高压共轨喷油器工作原理

合集下载

为什么现在的电喷柴油发动机喜欢用高压共轨技术(2024)

为什么现在的电喷柴油发动机喜欢用高压共轨技术(2024)

2024/1/26
20
05
高压共轨系统控制策略探讨
2024/1/26
21
燃油喷射正时和喷油量控制方法
基于曲轴位置和凸轮轴位置传感器的信号,精确计算发动机转速和相位,从而确定 燃油喷射正时。
通过电子控制单元(ECU)接收来自各种传感器的信号,如进气温度、进气压力、 冷却水温度等,实时计算最佳喷油量。
国外厂商
如博世、德尔福、电装等,其电 喷柴油发动机技术先进,产品性 能稳定可靠,在全球市场占据主 导地位。
14
不同类型电喷柴油发动机特点比较
2024/1/26
机械式电喷柴油发动机
01
结构简单,成本较低,但控制精度和燃油经济性相对较差。
液压式电喷柴油发动机
02
具有较高的喷射压力和良好的雾化效果,但系统复杂,维护成
18
喷油器设计及优化方向
喷油器结构
喷油器是高压共轨系统的执行部件,主要由电磁阀、针阀、衔铁、喷孔等构成 。其结构精密,能够实现燃油的精确喷射。
优化方向
喷油器的优化方向主要包括提高喷射压力、改善喷雾质量、降低噪音和减少排 放等。通过改进电磁阀结构、优化针阀形状和喷孔设计等手段,可以实现喷油 器的性能提升。
随着环保法规的日益严格,高压共 轨技术有助于发动机满足更严格的 尾气排放要求。
10
增强动力性能表现
1 2 3
提高燃油喷射压力
高压共轨技术可以提供更高的燃油喷射压力,使 燃油更迅速地喷入气缸,提高发动机的响应速度 和动力输出。
优化燃烧过程
通过精确控制喷油量和喷油正时,高压共轨技术 可以优化燃烧过程,提高发动机的燃烧效率,从 而增强动力性能表现。
2024/1/26
24

