公交车调度方案的优化模型
公交运营优化方案

公交运营优化方案一、前言公交是城市公共交通系统中重要的组成部分,对于缓解城市交通压力、提高出行效率、改善城市环境等方面都有着重要的作用。
然而,目前我国公交运营中依然存在着一些问题,例如车辆运行效率低、服务质量不高、运营成本高等。
因此,对公交运营进行优化,提高公交运营效率和服务质量,已成为当前的紧迫需求。
本文将从公交运营的各个环节着手,提出一系列的优化方案,包括线路规划、运营管理、车辆运营、服务质量等方面的优化措施,以期为提高公交运营效率和服务质量提供参考和指导。
二、线路规划优化方案1. 采取综合交通枢纽模式在进行线路规划时,应该采取综合交通枢纽模式,充分结合地铁、轨道交通、公交和出租车等多种交通方式,将不同交通方式有机结合起来,形成一个覆盖面广、换乘方便的综合交通网络,以满足市民不同出行需求。
同时,要注重将公交线路与地铁、轨道交通站点相衔接,提高换乘效率。
2. 合理设置线路长度和站点间距在进行线路规划时,应根据城市的人口密度、用地结构、交通需求等因素,合理设置公交线路的长度和站点间距,注重线路的连续性和服务性。
避免出现线路长度过长、站点间距过远,导致乘客出行不便的情况。
3. 实施动态调整线路方案随着城市的发展和人口分布的变化,公交线路的规划也需要不断调整和完善。
因此,应建立健全的线路调整机制,根据实际情况对线路进行动态调整,保证线路与城市发展的适应性和灵活性。
三、运营管理优化方案1. 加强公交运营信息化建设通过建设公交运营信息化系统,实现对公交车辆和线路的实时监控和管理,以提高公交运营的精准度和效率。
同时,可以利用大数据技术分析乘客出行数据,为线路规划和调整提供科学依据。
2. 推行公交优先政策在城市道路规划和建设中,应考虑到公交车辆的运行需求,优先保障公交车辆的通行权利。
通过设置公交专用道、提供公交优先信号等措施,减少公交车辆的行车阻碍,提高公交运营效率。
3. 完善公交站点设施优化公交站点的设置和布局,提高站点的空间利用率,合理规划站点位置和间距,为乘客提供舒适、便捷的候车环境。
可变线路式公交车辆调度优化模型

i ∈S
( ) 1
. t . s
∑x ∑x
, i j
/ { } S 1 = 1, j∈S / { S S} = 1, j∈S
( ) 2 ( ) 3 ( ) 4 ( ) 5 ( ) 6 ( ) 7 ( ) 8 ( ) 9 ( ) 1 0
, i j
T S S i∈ S i >A i +T s, e Pk ≤l k ∈ N1 ∪ N3 k ≤T k, T Pk < T Dk , k∈ N T Pk ≥ T Rk , k ∈ N1 ∪ N3 ) ≤C NB( t∈ ( 0, T) t B ,
0 引 言
随着经济的发 展 和 机 动 化 水 平 的 提 高 , 城市 交通拥堵问题也不断加剧 。 公共交通在道路交通 资源的充分利用上具有私人交通无法比拟的优越 性, 已经成为缓解道路交通拥堵的 1 条重要途径 。 ) 可变线路 式 公 交 ( 作为1种新 f l e x r o u t e t r a n s i t - 融合了常规公交运营模式 型公 交 运 营 模 式 , ( 的高成本效益以及需求响应式公交系统 F R T) ( ) 能够提供门到门的公交运输 D R T 的机动灵活 , 是解决城郊 地 区 公 交 服 务 问 题 的 1 条 重 要 服务 , 途径 。 可变线路式公 交 可 以 描 述 为 : 车辆在一定的 服务区域内围绕 基 准 线 路 运 行 , 并在松弛时间内 偏离基准路线行 驶 , 在乘客要求的地点停车上下 客 。 车辆行驶过 程 中 满 足 一 定 的 时 空 限 制 , 即车 辆驶离基 准 路 线 为 乘 客 提 供 站 外 上 下 车 服 务 之 需要返回基准线路继续行驶 , 并且满足线路上 后, 固定站点的时间约束 。 根据可变线路式公交乘客 的上下车位置可 以 将 其 分 为 4 类 : 站外上车站外 、 、 下车 ( 站内 上 车 站 外 下 车 ( 站外上车 I类 ) I I类 ) 。 站内下车 ( 和站内上车站内下车( I I I类 ) I V 类) 其运行模式见图 1, 其中 1 和s 为公交线路的首末 站。
城市公交调度优化模型及算法研究

号,标准容量相 同;
(1)一天当中,乘客因等车所损失 的总费用 :
