大跨径椭圆形人行天桥频率分析

合集下载

大跨度桥梁的自振频率分析

大跨度桥梁的自振频率分析

大跨度桥梁的自振频率分析桥梁作为一种重要的交通设施,承载着人们的出行需求。

而在大跨度桥梁的设计和施工中,自振频率的分析是一项关键任务。

本文将对大跨度桥梁自振频率的分析进行探讨。

一、大跨度桥梁自振频率的意义桥梁的自振频率是指桥梁在自由振动状态下的特征频率。

了解桥梁的自振频率能够帮助工程师判断桥梁的稳定性和安全性。

如果桥梁在风荷载、地震等外力作用下频率接近自身的自然频率,就容易发生共振现象,引发结构破坏,对桥梁的使用安全造成威胁。

二、大跨度桥梁自振频率的计算方法大跨度桥梁的自振频率计算方法有两种:解析法和数值法。

解析法是基于桥梁的动力学原理和结构简化模型,进行频域分析和时间域分析,计算出桥梁的自振频率。

这种方法适用于结构简单的桥梁,计算结果准确可信。

然而,对于大跨度桥梁复杂的结构体系,解析法往往难以应用。

数值法是借助计算机进行桥梁动力特性的计算,通过有限元分析等数值方法,将桥梁的结构划分为离散的单元,在计算机上模拟结构的动力响应,得出自振频率。

数值法相对解析法而言,适用面更广,可以灵活应对不同结构的计算需求。

三、大跨度桥梁自振频率的影响因素大跨度桥梁的自振频率受到多种因素的影响。

1. 结构材料:不同材料的桥梁,由于密度、弹性模量等物理性质的差异,其自振频率也会有所不同。

2. 结构形式:桥梁的结构形式对其自振频率也有较大影响。

例如,悬索桥和梁桥相比,悬索桥的自振频率更高。

3. 桥梁跨度:大跨度桥梁的自振频率相对较低,因此在设计大跨度桥梁时需要给予足够的注意。

4. 动力荷载:风荷载和地震荷载等动力荷载会对桥梁的自振频率产生一定的影响。

四、大跨度桥梁自振频率的控制方法为了控制大跨度桥梁的自振频率,减少桥梁共振的可能性,设计中可以采取以下措施:1. 结构加固:合理调整桥梁的结构形式、结构材料,增加梁的刚度和强度,以提高自振频率。

2. 风洞试验:通过在设计过程中进行风洞试验,了解设计桥梁在不同风速下的响应特性,优化结构设计。

行人步伐一阶频率范围

行人步伐一阶频率范围

行人步伐一阶频率范围:竖向1.6~2.4Hz,侧向为竖向的一半0.8~1.2Hz;此钢桥的一阶侧向频率为1.7Hz,处于二阶人行步伐频率范围内,人桥共振的现象不会明显,再考虑混凝土桥面的作用,根本可以避免侧向人桥共振。

对于跨度较大的钢构造人行桥一般很难满足竖向频率小于3Hz的要求,有三种途径可以解决:
一是加大截面刚度提高自振频率,这就是要坚持国内标准,对中小跨度的比拟适用;二是避开敏感频率1.6~2.4和3.2~4.8,同时检算动力指标,如加速度以及各种舒适度指标,对大跨度人行桥这种方法较经济;
三是采用TMD等阻尼器改变构造响应,吸收动力能量,相关研究说明这种方法总体经济性较好,但存在耐久性问题;
至于侧向振动问题,参考英国伦敦千禧桥的研究报告,小于1.3Hz的人行桥都存在侧向振动问题。

侧向振动与竖向振动还有一个参数共振问题,国外研究说明竖向与侧向基频到达2:1时容易引发参数共振。

本人曾经设计过几座人行桥,钢构造,跨度不等,其中有一座跨度47m,人走在上面感觉振动明显。

查阅城市天桥标准说,自振频率不宜低于3,确实该桥Midas 计算结果为1.97,与人步行频率相近,所以带来这种不舒适感觉。

咨询相关研究人员说“一般自振频率与跨径相关〔简支梁桥〕,频率计算方式一般采用有限元软件,当频率为2--4之间以为舒适度较差〞同时咨询了会不会产生共振,他的回答是一般不会,做个检测后可以取得结果,可是经历说来结论是“不影响利用〞。