高压共轨工作原理介绍

高压共轨工作原理介绍

高压共轨工作原理介绍一、高压共轨系统的组成高压共轨系统由高压油泵、共轨、喷油嘴和电子控制单元(ECU)等组成。

1. 高压油泵:高压油泵是高压共轨系统的核心组件,它将燃油从燃油箱中抽取,并将其压缩到极高的压力(通常为1000-3000bar)。

高压油泵通常采用柱塞式结构,通过凸轮轴或者齿轮传动实现连续的高压油送入共轨。

2. 共轨:共轨是一个储存高压燃油的管道,它连接了高压油泵和各个喷油嘴。

共轨系统可以保持恒定的高压,以确保喷油系统的快速响应和稳定性。

3. 喷油嘴:喷油嘴是高压共轨系统中的另一个重要组件,它负责将高压燃油喷射到气缸内,以实现燃烧过程。

现代柴油车发动机通常采用多孔喷油嘴,通过多次喷射和雾化技术,实现更好的燃烧效果和低排放。

4. 电子控制单元(ECU):ECU是高压共轨系统的控制中枢,它通过传感器监测发动机的工作状态,根据需要调整燃油压力和喷油时间,以实现最佳的动力输出和尾气排放。

高压共轨系统的工作原理大致分为燃油供给、压力维持和喷油控制三个阶段。

1. 燃油供给阶段:燃油由燃油箱通过低压泵送入高压油管,再由高压油泵压缩后送入共轨。

在这个过程中,电子控制单元根据发动机工作状态调整高压油泵的工作压力和频率,确保共轨中的燃油压力始终保持在一个设计范围内。

2. 压力维持阶段:一旦共轨中的燃油压力达到设计值,高压共轨系统就进入了压力维持阶段,此时共轨中的燃油压力保持不变。

这样可以确保喷油系统随时都能进行高压的燃油喷射,以满足发动机不同工况下的动力输出要求。

3. 喷油控制阶段:在发动机工作时,电子控制单元根据燃烧需要,精确控制喷油嘴的开启和关闭时间。

高压电磁阀会在接收到ECU信号的情况下,打开喷油嘴并将高压燃油喷射到气缸内,完成燃烧过程。

通过精确控制喷油时间和燃油量,高压共轨系统可以实现更高效的燃烧过程,以提高动力输出和降低排放。

1. 提高燃烧效率:高压共轨系统通过精确的燃油控制,实现了更完善的燃烧过程,提高了发动机的燃烧效率和燃油利用率。

高压共轨工作原理

高压共轨工作原理

高压共轨工作原理高压共轨系统是一种现代柴油机燃油供给系统,它由高压泵、高压共轨、喷油器等部分组成。

由于该系统具有较高的压力及较快的响应速度,能够使得喷油更为精准、快速、均匀,从而提高燃烧效率并降低污染物排放。

在本文中,我们将详细介绍高压共轨系统的工作原理。

一、高压共轨系统的基本组成高压共轨系统是由高压泵、高压共轨、喷油器和控制单元等部分组成的。

高压泵能够提供高压油液,将燃油输送到高压共轨中;高压共轨则是一个压力传递和储油的装置,将高压油液传递给各个喷油器;喷油器则是实现燃油雾化和喷射的设备;控制单元则能够实现对高压共轨系统的控制和调节。

1、高压泵提供高压油液高压泵会将燃油从油箱中吸入,通过柱塞将燃油压缩,形成高压油液,再将高压油液送往高压共轨中。

高压共轨是一个储存高压油液的装置,它能够保存一定量的高压油液,并将高压油液传递给各个喷油器。

3、喷油器实现燃油雾化和喷射当需要喷油时,控制单元将信号发送至喷油器,激活电磁阀,打开高压油液通道,将高压油液送至喷油器中。

喷油器中的针阀则会打开,将高压油液喷射至喷油嘴上,并形成微小的雾状颗粒。

4、控制单元调节燃料喷射时间和量控制单元能够对高压共轨系统中的燃油喷射时间和量进行调节。

当需要增加燃油喷射量时,控制单元会将信号发送至高压泵,增加燃油压力;当需要减少燃油喷射量时,控制单元会减小针阀的打开时间,从而减少燃油的喷射。

1、提高燃烧效率由于高压共轨系统能够保持较高的燃油压力,使得燃油更容易雾化,从而提高了燃烧效率。

高压共轨系统能够调节燃油喷射时间和量,使得燃油能够更加精准地喷射至缸内,从而提高了燃烧效率。

2、降低污染物排放由于高压共轨系统能够实现更加精准的燃油喷射,使得燃烧更加充分,减少了未燃烧的燃料和氧化物的排放,从而降低了污染物的排放。

3、提高启动性能和响应速度由于高压共轨系统能够提供更快的响应时间和更高的燃油压力,使得柴油机具有更好的启动性能和响应速度。

4、降低噪音水平由于高压共轨系统能够喷出细小的雾状颗粒,使得燃油更为均匀,从而减少了燃油的燃烧噪音。

高压共轨燃油喷射系统的结构和工作原理.

高压共轨燃油喷射系统的结构和工作原理.

高压共轨燃油喷射系统的结构和工作原理2017-06-14高压共轨燃油喷射系统的结构和工作原理李明诚,《电控柴油机的基本结构及工作原理》,20111、高压共轨喷射系统简介它是由燃油泵把高压油输送到公共的、具有较大容积的配油管――油轨内,将高压油蓄积起来,再通过高压油管输送到喷油器,即把多个喷油器,并联在公共油轨上。

在公共油轨上,设置了油压传感器、限压阀和流量限制器。

由于微电脑对油轨内的燃油压力实施精确控制,燃油系统供油压力因柴油机转速变化所产生的波动明显减小(这是传统柴油机的一大缺陷),喷油量的大小仅取决于喷油器电磁阀开启时间的长短。