(2)所有公交车辆均不准许越站和相互超车 ; (3)该线路可调配的公交车数量是一定 的;
K J
r=Cx ∑k=l∑_-l [ l L mk x ‘ ] I |
20t0.10《城市公获交遁》URBAN№ TRANSPORT
1 公 交发车 间隔优化模型的建立
费用 ;[ ]【 仅— — 乘客利益的权重 ;
B— — 运营公司利益的权重 ;
1.1 模型假设
其 中,仪+13=l。
1.3 目标 函数
(1)该公交线路上运行 的公交 车辆均为 同一 型
平均 满 载 率 和全 天 总发 车 次 数 作 为 约束 。所 得优 化 结 果 ,既 减 少 了公 交公 司 的运 营成 本 ,又 节 约 了乘 客 的候 车时 间 , 能较 好 地 兼顾 乘 客及 运 营公 司 的利 益 。
关 键 词 :公交调度 ;公共 交通 ;优化模型;发 车间隔
中图分 类 号 :U492.4 12 文 献 标 识码 :A Study on Optimal Model and Algorithm for Bus Dispatching
注 :北 京 交通 大学 大 学 生创 新性 实验 计 划项 目资 助 项 目编 号 :0950034
但 目前 ,我 国的公共交通事业发展还比较落后 ,
公 交智 能化水平还 比较低 ,绝大部分是 旧的运行体
制。现行 的公交企业运营调度管理工作存 在很多问
题 :调度管理主要依靠人力 ,运营计划主要依靠调
uRBAN PUBLIC TR ̄SPORT《城市公蔌交运 》2010.10
车辆调度和路线优化的设计方案

车辆调度和路线优化的设计方案在现代物流和交通运输中,车辆调度和路线优化被广泛应用。
它们不仅可以提高资源利用率和运输效率,还可以减少成本和时间,提高用户体验和服务质量。
在本文中,我们将讨论车辆调度和路线优化的设计方案,介绍其实现原理和技术工具,探讨其应用场景和效果评估。
背景介绍车辆调度和路线优化是指在一定的运输条件下,根据货物、车辆、路况等因素,合理安排车辆的数量、位置、时间和路线,满足客户需求,并保证运营效率和质量。
在实际应用中,车辆调度和路线优化具有广泛的应用场景和优势,如:•物流配送调度:在优化仓库、配送中心、配送线路、配送车辆等资源分配的同时,满足客户的货物送达时间和安全性要求。
•出租车调度:在考虑司机、车辆、客户、路况等因素的基础上,实现高效的订单分配和服务质量保障。
•公交车调度:在满足日常运营需求的同时,优化车辆数量、线路规划和公共交通出行体验。
由此可见,车辆调度和路线优化在交通运输和物流管理中具有重要的作用和意义。
实现原理车辆调度和路线优化的核心是数据分析和算法模型。
我们需要根据不同的应用场景和业务需求,采集配送、出行、客户等数据,以实现决策的科学性和准确性。
具体而言,实现车辆调度和路线优化的步骤如下:1.数据预处理和建模:对采集的数据进行清洗、分类、聚合等处理,以建立符合实际情况的数学模型和数据库。
2.算法设计和测试:选取合适的数据挖掘、优化算法和模拟仿真方法,进行任务分配、路径规划、调度优化等方面的设计和测试。
3.系统集成和应用:将算法模型和数据库集成为车辆调度和路线优化系统,提供用户界面、数据交互和决策支持功能。
在实现车辆调度和路线优化的过程中,算法模型的选择和优化是非常关键的因素。
通常采用的算法模型包括数学规划、图论、遗传算法、模拟退火等等。
这些算法模型可以根据数据量、实时性、处理效率和质量等要求,灵活地进行组合和应用。
技术工具车辆调度和路线优化的设计方案需要使用多种技术工具。
公交车调度的优化模型

种 较 好 的解 决方 法 。本 文 以公 交公 司运 营 的 总 车 辆数 最 小 为 目标, 运 营 过 程 中满 足 各 方 需 求 的 车 辆 数 为 约 束 务 件 建 立 了优 化 模 型 模 型 实 以 现 了 对 线路 运 营 进 行 评 估 和 优 化 公 交 车 配 置 、 考 虑 了 乘 客 等 车 的 社 会 成 本 又 兼顾 了公 交 公 司 的 利 益, 法 易 于操 作 , 有 较 大 的 实 际 应 用 价 既 方 具