由于本人不弄检测,所以希望知情者给予以下几个问题的回答。

一、中外标准有无明文规
定自振频率范围,及其计算方式。

某简支钢结构人行天桥自振频率分析与计算

某简支钢结构人行天桥自振频率分析与计算

勘家与测量张恩辰:某简支钢结构人行天桥自振频率分析与计算某简支钢结构人行天桥自振频率分析与计算张恩辰(合肥市市政设计研究总院有限公司,安徽合肥230041)摘要:本文以某简支钢结构人行天桥为例,采用有限元分析方法对该天桥进行自振频率计算,分析人行天桥当考虑桥面铺装层时,按组合梁截面考虑换算截面刚度后,对结构的自振频率的影响。

关键词:简支梁;自振频率;桥面铺装;有限元;组合截面中图分类号:U441+.3文献标识码:A文章编号:1673-5781(2020)01-0100-020引言桥梁的自振频率(基频)宜采用有限元方法计算。

对于常规结构,当无更精准方法计算时,也可采用下列公式估算⑴。

规范中,对于公式的各个参数均有说明,但对于桥面铺装的影响,没有具体的解释,因此在实际执行时没有统一的计算模式。

但是当铺装层厚度较大时,尤其对于钢结构人行天桥,对桥梁自振频率计算值影响较大,需引起足够重视。

现行规范中,对于桥梁自振频率的限值没有具体规定,这里不做具体展开。

对于人行天桥,为避免主桥的固有自振频率与人的步行频率较接近而引起主梁振动及挠度过大,引起行人感到不适,甚至危及天桥安全,因此规范规定:为避免共振,减少行人不安全感,天桥上部结构竖向自振频率不应小于3Hz ra。

1工程实例某两跨简支钢箱梁,采用“一字型”人行天桥布置形式,跨径布置为33.8m+6.15m o其中北侧梯道按单侧布置,南侧梯道按双侧布置,不考虑非机动车推行上桥,设置1:2梯道;主桥及北侧梯道净宽4in,两侧栏杆各0.15in,全宽4.3m,南侧梯道净宽2.5in,两侧栏杆各0.15in,全宽2.8m o主桥钢板均采用Q345qD钢,梁高1.6m,腹板厚度为16mm,顶、底板厚度为16mm。

桥面铺装为“6cm钢筋混凝土+2cm砂浆+1.5cm火烧板”。

根据桥通规第4.3.2条文说明,以33.8m简支跨为例:f一兀/EIcJ2L2y m c(1)Gm c=—(2)g5GL4°—384EI C(3)式中:%为均布质量;L为计算跨径;E厶为梁刚度;G为均布自重;g为重力加速度;5为简支梁在均布荷载下的挠度。

城市某人行天桥竖向自振频率测试与分析

城市某人行天桥竖向自振频率测试与分析

人 行 地 道 技 术 规 范》
(CJJ 69-1995)、
《城市桥梁检测与评定技术规范》
(CJJ/
T 233-2015)等规范均规定了人行天桥
竖 向 振 动 基 频 的 最 低 限 值(不 小 于
3Hz)。另外桥梁自振频率的变化不仅
能定性反映结构损伤情况,还能定性反
映恒载变化、结构整体性能和受力体系
刚度变化,应符合以下规定:
①在桥梁结构体系和恒载不变的情
3.3 测试截面与测点布置
自振频率的测试截面需根据桥跨结
图7
环境随机振动时域信号
况下,宜采用既往实测自振频率的初次
构的振型特征和所需测试阶数来确定,
值作为基准频率值,当实测自振频率小
对于该简支钢桁架结构,拾振传感器测
于基准频率值的 90% 时,因分析结构刚
DOI:10.16330/ki.1007-7359.2021.08.100
0.25m(下弦杆)。主桥每端设置 4 根直
1
交通工程研究与应用
安徽建筑
余志刚(1979-),男,安徽池州人,2003年本科
径为 60cm 的钢管混凝土桥墩,桥墩上
引言
设置钢盖梁,钢管混凝土桥墩与钢盖梁
随着城市交通功能的不断完善,为
激振法、人群跑动激振法。
要足够的人群重量。人群跳动的位置可
2
环境随机激振法:是在桥面无任何
按所测结构的振型来确定。
工程概况
交通荷载以及桥梁附近无规则振源的情
人群跑动激振法:人群以不同的步
该人行天桥主桥平面呈“一”形,采
况下,测定桥跨结构,由于桥址处风荷
速进行跑动,可以检验天桥结构在动力
载、地脉动、水流等随机荷载激振而引起