特点:①、将燃油压力的产生与喷射过程完全分开,燃油压力的建立与喷油过程无关。

燃油从喷油器喷出以后,油轨内的油压几乎不变;②、燃油压力、喷油过程和喷油持续时间由微电脑控制,不受柴油机负荷和转速的影响;③、喷油定时与喷油计量分开控制,可以自由地调整每个气缸的喷油量和喷射起始角。

2、高压共轨燃油喷射系统的基本结构高压共轨燃油喷射系统包括燃油箱、输油泵、燃油滤清器、油水分离器、高低压油管、高压油泵、带调压阀的燃油共轨组件、高速电磁阀式喷油器、预热装置及各种传感器、电子控制单元等装置。

高压共轨燃油喷射系统的低压供油部分包括:燃油箱(带有滤网、油位显示器、油量报警器)、输油泵、燃油滤清器、低压油管以及回油管等;共轨喷射系统的'高压供油部分包括:带调压阀的高压油泵、燃油共轨组件(带共轨压力传感器)以及电磁阀式喷油器等。

3、电控燃油喷射系统的工作原理电子控制单元接收曲轴转速传感器、冷却液温度传感器、空气流量传感器、加速踏板位置传感器、针阀行程传感器等检测到的实时工况信息,再根据ECU内部预先设置和存储的控制程序和参数或图谱,经过数据运算和逻辑判断,确定适合柴油机当时工况的控制参数,并将这些参数转变为电信号,输送给相应的执行器,执行元件根据ECU的指令,灵活改变喷油器电磁阀开闭的时刻或开关的开或闭,使气缸的燃烧过程适应柴油机各种工况变化的需要,从而达到最大限度提高柴油机输出功率降低油耗和减少排污的目的。

高压共轨燃油喷射系统构造及工作原理

高压共轨燃油喷射系统构造及工作原理

高压共轨燃油喷射系统构造及工作原理柴油机共轨电控柴油喷射系统部件构造4\\六西格玛坛{vW主要由电控单元、高压油泵、共轨管、电控喷油器及各种传感器组成。

低压燃油泵泵送燃油输入高压油泵,高压油泵将燃油加压送入高压油轨,高压油轨中的压力由电控单元根据油轨压力传感器测量的油轨压力以及需要进行调节,高压油轨内的燃油经过高压油管,根据机器的运行状态,由电控单元从预设的map图中确定合适的喷油定时、喷油持续期由电液控制的电子喷油器将燃油喷入气缸。

3.1.1高压油泵@l*[~高压油泵供油量的设计准则是保证柴油机在任何情况下喷油量和控制量之和的需求,以及起动和加速过程中燃油量变化的需求。

由于共轨系统中的燃油喷射压力与燃油喷射过程无关,且高压油泵的凸轮不能保证燃油喷射正时,因此高压油泵的油压凸轮可以根据最小峰值扭矩的设计原则进行设计,接触应力最小,耐磨性最好。

bosch公司采用由柴油机驱动的三缸径向柱塞泵来产生高达135mpa的压力。

该高压油泵在每个压油单元中采用了多个压油凸轮,使其峰值扭矩降低为传统高压油泵的1/9,负荷也比较均匀,降低了运行噪声。

该系统中高压共轨腔中的压力的控制是通过对共轨腔中燃油的放泄来实现的,为了减小功率损耗,在喷油量较小的情况下,将关闭三缸径向柱塞泵中的一个压油单元使供油量减少。

电气安装公司采用三作用凸轮直列泵产生高压。

高压油泵采用控制低压燃油有效进油的方法。

工作过程:_7[)w(g/r&e.h-gu)(1)柱塞下行,控制阀开启,低压燃油经控制阀流入柱塞腔;质量SPC、六西格玛、TS16949、MSA、fmea6gwd0d |%^w/P(_六西格玛品质论坛o9w(2)柱塞上升,但控制阀未通电且打开。

低压燃油通过控制阀流回低压室;(3)在达到供油量定时时,控制阀通电,使之关闭,回流油路被切断,柱塞腔中的燃油被压缩,燃油经出油阀进入高压油轨。

利用控制阀关闭时间的不同,控制进入高压油轨的油量的多少,从而达到控制高压油轨压力的目的;六西格玛质量论坛d7t!ys&n(4)凸轮经过最大升程后,柱塞进入下降行程,柱塞腔内的压力降低,出油阀关闭,停止供油,这时控制阀停止供电,处于开启状态,低压燃油进入柱塞腔进入下一个循环。

共轨系统工作原理及控制.