善城市交 通环境 、 改进市 民出行 状况 、 高公交公 司的经济 和社会 效 提 益, 都具有重要意义 。 下面考虑一条公 交线路上公 交车的调度问题 , 其 数 据 来 自我 国 一 座 特 大 城 市某 条公 交 线 路 的 客 流 调 查 和 运 营 资 料 。 该 条 公 交 线 路 上 行 方 向共 l 4站 , 行 方 向 共 l 下 3站 。 3 4页 给 第 - 出的是典型 的~个工 作 日两个运 行方 向各 站上下车 的乘 客数量统计 ( 数据从略) 。公交公司配给该线路同一型号的大客车 ,每辆标准载客 10人 , 0 据统计 客车在该线路上运行 的平均速度 为 2 0公里 、 运 营 时。 调度要求 , 客候 车时间一般不要超过 1 乘 0分钟 , 早高 峰时一 般不要超 过 5分钟 , 车辆满载率不应超过 10 一般也不要低 于 5 %。 2 %, 0 试根据这些 资料和要求 , 为该线路设计 一个便于 操作 的全天 ( 工 作 日) 的公 交 车 调 度 方 案 , 括 两 个 起 点 站 的 发 车 时 刻 表 : 共 需 要 多 包 一 少 辆 车 ;这 个 方 案 以 怎 样 的程 度 照 顾 封 了乘 客 和 公 交 公 司 双 方 的利 益: 等. 等 . 如何 将 这 个 调 度 问题 抽 象 成 一 个 明 确 、 整 的 数 学 模 型 。 出 求 完 指 解模 型的方法 ; 根据 实际问题 的要求 , 如果要设 计更 好的调度方案 , 应 如何 采集 运 营数 据 。
数学建模-公交车调度问题

第三篇公交车调度方案得优化模型2001年 B题公交车调度Array公共交通就是城市交通得重要组成部分,作好公交车得调度对于完善城市交通环境、改进市民出行状况、提高公交公司得经济与社会效益,都具有重要意义。
下面考虑一条公交线路上公交车得调度问题,其数据来自我国一座特大城市某条公交线路得客流调查与运营资料。
该条公交线路上行方向共14站,下行方向共13站,表3—1给出得就是典型得一个工作日两个运行方向各站上下车得乘客数量统计。
公交公司配给该线路同一型号得大客车,每辆标准载客100人,据统计客车在该线路上运行得平均速度为20公里/小时.运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。
试根据这些资料与要求,为该线路设计一个便于操作得全天(工作日)得公交车调度方案,包括两个起点站得发车时刻表;一共需要多少辆车;这个方案以怎样得程度照顾到了乘客与公交公司双方得利益;等等。
如何将这个调度问题抽象成一个明确、完整得数学模型,指出求解模型得方法;根据实际问题得要求,如果要设计更好得调度方案,应如何采集运营数据.公交车调度方案得优化模型*摘要:本文建立了公交车调度方案得优化模型,使公交公司在满足一定得社会效益与获得最大经济效益得前提下,给出了理想发车时刻表与最少车辆数。
并提供了关于采集运营数据得较好建议。
在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较,得出载完该时组乘客得最少车次数462次,从便于操作与发车密度考虑,给出了整分发车时刻表与需要得最少车辆数61辆。
模型Ⅱ建立模糊分析模型,结合层次分析求得模型Ⅰ带给公司与乘客双方日满意度为(0、941,0、811)根据双方满意度范围与程度,找出同时达到双方最优日满意度(0、8807,0、8807),且此时结果为474次50辆;从日共需车辆最少考虑,结果为484次45辆。
公交车调度优化模型

公交车调度优化模型
何宝泉;吴斯浩;陆文辉;罗世庄
【期刊名称】《暨南大学学报(自然科学与医学版)》
【年(卷),期】2003(024)005
【摘要】提出了制定一条公交线路车辆调度方案的优化数学模型.该模型计算了乘客在车站等候的时间内所可能创造的财富--社会效益,并将乘客因候车而丧失创造该财富的机会看成一种社会成本.对车辆调度方案的评估时,不仅考虑了公司运营成本,而且考虑了相应的社会成本.因此,该模型制定的调度方案兼顾了公司利益和社会效益.最后将实际的统计数据带入模型,给出一个车辆调度发车时刻表的优化方案.【总页数】6页(P65-70)
【作者】何宝泉;吴斯浩;陆文辉;罗世庄
【作者单位】暨南大学统计系,广东,广州,510632;暨南大学统计系,广东,广
州,510632;暨南大学统计系,广东,广州,510632;暨南大学数学系,广东,广州,510632【正文语种】中文
【中图分类】O224
【相关文献】