钢结构人行天桥自振频率影响因素研究

钢结构人行天桥自振频率影响因素研究

钢结构人行天桥自振频率影响因素研究摘要城市化进程的不断加快对行人出行安全带来新的问题和挑战,城市道路交叉口往往都会修建人行天桥以保障行人的安全通行。

钢结构人行天桥以其自重轻、强度高的特点被广泛采用,根据规范中频率设计法要求,其自振基频不能超过3Hz,这对人行天桥的设计提出了更高的要求。

本文以某一结构人行天桥为例,采用有限元结构分析方法,分别分析主梁参数、约束条件两项变量对人行天桥自振频率的影响,从而改善桥梁结构的合理性,提高结构的安全性和舒适度。

关键词钢结构人行天桥自振频率主梁参数约束条件0 引言钢结构在恒载和活载作用下,变形及内力易满足设计要求,因此在设计时一般重点考虑其动力特性[1-2]。

如何优化钢结构人行天桥的设计,满足频率设计要求,对于保障桥梁结构和行人的安全具有重要的工程意义。

我国CJJ69—95《城市人行天桥与人行地道技术规范》提出的频率设计法规定[3]:人行天桥的竖向自振频率应不小于3Hz,因此文章以频率分析为主线,利用软件仿真分析,选取了梁高、跨径和约束条件几个参数,对钢人行天桥设计合理性展开研究,以期为同类桥梁设计提供借鉴意义。

1 频率设计法人行天桥主要活载为人群荷载,人群荷载一般取5kN/m2,在组合条件,对结构产生的挠度和应力值也远小于允许值,具有较大的安全储备。

根据桥梁的实际使用工况,正常行人的走步频率介于1.6~2.4Hz之间,为避免共振,提高行人的安全感,我国规范要求自振频率应不小于3Hz。

综上,频率设计法是人行天桥的典型计算方法。

对于钢结构人行天桥,在满足应力、挠度限制的基础上,通过调整钢结构梁体参数和边界约束条件,使梁体自振频率满足规范要求。

2 有限元建模以某一字型简支钢箱梁人行天桥为例建模,天桥跨径为23.8m,钢箱梁净宽4.5m,两侧栏杆各0.15m,全宽4.8m。

钢箱梁材料均采用Q355,梁高为100cm。

桥面铺装为40mm厚CF40钢纤维混凝土。

采用Midas Civil 2019有限元分析软件对全桥进行建模分析,定义自重荷载、二期恒载和人群荷载,将荷载转化为质量以便进行自振频率计算分析。

人行桥自振频率的分析与计算_沈晔

人行桥自振频率的分析与计算_沈晔

第 2 项 :g/ ω2 =mg/ k
显然第 2 项为主梁在自重作用下的位移 , 计为 Δd 。 则式(9)改写为 :y =βΔl +Δd
SPECIAL STRUCTURES No.1 2004
No.1 2004
沈晔等 人行桥自振频率的分析与计算
SPST
通过上述变换 , 可看出主梁平稳阶段的位移 由自重位移与活荷载引起的位移两部分组成 , 而 活荷载 引起的 位移取 决于动 力系 数 β 的取 值 。 动力系数 β 是频率比值 θ/ ω的函数 , 当 θ/ ω※1 , 亦即自振频率接近荷载频率时 , β ※∞, 振幅无限 增大即为“共振” 。为避免共振 , 就需确定合理的 θ/ ω比值 , 使振幅控制在容许的范围内 。
= m
(ω2F-θ2)+ωg2
将式(9)的 2 项分别作如下变换 :
第1 项:
(9)
F m(ω2 -
θ2)=mω2(1
F -θ2/
ω2)
=k(1
F -θ2/
ω2)=Δl
1
1 -θ2/
ω2
=
βΔl
式中 Δl 为 活荷 载 最大 值 F 作用 下 的 静位 移 。
β
= 1
1 -θ2/
ω2为动力系数 。
保第 1 频率大于荷载的频率 , 即能确保体系的所
有频率均满足要求 。
根据图 2 所示 , 梁 在动 荷 载作 用 下产 生位
移 y ,结构产生弹性力 ky , 惯性力 m¨y , 建立平衡方
程为 :
图中 mg =mg/2
m¨y +ky = mg +P(t)
(3)
图2
将式(2)代入式(3), 得运动方程如下 :