共轨系统工作原理及控制.

Bosch共轨系统照片
SAE1999-01-0191
共轨燃油系统的组成

1)低压部件
2)高压部件
3) ECU 4)传感器
5)执行器
1。低压部分:为高压部分提供足够的燃油
1)油箱:在任意工况下保持0.3bar压力, 合适的开孔或安全阀 2)低压油管:钢管,或带助燃剂的钢编织 铠装柔性油管,放热保护措施 3)输油泵:电控,或齿轮泵带粗滤器 4)过滤器:高压泵过滤,避免泵等敏感元 件出现早期磨损
• 确保共轨中的压力失控后不会超压
•机械溢流阀原理
•1350bar可靠关闭,大于允许短时超 过1500bar
• 阻止喷油器常开(喷油器失控) •少量泄漏故障时的保护处理 •1350bar可靠关闭,大于允许短时超过 1500bar
通过柱塞移动的排油量来补偿喷油量,而不是通过节流孔(孔很小)。喷油结 束时,柱塞停止移动,但并没有靠在密封面上关闭出油口。弹簧将它压回静止 位置,燃油从节流孔流出。设计上确保,即使最大油量,柱塞也能回到原位。 油量过大,柱塞被推至出油口密封面,关闭出油口; 少量泄漏,柱塞无法回到原位。几次喷油之后,柱塞封住出油口。
1 4
2
Q
Fl
Fd
d1
θ
d2
P
P
2 2
Fl .P(d1 d 2 ) 0
1 4
Fd Q.PCOS
喷油器质量检测
喷油量测量-EFS单次喷射仪
1 – Injector under test
1
2 – Variable volume measuring chamber 3 – Temperature sensor 4 – Sliding piston

高压共轨

高压共轨

高压共轨柴油发动机柴油机高压共轨电控燃油喷射技术,是现代柴油机进行性能改进的关键技术措施之一。

随着燃烧理论的进步,对喷油率形状及喷射压力有了更高的要求,即喷油率可调、多次喷射及超高喷射压力。

共轨技术是指高压油泵、压力传感器和ECU组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式,由高压油泵把高压燃油输送到公共供油管,通过对公共供油管内的油压实现精确控制,使高压油管压力大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速的变化,因此也就减少了传统柴油机的缺陷。

ECU控制喷油器的喷油量,喷油量大小取决于燃油轨(公共供油管)压力和电磁阀开启时间的长短。

共轨系统将燃油压力产生和燃油喷射分离开来,如果把单体泵柴油喷射技术比做柴油技术的革命的话,那共轨就可以称作反叛了,因为它背离了传统的柴油系统而近似于顺序汽油喷射系统。

