
Z g
dp (Xdx Ydy Zdz) gdz dz
积分上式得: p Z C
即: Z p C
等压面及其特性
dp dW 0
W C Xdx Ydy Zdz 0
等压面即等势面 等压面和质量力正交 (这是等压面的重要性质)
例题:如图微压计由U型管连接的两个相同圆杯所组成, 两杯中分别装入互不混合而又密度相近的两种工作液体 (酒精水溶液密度ρ1=870kg/m3,煤油ρ2=830kg/m3), 当气体压强差Δp=p1- p2=0时,两种液体的初始交界面 在标尺O处,已知U型管直径d=5mm,杯直径d=50mm,
相关文档
最新文档