跨铁路人行天桥分析计算

跨铁路人行天桥分析计算

跨铁路人行天桥分析计算摘要:本文首先简单介绍了人行天桥的基本结构类型,然后以天津市某跨铁路人行天桥为实例,给出人行天桥详细的计算内容及分析过程,对常遇到的设计问题提出有关技术措施,为相似工程提供借鉴。

关键词:人行天桥;自振频率;技术措施0引言人行天桥又称人行立交桥。

一般建造在车流量大、行人稠密的地段,或者交叉口、广场及铁路上面。

人行天桥只允许行人通过,用于避免车流和人流平面相交时的冲突,保障人们安全的穿越,提高车速,减少交通事故。

1人行天桥结构类型常见人行天桥,按照结构区分,可以分为三大类,分别为悬挂式结构、承托式结构和混合式结构。

1.1 悬挂式结构人行天桥悬挂式结构的人行天桥以桥栏杆为主要承重部件,供行人通过的桥板本身并不承重,悬挂在作为承重梁的桥栏上,其是将结构性部件和实用型部件结合在了一起,可以减少建筑材料的使用,相对降低工程造价,但是这种结构的人行天桥桥栏杆异常粗大结实,因而行人在桥上的视线会被栏杆遮挡,而且粗壮的桥栏杆很难给人以美的感受,因而在城市景观功能方面有所欠缺。

1.2 承托式结构人行天桥承托式结构的人行天桥将承重的桥梁直接架设在桥墩上,供行人行走的桥铺在桥梁之上,而桥栏杆仅仅起到保护行人的作用,并不承重,这一类的人行天桥造价相对较高,但是由于桥栏杆纤细优美,作为城市景观的功能较好,因而目前各城市中这一类型的人行天桥数量最众。

1.3 混合式结构的人行天桥混合式结构的人行天桥是上述两种结构的杂交体,桥栏和桥梁共同作为承重结构分担桥的荷载。

除了上述三种主流结构,还有一些城市在某些街区将悬索桥、斜拉桥的结构用于人行天桥的建筑,但这些特殊结构的人行天桥大多造价昂贵,之所以选择这些特异的结构,大多是出于城市景观的考虑,并非人行天桥的主流。

人行天桥的设计时,要注意其选位、选型、结构设计、管线处理等问题[1]。

2工程概况本工程位于天津市经济技术开发区内,总体呈南北走向,先后上跨两条现状路(均为城市主干路,两者正交),三条既有铁路,与其中一条铁路斜交,交角为89.72°,该处铁路为直线单线电气化铁路;与其余两铁路正交,铁路为货运通道。

钢结构人行天桥自振频率模态分析研究

钢结构人行天桥自振频率模态分析研究

钢结构人行天桥自振频率模态分析研究作者:钱若霖黎豪王劭琨来源:《粘接》2022年第03期摘要:城市人行天桥多采用钢结构设计,避免共振,其自振频率应不小于3 Hz;以某一字形钢结构人行天桥为研究对象,从理论计算方法确定影响自振频率的3个影响参数,通过有限元建模分析计算不同跨径、梁高及铺装各参数扰动下,天桥的一阶模态自振基频变化规律特点,并对结构的前5阶自振频率及振型特征研究。