1.公交车调度的优化模型 [J], 李传伟;叶红
2.基于候车与乘车满意度的公交车调度优化模型 [J], 姜少毅;王博;闫哲
3.公交车调度优化模型 [J], 李成功;脱小伟;郭尚彬;祁忠斌
4.可变线路式公交车辆调度优化模型 [J], 林叶倩;李文权;邱丰;丁钰玲
5.基于NSGA算法的公交车辆调度优化模型 [J], 宋晓鹏;韩印;姚佼
因版权原因,仅展示原文概要,查看原文内容请购买。
公交运营调度优化的评价指标模型研究

项 目( 0 7 A1 Z 0 ) 2 0 A 12 1 、
全 面 、 理 的特 点 。 由于公 共交 通涉 及 的 目标 、 合 因素 很 多 , 要对所 有 因素进行 有效 筛选 , 用定 性 与定 需 利 量 相结合 的方 法建 立一套 完整 的评 价 指标 体 系 。因
1 评价指标的确立的原则和方法
1 1 确 立的原 则 .
行 评价 , 仅 以乘 客 等待 时间为 依据 , 于 片面 。本 但 过
公交 运 营调度 优化 的评价 指标 的构 建是 以乘客
出行利益 并兼 顾公 交企业 效益 最大 为 目标 而建 立 的
线 网优化 模型 。评 价指标 模型 应该 具有 简 单 、 学 、 科
第1 0卷
第 1 期
21 00年 1月
科
学
技
术
与
工
程
Vo. 0 No 1 J n 2 1 11 . a . 0 0
@ 2 0 S i T c . g g 01 c. e h En n .
l 7 — l 1 ( 0 0 10 2 - 6 l 8 5 2 1 ) -3 4 6 0
文献标志码
公共 交通对 于一个 城市 的发展 起 着举 足轻 重 的
文 旨在研 究 出一种 公 交 调 度优 化效 果 的模 型 , 模 该 型将 集合 各种影 响调 度效 果 的因素 , 面 、 观地 对 全 客 优化 效果 进行评 价 。 建立 一套科 学 、 系统 、 有效 的评 价指标 体 系不 仅
作用 , 而公 交运 营调度 是通 过合理 的资 源配置 , 效 有 地 管理 车辆资源 , 使供 需矛 盾得 到解 决 。现 阶段 , 对
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公交车调度方案的优化模型摘要本文通过对某市某条公交线路的客流调查和运营资料分析,建立公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益前提下,给出了理想公交车调度方案。
对于问题一,模型Ⅰ中建立了最大客容量,发车车次数的数学模型,运用决策方法给出了各时间段最大客容量数,在满足客车载满率及载完各时段所有乘客情形下,得出每天最少车次数为462次,最少车辆数为60辆;并给出了整分发车时刻表(见附件四)。
模型Ⅱ中,用层次分析法分析乘满意度为mc=w t mc mc ⨯+⨯6165 ,在公交车最大载客量分别为120、100、50时乘客和公交公司的满意度mc 、mg 。
拟合得出乘客及公交公司满意度对应的关系式,建立目标函数max=(mc+mg)-|mc-mg|,使双方满意度之和达到最大,同时双方满意度之差最小,得到上下行的最优满意度(0.8688,0.8688),此时公交车调度为474次50辆。
对于问题二,交待了综合效益目标函数及整数规划法求解流程。
关键词:公交调度层次分析法满意度整数规划一、问题的重述公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。
公交公司制定一个公交车调度方案需要考虑各方面的因素。
我国一座特大城市某条公交线路情况,一个工作日两个方向各个站上下车的乘客数量统计表如表1、表2所示。
已知运营情况与调度要求如下:(1)公交线路上行方向共14站,下行方向共13站。
(2)公交公司配给该线路同一型号的大客车,每辆标准载客100 人,据统计客车在该线路上运行的平均速度为20公里/小时,车辆满载率不应超过120%,一般也不要低于50%。
(3)乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟。
需要解决的问题:(1)试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。