共轨系统开辟了降低柴油发动机排放和噪音的新途径。

欧洲可以说是柴油车的天堂,在德国柴油轿车占了39%。

柴油轿车已有了近70年的历史,而最近10年可以说柴油发动机有了突飞猛进的发展。

在1997年,博世与奔驰公司联合开发了共轨柴油喷射系统(Common Rail System)。

今天在欧洲,众多品牌的轿车都配有共轨柴油发动机,如标致公司就有HDI共轨柴油发动机,菲亚特公司的JTD发动机,而德尔福则开发了Multec DCR柴油共轨系统。

共轨系统与柴油喷射系统的区别:共轨系统与之前以凸轮轴驱动的柴油喷射系统不同,共轨式柴油喷射系统将喷射压力的产生和喷射过程彼此完全分开。

电磁阀控制的喷油器替代了传统的机械式喷油器,燃油轨中的燃油压力由一个径向柱塞式高压泵产生,压力大小与发动机的转速无关,可在一定范围内自由设定。

共轨中的燃油压力由一个电磁压力调节阀控制,根据发动机的工作需要进行连续压力调节。

电控单元作用于喷油器电磁阀上的脉冲信号控制燃油的喷射过程。

喷油量的大小取决于燃油轨中的油压和电磁阀开启时间的长短,及喷油嘴液体流动特性。

高压共轨燃油喷射系统 -回复

高压共轨燃油喷射系统 -回复

高压共轨燃油喷射系统 -回复高压共轨燃油喷射系统 -回复高压共轨燃油喷射系统是现代内燃机燃油喷射系统的一种重要技术,它的出现极大地提高了发动机的燃油经济性、动力性和排放性能。