结果表明:不同模态下结构的自振频率首先出现在刚度较小的方向和部位,竖向和横向刚度均应符合设计要求;天桥设计阶段,应从减小跨径、增加梁高以及减小铺装质量对桥梁自振频率加以控制,使其满足规范动力特性要求,提高安全性。

关键词:钢结构;人行天桥;有限元;自振频率中图分类号:U448.11文献标识码:A文章编号:1001-5922(2022)03-0116-04Modal analysis and research on the natural frequency ofsteel pedestrain bridgeQIAN Ruolin, LI Hao, WANG Shaokun(Civil Engineering College, Shaanxi Polytechnic Institute, Xianyang 712000, Shaanxi China)Abstract:Urban pedestrian bridges are mostly designed with steel structure. In order to avoid resonance, the natural vibration frequency should not be less than 3Hz. Firstly, the three influencing parameters that affect the natural frequency are determined from the theoretical calculation method. Through the finite element modeling analysis and calculations under different spans, beam heights and paving parameters, the characteristics of the first-order modal natural fundamental frequency change of the flyover, and the first five-order natural frequency and mode shape of the structure feature research. The results show that the natural frequency of the structure under different modes first appears in the direction and position with less rigidity, and the vertical and lateral rigidity should meet the design requirements; during the design stage of the overpass, the span should be reduced, the beam height should be increased, and the pavement quality should be reduced so as to meet the requirements of the normative dynamic characteristics and to improve safety.Key words:steel structure; pedestrian bridge; finite element; natural vibration frequency钢结构以其强度高、自重小、韧性好、工厂化加工和施工便捷的特点得到土木建筑行业的广泛应用[1]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大跨径椭圆形人行天桥频率分析
发表时间:2018-11-26T14:38:53.457Z 来源:《建筑细部》2018年第10期作者:孙虎
[导读] 本文基于某大跨径钢结构人行天桥的方案设计,采用Midas有限元软件比选了几种提高结构刚度的措施,研究分析了人行天桥的竖向自振频率和横向自振频率,以供类似工程参考。

中国电建集团华东勘测设计研究院有限公司杭州 311122
摘要:本文基于某大跨径钢结构人行天桥的方案设计,采用Midas有限元软件比选了几种提高结构刚度的措施,研究分析了人行天桥的竖向自振频率和横向自振频率,以供类似工程参考。

关键词:钢结构人行天桥自振频率
前言
城市人行天桥人流密集,当天桥竖向频率较小时,极易发生共振,导致引起恐慌和踩踏事故。

人行天桥规范[1]规定了“为避免共振,减少人行不安全感,天桥上部结构竖向自振频率≥3Hz”。

但规范也只考虑竖向刚度限制,没有考虑侧向刚度限制。

文献[2]通过大量的样本统计得出步频的平均值为1.82Hz,标准差为0.22Hz,服从N(1.82,0.22)的正态分布。

人群在行走时,竖向振动及纵向振动的敏感频率范围为1.60~2.40Hz,侧向振动的敏感频率范围为0.50~1.20Hz。

正常情况下若不额外增加梁高或其他措施,跨度30m以上人行天桥的自振频率很难达到3 Hz。

设计时可以采用以下几种方法提高上部结构竖向自振频率:合理布墩减小跨度,增强下部结构墩柱基础刚度、墩梁固结、增加梁高。

同时考虑横向频率避让敏感区域,最终使桥梁达到安全、经济、美观的要求。

1、工程概况
某市人行天桥位于藕花洲大街与迎宾大道交叉口,平面布置采用椭圆形布置形式,长轴长102.969m,短轴长67.804m,天桥全长271.1m,桥宽5.0m,桥下净空≥5.5m。