(2)如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法。
二、问题的分析本问题要求我们设计一个公交车调度是要同时考虑到完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益等诸多因素。
如果仅考虑提高公交公司的经济效益,则只要提高公交车的满载率,运用数据分析法可方便地给出它的最佳调度方案;如果仅考虑方便乘客出行,只要增加车辆的次数,运用统计方法同样可以方便地给出它的最佳调度方案。
显然这两种方案时对立的。
于是我们将此题分成两个方面,分别考虑:○1公交公司的经济利益,记为mg:公司的满意度;○2乘客的等待时间和乘车的舒适度,记为mc:乘客的满意度。
公交公司的满意度取决于每一趟车的满载率,且满载率越高,公交公司的满意度越高;乘客的满意度取决于乘客等待的时间和乘车的舒适度,而乘客等待时间取决于车辆的班次,班次越多等待时间越少,满意度越高;乘客的舒适度取决于是否超载,超载人数越少,乘客越满意。
很明显可以知道公交公司的满意度与乘客的满意度相互矛盾,所以我们需要在这个因素中找出一个合理的匹配关系,使得双方的满意度达到最好。
三、符号说明a ijk:上行或下行第j时段第k站上车人数。
b ijk:上行或下行第j时段第k站下车人数。
l ij:上行或下行第j时段最大客流量。
z ij:上行或下行第j时段平均载客量。
c ij :上行或下行第j时段的整车次。
C :日所需总发车车次。
s ij :上行或下行第j时段平均发车时差。
F[s ij]:上行或下行第j时段发车时差为小数时,向下取整数。
C[s ij]:上行或下行第j时段发车时差为小数时,向上取整数。
mc i:上行或下行乘客的日平均满意度。
mc ij:上行或下行第j时段乘客满意度。
t ij:上行或下行第j时段乘客等车时间。
mc t:乘客对等车时间的满意度。
mc w:乘客对乘车舒适度的满意度。
mg i:上行或下行公交公司日平均满意度。
mg ij:上行或下行第j时段公交公司的满意度。
i=1 :表示上行运动(此时k=1,2,3,...,14)。
i=2 :表示下行运动(此时k=1,2,3,...,13)。
j=1,2,...,18 :表示公交车从5:00到23:00运行的各个时间段。
四、模型的假设1) 交通情况、路面状况良好,无交通堵塞和车辆损坏等意外情况。
2) 公交公司在正常营业期间,最迟发车时间间隔不超过20分钟。
3) 公交车发车时间间隔取整分钟,行进中公交车彼此赶不上且不超车,到达终点站后掉头为始发车。
4) 乘客在每段时间内到达车站的人数可看作是负指数分布,乘客乘车是按照排队的先后有序原则进行的,且不用在两辆车的时间间隔内等待太久。
5) “人数统计表”中的数据来源、可信、稳定、科学。
6) 乘车票价为2元,不因乘车远近而改变。
7) 为了便于叙述,本文把公交车运营时间5:00~23:00分为18个时间段,分别为1,2,...,18 。
五、模型的建立与求解5.1 模型Ⅰ问题1为设计便于操作的公交车调度方案。
根据表1、表2中的一个工作日两个方向各个站上下车的乘客数量统计情况,要满足公交车载完每个时间段的乘客数,则必须能载完各个时段乘客人数达到最大时的人数,由此建立模型,来确定发车时刻表,计算需要的车辆数,对问题依次进行分析。
(1)上下行各时段的最大客容量,建立模型如下:l ij =⎪⎪⎩⎪⎪⎨⎧====∑∑==m1k ijk ijk m1k ijk ijk 13)1,2,...m 2(i )b -(a max 14)1,2,...m 1(i )b -(a max ,,,, (j=1,2,...,18) 运用模型和表1、表2中的上下乘客数,算出上下行各个时间段内最大客容量。
上行方向:701,2943,5018,2705,1528,1193,1355,1200,1040,881,871,2133,2772,897,464,410,275,19。
下行方向:27,1039,2752,3223,1822,1093,986,830,891,1017,1302,2196,3612,2417,1091,781,774,337。