下面我将详细介绍高压共轨燃油喷射系统的工作原理、优点和发展趋势。

高压共轨燃油喷射系统的工作原理是通过一条称为共轨的高压燃油管路来将燃油供给给每个喷油嘴。

共轨系统中的传感器可以实时监测燃油的压力,并将信号传输给控制单元,控制单元再根据发动机工作状态和驾驶员的需求来控制喷油嘴的开启和关闭。

这种控制方式可以实现对燃油喷射的时间、压力和喷射量的精确控制,从而提高发动机的燃烧效率和动力性。

高压共轨燃油喷射系统相比传统的机械式喷油系统具有如下几个优点:首先,高压共轨燃油喷射系统可以将燃油喷射的压力提高到更高的水平,从而提高燃油的雾化效果。

这样可以使燃油更好地与空气混合,提高燃烧效率,降低燃油消耗和排放。

其次,高压共轨燃油喷射系统可以实现多次喷射。

通过控制喷油嘴的开启和关闭时间,可以实现多次喷射,从而进一步提高燃油的雾化效果。

多次喷射可以使燃油更好地与空气混合,减少燃料的浪费,提高燃烧效率。

再次,高压共轨燃油喷射系统可以实现高精度的燃油控制。

传感器可以实时监测燃油的压力变化,并将信号传输给控制单元。

控制单元可以根据发动机工作状态和驾驶员的需求来控制喷油嘴的开启和关闭,从而实现对燃油喷射的时间、压力和喷射量的精确控制。

这种精确控制可以使发动机在不同工况下都能够保持最佳的燃烧效率和动力性。

最后,高压共轨燃油喷射系统可以提高发动机的可靠性和耐久性。

传统的机械式喷油系统中,高压燃油泵和喷油嘴是直接连接的,燃油压力的变化会直接影响喷油嘴的工作。

而在高压共轨燃油喷射系统中,燃油泵和喷油嘴是通过共轨连接的,燃油压力的变化不会直接影响喷油嘴的工作。

这样可以减少喷油嘴的磨损,延长其使用寿命,提高发动机的可靠性和耐久性。

高压共轨燃油喷射系统在汽车工业中得到了广泛的应用,并且不断在发展壮大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高压共轨喷油器工作原理
2011-03-13 00:09:27| 分类: 战友汽车理论 阅读8 评论0 字号:大中小 订阅
喷油时刻和喷油量的调整是通过电子触发的喷油器实现的。这
些喷油器取代了喷油嘴-帽总成(喷油嘴和喷油嘴帽)。
与已经存在的直喷柴油机中的喷油嘴-帽总成相类似的压具同样
被应用于气缸顶部用于安装喷油器,也就是说,共轨的喷油器可以在发
动机无需变动的情况下,就安装在已存在的直喷柴油机的气缸顶部。
喷油器可以被拆分为一系列功能部件:孔式喷油嘴,液压伺服系统
和电磁阀。
燃油来自于高压油路,经通道流向喷油嘴,同时经节流孔流向控制
腔,控制腔与燃油回路相连,途径一个受电磁阀控制其开关的泄油孔。
泄油孔关闭时,作用于针阀控制活塞的液压力超过了它在喷油嘴针
阀承压面的力,结果,针阀被迫进入阀座且将高压通道与燃烧室隔离,
密封。
当喷油器的电磁阀被触发,泄油孔被打开,这引起控制腔的压力下
降,结果,活塞上的液压力也随之下降,一旦液压力降至低于作用于喷
油嘴针阀承压面上的力,针阀被打开,燃油经喷孔喷入燃烧室。这种对
喷油嘴针阀的不直接控制采用了一套液压力放大系统,因为快速打开针
阀所需的力不能直接由电磁阀产生,所谓的打开针阀所需的控制作用,
是通过电磁阀打开泄油孔使得控制腔压力降低,从而打开针阀。
图8 共轨系统喷油器
1-回油管;2-回位弹簧;3-线圈;4-高压连接;
5-枢轴盘;6-球阀;7-泄油孔;8-控制腔;9-进油
口;10-控制活塞;11-油嘴轴针;12-喷油嘴
图1-喷油器关闭 图2-喷油器打开
此外,燃油还在针阀和控制柱塞处产生泄漏,控制和泄漏的燃油,
通过回油管,会同高压泵和压力控制阀的回油流回油箱。
在发动机的运转和高压泵的产生压力状态下,将喷油器的工作过程
划分为四个阶段:
- 喷油器关闭(有高压时);
- 喷油器打开(开始喷射);
- 喷油器完全打开;
- 喷油器关闭(喷射结束)。
这些工作阶段是由于作用于喷油器各零部件的分配力所导致的。发
动机停机时,共轨中没有压力时,喷油嘴弹簧使喷油器关闭。
喷油器关闭(自由状态):在自由状态,电磁阀没有通电,所以它
是关着的。
泄油孔关闭,阀的弹簧使枢轴的球体顶在泄油孔座上,共轨高压在
阀控制腔建立,同样的压力也存在于喷油嘴的承压腔内。共轨压力作用
于控制活塞的末端面,与喷油嘴弹簧力共同作用,克服由由承压腔产生
的开启力,维持喷油嘴在关闭位置。
喷油器打开(开始喷射):喷油器处于它的自由状态,电磁阀通以
用于保证它快速打开的峰值电流。
由电磁触发产生的力超过了阀的弹簧力,触发器打开了泄油孔。几
乎同时,较高的拾取电流降至较低的电磁铁所需的维持电流,磁路的磁
隙变小使得仅需较小的维持电流使得控制阀保持开启。当泄油孔打开
时,燃油将从阀控制腔流入位于它上方的空腔,燃油并由此经回油管回
到油箱。泄油孔破坏了绝对的压力平衡,最终在阀控制腔内的压力也下
降。这导致阀控制腔内的压力低于仍与共轨有相同压力水平的喷油嘴承
压腔的压力,阀控制腔内压力的减小,导致作用于控制活塞上的力的减
小,最终喷油嘴针阀打开,喷射开始。
喷油嘴针阀的打开速度取决于流过控制腔的进、泄油孔时的不同流
量。控制活塞到达上方的停止位置,那里仍由在进、出油口之间的燃油
流动所产生的缓冲保持着。这时,喷油器喷油嘴完全打开,且燃油以几
乎与共轨内的相同压力喷入燃烧室内。喷油器的强制分配与它在打开阶
段时相似。
喷油器关闭(喷射结束):一旦电磁阀不被触发,阀弹簧使枢轴向
下运动,球阀将关闭泄油孔。枢轴被设计成两个元件,虽然枢轴盘在它
向下运动过程中是由一个驱动凸肩导向的,但它能利用抵消弹簧对回位
弹簧缓冲,从而尽量没有向下的作用力枢轴和球阀上。泄油孔的关闭泄
油口,燃油经进油口进入控制腔建立压力,这个压力与共轨内的压力相
同,该压力在控制活塞末端面上产生一个增大的力,这个力再加上弹簧
力,此时超过了由承压腔产生的力,所以喷油器针阀关闭。喷油器针阀
的关闭速度取决于进油孔的流量,一旦喷油嘴针阀又运动至底部密封位
置时,喷射停止。

相关文档
最新文档