由于位于道路区域内的桥墩只能立于1.5m宽的中央绿化带中,因此本天桥采用八孔连续梁。

其桥跨跨径为:28.863+40.184+29.177+36.576+25.243+38.652+35.04+37.366m。

上部结构为钢箱梁,下部结构为钢管混凝土墩接承台、桩基础。

图1桥型平面布置图(单位:m)
2、结构设计
2.1计算模型
采用有限元分析软件Midas Civil2018模拟,共计273个梁单元,297个节点。

天桥最大跨径40.184m,钢箱梁高跨比按照1/20~1/30考虑,选取1.4m、1.5m、1.6m、1.7m进行比较分析。

钢箱梁采用Q345qD,钢梁截面为单箱单室,顶底板厚24mm,纵肋120x16mm,腹板厚20mm。

主桥长轴端墩柱采用φФ60cm钢管砼(Q345+C30微膨胀砼)双柱墩,其余部位采用φ80cm钢管砼单柱墩,钢管壁厚20mm。

2.2荷载
考虑结构自重、二期恒载17.3KN/m、人群荷载:3.7KN/m2、整体升温45°C、整体降温15°C、支座沉降10mm。

由于铺装层较薄,且钢箱梁本身热传导性好,考虑顶板5°C温度梯度的影响。

设计参考《公路钢结构桥梁设计规范》,荷载组合效应按《公路桥涵设计通用规范》规定计算。

2.3模型分析
首先不考虑墩柱建立上部结构模型。

边界条件为:椭圆形短轴方向3#、7#墩设置钢铰支座,1#、5#设置单向(径向)滑动支座,其余
均为双向滑动支座。

比较1.4m~1.7m梁的竖向自振频率值。

表1 结构竖向自振频率表
随着梁高增加频率增大;虽然可以满足≥3Hz的要求,但在基本组合下梁截面最大应力水平在100MPa左右,故通过单一的增加梁高来提高频率并不经济,同时梁高增大显得厚重,与纤细的墩柱形成了头重脚轻的感觉,阻碍视线且景观效果较差。

因此方案选取较底1.4m梁作为推荐方案进行优化。

2.4设计优化
优化方案一:模型添加墩柱梁单元,主桥长轴端墩柱采用φ60cm钢管砼(Q345+C30微膨胀砼)双柱墩,其余部位采用φ80cm钢管砼单柱墩。

八个圆柱墩与地面边界条件全部定义为固接;墩梁连接方式为:椭圆长轴方向温度跨度大,1#、5#不适合作为固定墩,因此宜考虑椭圆短轴方向3#、7#墩梁固结。

表2 方案一 1.4m梁高结构频率值与墩截面应力值
增加墩梁固结数量能提高了整体刚度、天桥的竖向与横向频率,但墩受力也越来越复杂,应力值易超限,导致对下部结构刚度要求很高,故固结数量不宜过多。

且椭圆短轴方向3#、7#墩梁固结方案频率指标提高显著,墩截面应力满足规范要求。

优化方案二:在确定短轴方向的为固定墩基础上,固定墩改为直径1m的钢管混凝土墩。

表3 方案二不同梁高下的频率值与墩截面应力值
图2(编号a)人行天桥竖向第一阶振型(f=3.177Hz)
通过加大短轴方向固定墩尺寸、合理设置支座,可以显著提高竖向基频及横向基频。

最终推荐方案为1.4m梁高,短轴方向3#、7#号墩柱为固定墩直径为1m,其余墩柱直径为0.8m,2#、4#、6#、8#号墩位设置单向(切向)活动支座,1#、5#号墩位设置双向活动支座。

竖向基频>3Hz,横向频率也避开了1.2Hz,且墩柱应力水平较低,均在规范要求的限值内。

2.5验算
经过验算推荐方案的模型,人群荷载作用下,各跨挠跨比均<L/600,满足规范要求。

梁、墩应力均满足公路钢结构桥梁设计规范。

3.结论
人行天桥设计往往受竖向基频控制,在确定了布跨方案、合理梁高的条件下,可通过不同的边界约束条件来模拟墩梁固结、支座的选型,以及提高下部结构刚度的方法,比选出最优方案,使竖向基频和横向基频均避开敏感频率范围,不仅能满足行人舒适度要求,同时也
达到了安全、经济美观的要求。

参考文献:
[1]城市人行天桥与人行地道技术规范[S].CJJ69-95
[2]陈政清、华旭刚.人行桥的振动与动力设计[M].北京:人民交通出版社.2009.8
[3]公路钢结构桥梁设计规范[S].JTG D64-2015
[4]饶波.大跨度钢箱梁人行天桥设计[J].城市道桥与防洪,2009(2)。

相关文档
最新文档