其对应的各个时间段最大客容量的直方图:(图一)时间段最大客容量时间段最大客容量(2)各个时段的发车次:由于公交车每辆标准载客100 人,车辆满载率在50%~120%之间,当z ij 接近120人,由模型:c ij =⎪⎪⎩⎪⎪⎨⎧∈∉+⎥⎦⎤⎢⎣⎡++Z l l Z l l ijij ijij 120,120120,1120 (其中+Z 是正整数)C=∑∑==21i 181j ij c可以计算出各时间段的发车次数c ij ,对于早晚时段,上行22:00~23:00最大客容量数为19人、下行5:00~6:00最大客容量数为27人,但公交公司要满足最迟不超过20分钟发一趟车,于是发车车次依次如下:上行:6,25,42,23,13,10,12,10,9,8,8,18,24,8,4,4,3,4 。
下行:3,9,23,27,16,10,9,7,8,9,11,19,31,21,10,7,7,4 。
于是得到全天的总最少发车次数C=∑∑==21i 181j ij c =231+231=462 。
(3)安排发车时间间隔:取每个时段60除以车次数,得到该时段的平均发车时间间隔:s ij =60/ c ij ,依次如下:上行:10 ,2.4 ,1.4 ,2.6 ,4.6 ,6 ,5 ,6 ,6.7 ,7.5 ,7.5 ,3.3 ,2.5 ,7.5 ,15 ,15 ,20,20 。
下行:20,6.7,2.6 ,2.2 ,3.8 ,6 ,6.7 ,8.6 ,7.5 ,6.7 ,5.5 ,3.2 ,1.9 ,2.9 ,6 ,8.6 ,8.6, 20 。
由s ij 的值有小数出现,而现实中列车、客车等时刻表的最小单位为分钟,故为了调度方案的实际可操作性,应该调整为整分间隔。
当s ij 取整数时,可直接安排发车c ij 次;当s ij 取小数时,不妨设F[s ij ]和C[s ij ]间隔的车次为m ij ,n ij ;可知F[s ij ]≤s ij ≤C[s ij ],由模型:⎩⎨⎧=+=⨯+⨯ijij ij ij ij ij ij c n m s C n s F m 60][][ (i=1,2;j=1,2, (18)可以求出以F[s ij ]为间隔的班次m ij 和以C[s ij ]为间隔的班次n ij ,再分别以发车间隔为F[s ij ]和C[s ij ],兼顾发车密度,为了使得安排在同时段线路的车辆不宜过多,我们对调整的整分发车间隔对应发车量的先后顺序作调整,将相邻时间段内发车间隔相等的班次尽量安排在一起,得出了全天(一个工作日)内的公交车调度方案,结果见附件(四)。
(4)日需车辆数由汽车平均速度20公里/小时和A0—A13的距离14.61公里、A13—A0的距离14.58公里,可求得车辆从起点站运行到终点站平均用时为44分钟;又由假设可知车辆到达终点后立即掉头返回。
由于早高峰乘客数最多,故此时车辆实际占用数应是当日的上限,若公交公司日派车最少时能达到这个用车上限,则能满足日需车辆数。
早高峰段最大用车数:考虑到最少车辆时满足上下行的公交车发车要求,上行方向比下行方向车辆要多发车,我们根据各时段的发车车次c ij ,调整后的发车间隔F[s ij ]和C[s ij ],公交车单程运行时间44分钟,动态分析每时段A0、A13站可用公交车数量和发车情况如图二。
5:00~6:00上行下行的发车情况:6:00~7:00上行下行的发车情况:由上可分析每段时间的公交车发车情况,得到高峰车辆实际占用为60辆,A13站车辆数需51辆,A0站车辆数需9辆,也即当天共需开动的车辆最少为60辆。
5.2模型Ⅱ 1.满意度分析根据问题,我们在设计两个起点站的发车时刻表时,应该考虑此时刻表带给公交公司和乘客两方的利益,即公交公司和乘客对应的日平均满意度mg i 和mc i ,各时段的满意度mg ij 和mc ij ,我们对影响各自满意度的因素做分析。
(1)公交公司的满意度取决于公交车的平均载客量,公交车平均载客量越多,公交公司发车车次就少,对公交公司利益就大。
在乘客源一定的情况下,影响mg ij 的主要因素是车上的乘客数即载客量z ij ,其中,一般情况下50≤z ij ≤120 。
我们取各个时段的平均载客量z ij 的满意度mg ij ,mg ij =120ij z 。
则公交公司的平均日满意度为各时段的满意度的加权平均值:mg i =∑∑==⨯181181j ijijj ijcmg c(1=1,2;j=1, (18)(2)乘客的满意度对于乘客,影响mc ij 的主要因素是乘客的等车时间t ij 与车上的平均载客量z ij 。